簡易檢索 / 詳目顯示

研究生: 王順弘
Wang, Shun-Hung
論文名稱: 磷硫配位基之鐵二價、銅一價金屬錯合物的合成與鑑定
Synthesis and Characterization of Fe(II) and Cu(I) Complexes with P/S Hybrid Ligand System
指導教授: 許鏵芬
Hsu, Hua-Fen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 78
中文關鍵詞: 磷硫配位基鐵硫錯合物銅硫錯合物
外文關鍵詞: Phosphine-thiolate ligands, copper thiolate complexes, iron thiolate complexes
相關次數: 點閱:190下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬蛋白質的活化中心是由氮、硫配位基來配位金屬離子,例如半胱氨酸或組氨酸,由於其各種結構特徵和反應性及其在生物系統中的重要作用而引起了極大的關注。為了瞭解金屬與硫鍵結之間的特性以及這些金屬蛋白質在生物系統中的反應機構。我們使用實驗室開發出的四芽磷硫配位基,P2S2* (1,2-bis(3-phenyl-2-mercaptophenyl-phenyl-phosphino)ethane)以及雙芽磷硫配位基,PS1”(2-diphenylphosphanyl-6-trimethylsilylbenzenethiol)來了解金屬錯合物在多硫配位環境中的化學性質。
    在論文第一部分,我們成功合成H2[P2S2*]四芽磷硫配位基,並利用核磁共振光譜來鑑定產物。
    在第二部分,我們合成出以[P2S2*]配位的金屬錯合物, [Fe(P2S2*)(Bipy)] 和 [Cu3(P2S2*)(P2SSCH3)],並且透過X-光單晶繞射儀、光譜、循環伏安法進行分析與鑑定。
    第三部分,我們使用 [PS1”]來合成出 [Fe(PS1”)2(CO)2],其純化金屬錯合物並以X-光單晶繞射儀、光譜、循環伏安法進行分析與鑑定。

    Metalloproteins that have active sites containing S- and N-donor ligands from cysteine and histidine have garnered much attention due to their various structural features and reactivity as well as their important roles in biological systems. To understand the nature of metal-sulfur bonds in these systems, several P/S hybrid ligand derivatives are used here to develop metal complexes. Ligands include a tetradentate diphosphine-dithiolate, P2S2*(1,2-bis(3-phenyl-2-mercaptophenyl-phenyl-phosphino)ethane), and bidentate ligand, , PS1”(3-trimethylsilybenzenethiolatol)bisphenylphosphine. Three metal complexes of these ligands have been synthesized. At this work. They are [Fe(P2S2*)(Bipy)], [Cu3(P2S2*)(P2SSCH3)] and [Fe(PS1”)2(CO)2]. All compounds have been synthesized and characterized by X-ray crystallography, spectroscopies, and cyclic voltammetry.

    Abstract I 中文摘要 II List of Contents IV List of Schemes VI List of Tables VII List of Figures VIII Abbreviation XI Chapter 1. Introduction 1 1-1. Sulfur-rich coordination in metalloproteins 1 1-2. Hydrogenase 1 1-2-1. Biomimetic complexes for Fe-only hydrogenase 2 1-3. Coppers in biological systems 3 1-3-1. Example of copper thiolate complexes 4 1-4. Example of hybrid P/S ligand system and related metal complex 6 1-5. Motivation of this work 8 Chapter 2. Results and Discussion 9 2-1. Synthesis of H2[P2S2*] ligand 9 Synthesis and characterization of H2[P2S2*] 10 NMR spectrum of H2[P2S2*] ligand 11 2-2. Synthesis and characterization of [Fe(P2S2*)(Bipy)] 13 X-ray structural determination of [Fe(P2S2*)(Bipy)]·CH3OH 14 The Spectroscopic Studies of [Fe(P2S2*)(Bipy)] 19 The electrochemical study of [Fe(P2S2*)(Bipy)] 21 Electrospray Ionization Mass Spectrum of [Fe(P2S2*)(Bipy)] 22 2-3. Synthesis and characterization of [Fe(PS1”)2(CO)2] 23 X-ray structural determination of [Fe(PS1”)2(CO)2] 24 The Spectroscopic Studies of [Fe(PS1”)2(CO)2] 29 The electrochemical study of [Fe(PS1”)2(CO)2] 33 The stability of bound carbonyl and the reaction with hydride 34 2-4. Synthesis and characterization of [Cu3(P2S2*)(P2SSCH3)] 38 X-ray structural determination of [Cu3(P2S2*)(P2SSCH3)] 39 The Spectroscopic Studies of [Cu3(P2S2*)(P2SSCH3)] 45 The electrochemical study of [Cu3(P2S2*)(P2SSCH3)] 47 Electrospray Ionization Mass analysis of [Cu3(P2S2*)(P2SSCH3)] 48 Chapter 3. Conclusions 50 Chapter 4. Experiments and Materials 51 References 62 Appendix A 64 Appendix B 68 CIF check of [Fe(P2S2*)(Bipy)] 68 CIF check of [Cu3(P2S2*)(P2SSCH3)] 72 CIF check of [Fe(PS1”)2(CO)2] 76

