| 研究生: |
許高榜 Hsu, Kao-Pang |
|---|---|
| 論文名稱: |
建立基因重組大腸桿菌碳酸酐酶之定向進化與篩選平台 Establishment of Screening Platform and Direct Evolution of Recombinant Carbonic Anhydrase in E. coli |
| 指導教授: |
吳意珣
Ng, I-Son |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 碳酸酐酶 、定向進化 、二氧化碳封存 、篩選平台 |
| 外文關鍵詞: | Carbonic anhydrase, Direct evolution, Carbon Capture and Storage, Screening Platform |
| 相關次數: | 點閱:103 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碳酸酐酶 ( Carbonic Anhydrase, CA ) 廣泛存在於大自然的各種生物中,是一種以鋅離子結合在活性中心的酵素,能夠催化二氧化碳與水反應形成碳酸氫根離子。本研究其初選用來自Sulfurihydrogenibium yellowstonense YO3AOP1的CA (簡稱 SyCA),在大腸桿菌中進行異源表達、比較不同質體的酵素活性,同時建立了Arduino-pH tracker (ART) 硬體系統,應用於 SyCA 酵素的動力學及特性分析。接者以此數據為基礎,進行活性高但耐熱性不足的 MlCA 及表達量佳但活性及穩定性不足的 hCAII 的定向進化實驗,期待打造出具耐熱性、高穩定性、高活性的碳酸酐酶,且應用於工業的二氧化碳封存製程中。
實驗結果顯示,透過pET28a及pET32a 生產的 SyCA 粗蛋白活性分別為 20558 WAU/mg及22773 WAU/mg,在80 oC加熱 100 分鐘後,粗蛋白殘餘活性為 37.47 %,全細胞殘餘活性為 79.91%。SyCA 在pH 4 的環境下活性最好,在 9 種不同的金屬離子的環境中 ( 包含 IA、IIA,及過度金屬 ) 進行試驗,發現 Cu2+ 以及 Zn2+ 會大幅度降低 SyCA 活性。由 ART 系統分析 SyCA 粗蛋白,獲得kcat 及 kcat/KM 為 5.98.x106 s-1 和 37.9x107 s-1 M-1,全細胞則為 3.37.x106 s-1 和 8.62x107 s-1 M-1。
在定向進化的篩選實驗中,架設了兩套不同的篩選平台,分別是酚紅指示劑篩選平台及菌落尺度篩選,以利用於定向進化突變後的篩選實驗。而在突變實驗中,設計了3種不同的突變策略:(一) 電腦設計的雙硫鍵添加技術,(二) 隨機突變的RECODE,及 (三) 易錯 (error-prone) PCR ( 即 EP-PCR ) 技術。在 EP-PCR 突變實驗中,成功的生產超過 1400 個單菌落,挑選其中 576 個單菌落進行篩選實驗,完成突變技術展示及 CA 定向進化篩選平台成效的驗證。
Carbonic Anhydrase (CA) catalyzes the chemical reaction in which carbon dioxide react with water to form bicarbonate ions. Due to its high catalytic efficiency and its eco-friendliness, scientists look insight to apply CA for capturing carbon dioxide in the industrial process. However, there exist technical difficulties to industrialize this process, such as high cost, limited heat tolerance and poor in stability. In this study, we chose CA from Sulfurihydrogenibium yellowstonense YO3AOP1 (denoted as SyCA) as candidate for enzyme characterics analysis. Furthermore, based on the results, MlCA, which owns the highest activity but is low heat tolerance, and hCAII, which can be highly expressed by pET system in E. coli but poor in stability, are chosen as candidates for direct evolution. We expected to create a heat tolerance and stability CA through direct evolution, thus applied it into industrial Carbon Capture and Storage (CCS) process.
At first, the SyCA is successfully heterologous expressed in E. coli BL21(DE3), and the characterics, including enzyme activity, heat stability, pH effect, ion effect and kinetic parameters were further tested. In direct evolution experiment, two different types of screening platfom and three differen stategies of mutations have been established. As a result, total 576 candidates were screened in EP-PCR experiment on hCAII, but no candidates showed imporovments. The amount of diverse mutation candidates have to raise to the level of 105 ~ 107 in order to pick up the desirable candidates with significant improvement in characteristics. We have setted up the screening platform to selected CA with higher activity but further investigation are needed in the future.
1. R. Tubb, “EIA: Annual Energy Outlook through 2040,” Pipeline & Gas Journal, 01-Jul-2015.
2. D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex , and P. M. Midgley , “Summary for Policymakers,”Climate Change 2013 - The Physical Science Basis, pp. 1–30.
3. G. T. Rochelle, “Amine Scrubbing for CO2 Capture,” Science, vol. 325, no. 5948, pp. 1652–1654, 2009.
4. Q. Wang, J. Luo, Z. Zhong, and A. Borgna, “CO2 capture by solid adsorbents and their applications: current status and new trends,” Energy Environ. Sci., vol. 4, no. 1, pp. 42–55, 2011.
5. J.-R. Li, Y. Ma, M. C. Mccarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B. Balbuena, and H.-C. Zhou, “Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks,” Coordination Chemistry Reviews, vol. 255, no. 15-16, pp. 1791–1823, 2011.
6. M. Hasib-Ur-Rahman, M. Siaj, and F. Larachi, “Ionic liquids for CO2 capture—Development and progress,” Chemical Engineering and Processing: Process Intensification, vol. 49, no. 4, pp. 313–322, 2010.
7. O. Alvizo, L. J. Nguyen, C. K. Savile, J. A. Bresson, S. L. Lakhapatri, E. O. P. Solis, R. J. Fox, J. M. Broering, M. R. Benoit, S. A. Zimmerman, S. J. Novick, J. Liang, and J. J. Lalonde, “Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas,” Proceedings of the National Academy of Sciences, vol. 111, no. 46, pp. 16436–16441, Mar. 2014.
8. P. Tontiwachwuthikul and R. Idem, “Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents,” Recent Progress and New Developments in Post-Combustion Carbon-Capture Technology with Reactive Solvents, pp. 2–8, 2013.
9. M.-H. Chang, W. Chen, W.-C. Chen, J.-Y. Cheng, Y.-C. Chou, et al., “Calcium Loop for Carbon Capture,” Research & Development, 20-Aug-2014. [Online]. Available: http://www.rdmag.com/award-winners/2014/08/calcium-loop-carbon-capture. [Accessed: 23-Nov-2018].
10. “さまざまなエネルギーの低炭素化に向けた取り組み,” 経済産業省 資源エネルギー庁. [Online]. Available: http://www.enecho.meti.go.jp/about/special/tokushu/ondankashoene/co2sakugen.html. [Accessed: 28-Jan-2019].
11. J. D. Figueroa, T. Fout, S. Plasynski, H. Mcilvried, and R. D. Srivastava, “Advances in CO2 capture technology—The U.S. Department of Energys Carbon Sequestration Program,” International Journal of Greenhouse Gas Control, vol. 2, no. 1, pp. 9–20, 2008.
12. L. C. Lin, A. H. Berger, R. L. Martin, J. Kim, J. A. Swisher, K. Jariwala, C. H. Rycroft, A. S. Bhown, M. W. Deem, M. Haranczyk, and B. Smit, “In silico screening of carbon-capture materials,” Nature Materials, vol. 11, no. 7, pp. 633–641, 2012.
13. S. Lindskog, “Structure and mechanism of carbonic anhydrase,” Pharmacology & Therapeutics, vol. 74, no. 1, pp. 1–20, 1997.
14. C. Geers and G. Gros, “Carbon Dioxide Transport and Carbonic Anhydrase in Blood and Muscle,” Physiological Reviews, vol. 80, no. 2, pp. 681–715, Apr. 2000.
15. M. R. Badger and G. D. Price, “The Role of Carbonic Anhydrase in Photosynthesis,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 45, no. 1, pp. 369–392, 1994.
16. S. C. Frost, Carbonic anhydrase: mechanism, regulation, links to disease, and industrial applications. Place of publication not identified: Springer, 2016.
17. L. C. Chirica, B. Elleby, and S. Lindskog, “Cloning, expression and some properties of α-carbonic anhydrase from Helicobacter pylori,” Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol. 1544, no. 1-2, pp. 55–63, 2001.
18. J. Karlsson, “A novel alpha -type carbonic anhydrase associated with the thylakoid membrane in Chlamydomonas reinhardtii is required for growth at ambient CO2,” The EMBO Journal, vol. 17, no. 5, pp. 1208–1216, Feb. 1998.
19. A. Innocenti and C. T. Supuran, “Paraoxon, 4-nitrophenyl phosphate and acetate are substrates of α- but not of β-, γ- and ζ-carbonic anhydrases,” Bioorganic & Medicinal Chemistry Letters, vol. 20, no. 21, pp. 6208–6212, 2010.
20. J. N. Burnell, M. J. Gibbs, and J. G. Mason, “Spinach Chloroplastic Carbonic Anhydrase: Nucleotide Sequence Analysis of cDNA,” Plant Physiology, vol. 92, no. 1, pp. 37–40, Jan. 1990.
21. C. A. Roeske and W. L. Ogren, “Nucleotide sequence of pea cDNA encoding chloroplast carbonic anhydrase,” Nucleic Acids Research, vol. 18, no. 11, pp. 3413–3413, 1990.
22. C. Merlin, M. Masters, S. Mcateer, and A. Coulson, “Why Is Carbonic Anhydrase Essential to Escherichia coli?,” Journal of Bacteriology, vol. 185, no. 21, pp. 6415–6424, 2003.
23. M. R. Sawaya, G. C. Cannon, S. Heinhorst, S. Tanaka, E. B. Williams, T. O. Yeates, and C. A. Kerfeld, “The Structure of β-Carbonic Anhydrase from the Carboxysomal Shell Reveals a Distinct Subclass with One Active Site for the Price of Two,” Journal of Biological Chemistry, vol. 281, no. 11, pp. 7546–7555, Oct. 2006.
24. A. K.-C. So, G. S. Espie, E. B. Williams, J. M. Shively, S. Heinhorst, and G. C. Cannon, “A Novel Evolutionary Lineage of Carbonic Anhydrase (ɛ Class) Is a Component of the Carboxysome Shell,” Journal of Bacteriology, vol. 186, no. 3, pp. 623–630, 2004.
25. P. O. Nyman, “Purification and properties of carbonic anhydrase from human erythrocytes,” Biochimica et Biophysica Acta, vol. 52, no. 1, pp. 1–12, 1961.
26. B. S. Avvaru, C. U. Kim, K. H. Sippel, S. M. Gruner, M. Agbandje-Mckenna, D. N. Silverman, and R. Mckenna, “A Short, Strong Hydrogen Bond in the Active Site of Human Carbonic Anhydrase II,” Biochemistry, vol. 49, no. 2, pp. 249–251, 2010.
27. K. M. Kean, J. J. Porter, R. A. Mehl, and P. A. Karplus, “Structural insights into a thermostable variant of human carbonic anhydrase II,” Protein Science, vol. 27, no. 2, pp. 573–577, 2017.
28. D. Brown, T. Kumpulainen, J. Roth, and L. Orci, “Immunohistochemical localization of carbonic anhydrase in postnatal and adult rat kidney,” American Journal of Physiology-Renal Physiology, vol. 245, no. 1, 1983.
29. W. S. Sly, “Human Carbonic Anhydrases and Carbonic Anhydrase Deficiencies,” Annual Review of Biochemistry, vol. 64, no. 1, pp. 375–401, Jan. 1995.
30. C. Forsman, G. Behravan, A. Osterman, B.-H. Jonsson, C. R. Enzell, J.-E. Berg, M. Bartók, I. Pelczer, and G. Dombi, “Production of Active Human Carbonic Anhydrase II in E. Coli.,” Acta Chemica Scandinavica, vol. 42b, pp. 314–318, 1988.
31. C. Capasso, V. D. Luca, V. Carginale, R. Cannio, and M. Rossi, “Biochemical properties of a novel and highly thermostable bacterial α-carbonic anhydrase from Sulfurihydrogenibium yellowstonense YO3AOP1,” Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 27, no. 6, pp. 892–897, 2012.
32. V. D. Luca, D. Vullo, A. Scozzafava, V. Carginale, M. Rossi, C. T. Supuran, and C. Capasso, “Anion inhibition studies of an α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1,” Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 17, pp. 5630–5634, 2012.
33. D. Vullo, V. D. Luca, A. Scozzafava, V. Carginale, M. Rossi, C. T. Supuran, and C. Capasso, “The first activation study of a bacterial carbonic anhydrase (CA). The thermostable α-CA from Sulfurihydrogenibium yellowstonense YO3AOP1 is highly activated by amino acids and amines,” Bioorganic & Medicinal Chemistry Letters, vol. 22, no. 20, pp. 6324–6327, 2012.
34. A. D. Fiore, C. Capasso, V. D. Luca, S. M. Monti, V. Carginale, C. T. Supuran, A. Scozzafava, C. Pedone, M. Rossi, and G. D. Simone, “X-ray structure of the first ‘extremo-α-carbonic anhydrase’, a dimeric enzyme from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1,” Acta Crystallographica Section D: Biological Crystallography, vol. 69, no. 6, pp. 1150-1159, 2013
35. Y. Pocker and D. W. Bjorkquist, “Comparative studies of bovine carbonic anhydrase in H2O and D2O. Stopped-flow studies of the kinetics of interconversion of CO2 and HCO3-,” Biochemistry, vol. 16, no. 26, pp. 5698–5707, 1977.
36. D. Vullo, V. D. Luca, A. Scozzafava, V. Carginale, M. Rossi, C. T. Supuran, and C. Capasso, “The alpha-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 is highly susceptible to inhibition by sulfonamides,” Bioorganic & Medicinal Chemistry, vol. 21, no. 6, pp. 1534–1538, 2013.
37. D. N. Silverman and S. Lindskog, “The catalytic mechanism of carbonic anhydrase: implications of a rate-limiting protolysis of water,” Accounts of Chemical Research, vol. 21, no. 1, pp. 30–36, 1988.
38. A. Fernández-Gacio, A. Codina, J. Fastrez, O. Riant, and P. Soumillion, “Transforming Carbonic Anhydrase into Epoxide Synthase by Metal Exchange,” ChemBioChem, vol. 7, no. 7, pp. 1013–1016, Oct. 2006.
39. “The Nobel Prize in Chemistry 2018,” [Online]. Available: https://www.nobelprize.org/prizes/chemistry/2018/press-release/. [Accessed: 23-Nov-2018].
40. D. W. Leung, E. Chen, and D. V. Goeddel, “A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction,” Technique 1, pp. 11–15, 1989.
41. J. Cuddihy, Ed., PCR Methods and Applications, vol. 1. Plainview, NY: Cold Spring Harbor Laboratory Press, 1992.
42. R. D. Gupta and D. S. Tawfik, “Directed enzyme evolution via small and effective neutral drift libraries,” Nature Methods, vol. 5, no. 11, pp. 939–942, 2008.
43. W. P. C. Stemmer, “Rapid evolution of a protein in vitro by DNA shuffling,” Nature, vol. 370, no. 6488, pp. 389–391, 1994.
44. H. Zhao, L. Giver, Z. Shao, J. A. Affholter, and F. H. Arnold, “Molecular evolution by staggered extension process (StEP) in vitro recombination,” Nature Biotechnology, vol. 16, no. 3, pp. 258–261, 1998.
45. M. S. Packer and D. R. Liu, “Methods for the directed evolution of proteins,” Nature Reviews Genetics, vol. 16, no. 7, pp. 379–394, Sep. 2015.
46. P. Jin, Z. Kang, J. Zhang, L. Zhang, G. Du, and J. Chen, “Combinatorial Evolution of Enzymes and Synthetic Pathways Using One-Step PCR,” ACS Synthetic Biology, vol. 5, no. 3, pp. 259–268, 2016.
47. H. Yu and H. Huang, “Engineering proteins for thermostability through rigidifying flexible sites,” Biotechnology Advances, vol. 32, no. 2, pp. 308–315, 2014.
48. B. H. Jo, T. Y. Park, H. J. Park, Y. J. Yeon, Y. J. Yoo, and H. J. Cha, “Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration,” Scientific Reports, vol. 6, no. 1, Jul. 2016.
49. Y. L. Boersma, M. J. Dröge, A. M. V. D. Sloot, T. Pijning, R. H. Cool, B. W. Dijkstra, and W. J. Quax, “A Novel Genetic Selection System for Improved Enantioselectivity ofBacillus subtilis Lipase A,” ChemBioChem, vol. 9, no. 7, pp. 1110–1115, May 2008.
50. 王楠(2016),「定向進化和同步釋放重組纖維素酶的研究」,廈門大學化學工程與生物工程研究所碩士論文。
51. A. Aharoni, K. Thieme, C. P. C. Chiu, S. Buchini, L. L. Lairson, H. Chen, N. C. J. Strynadka, W. W. Wakarchuk, and S. G. Withers, “High-throughput screening methodology for the directed evolution of glycosyltransferases,” Nature Methods, vol. 3, no. 8, pp. 609–614, 2006.
52. D. Lipovšek, E. Antipov, K. A. Armstrong, M. J. Olsen, A. M. Klibanov, B. Tidor, and K. D. Wittrup, “Selection of Horseradish Peroxidase Variants with Enhanced Enantioselectivity by Yeast Surface Display,” Chemistry & Biology, vol. 14, no. 10, pp. 1176–1185, 2007.
53. A. Huebner, L. F. Olguin, D. Bratton, G. Whyte, W. T. S. Huck, A. J. D. Mello, J. B. Edel, C. Abell, and F. Hollfelder, “Development of Quantitative Cell-Based Enzyme Assays in Microdroplets,” Analytical Chemistry, vol. 80, no. 10, pp. 3890–3896, 2008.
54. D. S. Tawfik and A. D. Griffiths, “Man-made cell-like compartments for molecular evolution,” Nature Biotechnology, vol. 16, no. 7, pp. 652–656, 1998.
55. E. Mastrobattista, V. Taly, E. Chanudet, P. Treacy, B. T. Kelly, and A. D. Griffiths, “High-Throughput Screening of Enzyme Libraries: In Vitro Evolution of a β-Galactosidase by Fluorescence-Activated Sorting of Double Emulsions,” Chemistry & Biology, vol. 12, no. 12, pp. 1291–1300, 2005.
56. P. Gianella, E. L. Snapp, and M. Levy, “An in vitro compartmentalization-based method for the selection of bond-forming enzymes from large libraries,” Biotechnology and Bioengineering, vol. 113, no. 8, pp. 1647–1657, Aug. 2016.
57. “TODO Design Consultancy & Creative Agency,” todo.to.it. [Online]. Available: https://todo.to.it/#projects/idii. [Accessed: 27-Nov-2018].
58. interactionivrea.org. [Online]. Available: http://interactionivrea.org/en/index.asp. [Accessed: 27-Nov-2018].
59. “Arduino-Home,” Arduino-Introduction. [Online]. Available: https://www.arduino.cc/. [Accessed: 27-Nov-2018].
60. “pH meter (SKU: SEN0161),” DFRobot. [Online]. Available: https://www.dfrobot.com/wiki/index.php/PH_meter (SKU:_SEN0161). [Accessed: 27-Nov-2018].
61. “Dutch Bluetooth inventor honoured in US,” DutchNews.nl, 06-Apr-2015. [Online]. Available: https://www.dutchnews.nl/news/2015/04/dutch-bluetooth-inventor-honoured-in-us/. [Accessed: 27-Nov-2018].
62. “SIG Introduces Bluetooth Low Energy Wireless Technology the Next Generation of Bluetooth Wireless Technology | Bluetooth Technology Website,” Bluetooth. [Online]. Available: https://www.bluetooth.com/news/pressreleases/2009/12/17/sig-introduces-bluetooth-low-energy-wireless-technologythe-next-generation-of-bluetooth-wireless-technology. [Accessed: 27-Nov-2018].
63. Á. Hernández-Solana, D. Perez-Diaz-De-Cerio, A. Valdovinos, and J. L. Valenzuela, “Proposal and Evaluation of BLE Discovery Process Based on New Features of Bluetooth 5.0,” Sensors, vol. 17, no. 9, p. 1988, 2017.
64. Peter Riddle, "pH meters and their electrodes: calibration, maintenance and use", The Biomedical Scientist, April, p. 202–205, 2013.
65. H. Galster, pH measurement: fundamentals, methods, applications, instrumentation. Weinheim: VCH, 1991.
66. 國立台灣大學化學系普化教學小組(2002),大學普通化學實驗,第十版,出版中心:台北,國立台灣大學化學系。
67. F. B. Loiselle and J. R. Casey, “Measurement of Intracellular pH,” Membrane Transporters, pp. 259–280.
68. “ADS1115,” LM741 Operational Amplifier | TI.com. [Online]. Available: http://www.ti.com/product/ADS1115?keyMatch=ADS1115&tisearch=Search-EN. [Accessed: 23-Nov-2018]
69. .Tasgin, Esen, et al. "Purification and properties of carbonic anhydrase from bone marrow." Asian Journal of Chemistry, vol. 21. no.7, p. 5117, 2009.
70. D. Duda, C. Tu, M. Qian, P. Laipis, M. Agbandje-Mckenna, D. N. Silverman, and R. Mckenna, “Structural and Kinetic Analysis of the Chemical Rescue of the Proton Transfer Function of Carbonic Anhydrase II,” Biochemistry, vol. 40, no. 6, pp. 1741–1748, 2001.
71. T. Wingo, C. Tu, P. J. Laipis, and D. N. Silverman, “The Catalytic Properties of Human Carbonic Anhydrase IX,” Biochemical and Biophysical Research Communications, vol. 288, no. 3, pp. 666–669, 2001.
72. C. Tu, B. C. Tripp, J. G. Ferry, and D. N. Silverman, “Bicarbonate as a Proton Donor in Catalysis by Zn(II)- and Co(II)-Containing Carbonic Anhydrases,” Journal of the American Chemical Society, vol. 123, no. 25, pp. 5861–5866, 2001.
73. B. K. Kanth, K. Min, S. Kumari, H. Jeon, E. S. Jin, J. Lee, and S. P. Pack, “Expression and Characterization of Codon-Optimized Carbonic Anhydrase from Dunaliella Species for CO2 Sequestration Application,” Applied Biochemistry and Biotechnology, vol. 167, no. 8, pp. 2341–2356, 2012.
74. S. Iqbal, Nisar-Ur-Rahman, and J. Iqbal, “A capillary electrophoresis-based enzyme assay for kinetics and inhibition studies of carbonic anhydrase,” Analytical Biochemistry, vol. 444, pp. 16–21, 2014.
75. G. D. Simone and C. T. Supuran, “Carbonic anhydrase IX: Biochemical and crystallographic characterization of a novel antitumor target,” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1804, no. 2, pp. 404–409, 2010.
76. S. M. Monti, G. D. Simone, N. A. Dathan, M. Ludwig, D. Vullo, A. Scozzafava, C. Capasso, and C. T. Supuran, “Kinetic and anion inhibition studies of a β-carbonic anhydrase (FbiCA 1) from the C4 plant Flaveria bidentis,” Bioorganic & Medicinal Chemistry Letters, vol. 23, no. 6, pp. 1626–1630, 2013.
77. Y. Wu, X. Zhao, P. Li, and H. Huang, “Impact of Zn, Cu, and Fe on the Activity of Carbonic Anhydrase of Erythrocytes in Ducks,” Biological Trace Element Research, vol. 118, no. 3, pp. 227–232, 2007.
78. Z. Cai, G. Liu, J. Zhang, and Y. Li, “Development of an activity-directed selection system enabled significant improvement of the carboxylation efficiency of Rubisco,” Protein & Cell, vol. 5, no. 7, pp. 552–562, 2014.
79. Karl M. Wilbur and Norman G. Anderson, “Electrometric and Colorimetric and Colorimetric Determination of Carbonic Anhydrase,” The Journal of Biological Chemistry, vol. 176, pp. 147–154, 1948.
80. Raja G. Khalifah, “The Carbon Dioxide Hydration Activity of Carbonic Anhydrase,” The Journal of Biological Chemistry, vol. 248, pp. 2561–2573, 1971.
81. “Overview of the OSAKI CoolGen Project,” OSAKI CoolGen Corporation. [Online]. Available: https://www.osaki-coolgen.jp/en/project/overview.html#schedule.
82. M. Bui, M. Fajardy, and N. M. Dowell, “Bio-energy with carbon capture and storage (BECCS): Opportunities for performance improvement,” Fuel, vol. 213, pp. 164–175, 2018.