    (1) MacLeod, K. C.; Holland, P. L. Nature Chem. 2013, 5, 559.
    (2) Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B. Chem. Rev. 2016, 116, 8693.
    (3) Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Chem. Rev. 2014, 114, 4081.
    (4) Wright, J. A.; Turrell, P. J.; Pickett, C. J. Organometallics 2010, 29, 6146.
    (5) Song, L.-C.; Hu, F.-Q.; Zhao, G.-Y.; Zhang, J.-W.; Zhang, W.-W. Organometallics 2014, 33, 6614.
    (6) Song, L.-C.; Xie, Z.-J.; Wang, M.-M.; Zhao, G.-Y.; Song, H.-B. Inorg. Chem. 2012, 51, 7466.
    (7) Rubino, J. T.; Franz, K. J. J. Inorg. Biochem. 2012, 107, 129.
    (8) Genge, A. R.; Gibson, A. M.; Guymer, N. K.; Reid, G. Dalton Trans. 1996, 4099.
    (9) Fernández, P.; Sousa‐Pedrares, A.; Romero, J.; Durán, M. L.; Sousa, A.; Pérez‐Lourido, P.; García‐Vázquez, J. A. Eur. J. Inorg. Chem. 2010, 2010, 814.
    (10) Naeimi, H.; Moradian, M. Tetrahedron: Asymmetry 2014, 25, 429.
    (11) Champness, N. R.; Frampton, C. S.; Reid, G.; Tocher, D. A. Dalton Trans. 1994, 3031.
    (12) Issleib, v. K.; Gans, W. Z. Anorg. Allg. Chem. 1982, 491, 163.
    (13) Schmelzer, R.; Schwarzenbach, D. Cryst. Struct. Commun 1981, 10, 1317.
    (14) Kitagawa, T.; Kita, M.; Kashiwabara, K.; Fujita, J. Bull. Chem. Soc. Jpn. 1991, 64, 2942.
    (15) Chu, W.-C.; Wu, C.-C.; Hsu, H.-F. Inorg. Chem. 2006, 45, 3164.
    (16) Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327.
    (17) Umemoto, T.; Ishihara, S. J. Fluorine Chem. 1998, 92, 181.
    (18) Nieuwenhuyzen, M.; Saunders, G. C.; Smyth, E. S. Organometallics 2006, 25, 996.
    (19) Zdilla, M. J.; Verma, A. K.; Lee, S. C. Inorg. Chem. 2008, 47, 11382.
    (20) Chiang, K. P.; Barrett, P. M.; Ding, F.; Smith, J. M.; Kingsley, S.; Brennessel, W. W.; Clark, M. M.; Lachicotte, R. J.; Holland, P. L. Inorg. Chem. 2009, 48, 5106.
    (21) Das, U. K.; Daifuku, S. L.; Gorelsky, S. I.; Korobkov, I.; Neidig, M. L.; Le Roy, J. J.; Murugesu, M.; Baker, R. T. Inorg. Chem. 2016, 55, 987.
    (22) Royer, A. M.; Salomone-Stagni, M.; Rauchfuss, T. B.; Meyer-Klaucke, W. J. Am. Chem. Soc. 2010, 132, 16997.
    (23) Chen, D.; Scopelliti, R.; Hu, X. Angew. Chem. Int. Ed. 2010, 49, 7512.
    (24) Takács, J.; Soós, E.; Nagy-Magos, Z.; Markó, L.; Gervasio, G.; Hoffmann, T. Inorg. Chim. Acta 1989, 166, 39.
    (25) Liaw, W.-F.; Chen, C.-H.; Lee, G.-H.; Peng, S.-M. Organometallics 1998, 17, 2370.
    (26) Lyon, E. J.; Shima, S.; Boecher, R.; Thauer, R. K.; Grevels, F.-W.; Bill, E.; Roseboom, W.; Albracht, S. P. J. Am. Chem. Soc. 2004, 126, 14239.
    (27) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. Dalton Trans. 1984, 1349.
    (28) Belle, C.; Rammal, W.; Pierre, J.-L. J. Inorg. Biochem. 2005, 99, 1929.
    (29) Groysman, S.; Holm, R. Inorg. Chem. 2009, 48, 621.
    (30) Nguyen, L. M.; Dellinger, M. E.; Lee, J. T.; Quinlan, R. A.; Rheingold, A. L.; Pike, R. D. Inorg. Chim. Acta 2005, 358, 1331.
    (31) Andrew, C. R.; Fraczkiewicz, R.; Czernuszewicz, R. S.; Lappalainen, P.; Saraste, M.; Sanders-Loehr, J. J. Am. Chem. Soc. 1996, 118, 10436.
    (32) Houser, R. P.; Young, V. G.; Tolman, W. B. J. Am. Chem. Soc. 1996, 118, 2101.
    (33) Gennari, M.; Pécaut, J.; DeBeer, S.; Neese, F.; Collomb, M. N.; Duboc, C. Angew. Chem. Int. Ed. 2011, 50, 5662.
    (34) Neuba, A.; Flörke, U.; Meyer‐Klaucke, W.; Salomone‐Stagni, M.; Bill, E.; Bothe, E.; Höfer, P.; Henkel, G. Angew. Chem. Int. Ed. 2011, 50, 4503.
    (35) Al-Obaidi, A.; Baranovicˇ, G.; Coyle, J.; Coates, C. G.; McGarvey, J. J.; McKee, V.; Nelson, J. Inorg. Chem. 1998, 37, 3567.
    (36) Vicente, J.; González‐Herrero, P.; García‐Sánchez, Y.; Jones, P. G.; Bautista, D. Eur. J. Inorg. Chem. 2006, 2006, 115.

    無法下載圖示 校內:2022-07-12公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE