| 研究生: |
王坤 Wang, Kun |
|---|---|
| 論文名稱: |
基於亮度和色溫的液晶顯示螢幕視覺舒適性研究 Research of Visual Comfort When Using Liquid Crystal Display Based on Brightness and Correlated Color Temperature |
| 指導教授: |
何俊亨
Ho, Chun-Heng |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 視覺舒適 、顯示器亮度 、顯示器色溫 、神經網路 、人因工學 |
| 外文關鍵詞: | Visual Comfort, Display Brightness, Display Color Temperature, Neural Network, Human Factors Engineering |
| 相關次數: | 點閱:128 下載:39 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著顯示技術的快速發展,包括平板電腦和智能手機等個人顯示終端己經在人們的學習、工作和生活中成為不可替代的日常用品。常用的液晶顯示器Liquid Crystal Display,簡稱LCD)中,以發光二極體(Light Emitting Diode,LED)為背光源,已經在顯示器領域佔據了統治地位。在追求更薄、更大、更亮的同時,關於 LCD光特性對人類影響的研究也變的愈發重要。因此,為了更加清晰的瞭解使用者在使用液晶顯示器時,對於螢幕光源的適應情況,以及如何調節出讓使用者感覺舒適的光色。本研究基於亮度和色溫的變化對使用者觀看LCD的舒適情況的影響進行分析。
實驗一,12男12女被邀請參與在完全黑暗的環境下,觀察螢幕照度等級分別是10 lx、100 lx、200 lx三個照度水準,色溫為2800 K、3700 K、5000 K、6500 K、7500 K、9300 K六個色溫值,所構成18個光色條件的LCD。實驗結束後受測者對各個光色條件下的螢幕舒適情況進行主觀感受的打分。實驗結果顯示,螢幕相對色溫、照度的數值和Kruithof曲線圖基本吻合,但是在中間色溫區域即6500 K-7500 K之間不管照度值如何變化,使用者的舒適值始終保持較高的水準。就照度而言,在無環境光的情況下10 lx和200 lx都低於100 lx的照度的舒適水準。總體來說,照度對於舒適性的影響較色溫來說差異並不顯著。在實驗過程中還發現作業性質(工作學習與休閒娛樂)和視覺舒適度顯著相關。工作學習狀態下最大舒適性主要發生在5000 K至6500 K的較高色溫範圍,而休閒娛樂狀態下最大舒適性主要發生在3700 K至6500 K的較低色溫範圍。而且,工作學習狀態中的高舒適性的色溫範圍相對較小,而休閒娛樂狀態中的高舒適性的色溫範圍相對寬鬆。此外,性別、年齡和視覺舒適情況顯著相關。女性對於色溫更為敏感,尤其表現在低色溫時候,女性觀察者首先表現出不舒適的反應。女性觀察者的舒適情況普遍出現在6500 K-7500 K比男性觀察者的舒適色溫5000 K-6500 K略高一些;青少年舒適色溫區域5000 K-6500 K,而60歲以上的觀察者舒適色溫約集中在5000 K左右。在沒有環境光的影響下老年人普遍覺得高照度的顯示幕更加舒適。
實驗二,根據實驗一所發現的使用者的舒適情況與螢幕亮度、色溫、性別、年齡以及作業性質存在顯著的相關性,可見這種視覺舒適性是一個複雜因素共同影響的結果。為了進一步探尋多因素的舒適情況,15男15女被邀請評估了工作學習和休閒娛樂兩種狀態下的隨機3種不同環境光下不同亮度、色溫組合,即每個使用者通過實驗獲得6組實驗數據。通過使用Tobii pro glasses 3眼動儀記錄眨眼頻率、瞳孔縮放尺寸等資訊。研究結果通過主觀評價和客觀測量的相關性處理後,建立了基於倒傳遞法(Back Propagation Neural Network,BPNN)神經網路的多引數 LCD顯示參數預測模型,更加真實還原使用者使用情況,經過訓練的網路擬合性良好,平均誤差在10%以內,並能成功準確預測使用者在不同參數下觀看LCD的視覺舒適情況。
實驗三,根據實驗二研究發現眨眼頻率和主觀舒適情況存在顯著相關且相關性最強。所以實驗三繼續採用眨眼頻率指標繼續探尋人類視覺舒適度隨時間變化的情況,並採用Biopac MP160生理多導儀的眼電模組進行記錄。12名受測者被邀請,在一間可完全避光的暗室,使用亮度計對選用的iPad mini螢幕進行標定,並結合實驗一的普遍舒適範圍,在2種色溫條件(5000 K和7500 K)和兩種照度(100 lx和200 lx)下,記錄人眼在觀看過程中的眨眼頻率變化。結果發現,當時間超過一個小時觀看低色溫螢幕會更早引起眨眼頻率的升高;在工作環境亮度很低的情況下,提高顯示器亮度會有效提高注意力,但同時卻會造成眼部不適;有任務的工作狀態,相對於休閒狀態在一小時內提前出現疲勞。
本研究從人們對LCD螢幕亮度和色溫的觀看舒適情況展開研究,兼顧了使用者個體的差異和工作性質的差異,並且探討了視覺舒適情況隨時間變化的規律。其結果可以為使用者觀看LCD舒適性評估或自適應光色調節系統設計提供參考依據,以提高使用者觀看LCD的視覺舒適品質。
With the rapid development of display technology, personal display terminals, such as tablet, PC and smart-phone, have become irreplaceable daily necessities in the study, work and living mode of modern people. The commonly used liquid crystal display (LCD) with Light Emitting Diode (LED) as back-light has occupied a dominant position in the field of display. While pursuing thinner, bigger and brighter, the studies on the effects of LCD light characteristics on human beings has become more and more important. Therefore, in order to more clearly understand the adaptation of users to the screen light source when using the LCD, and how to adjust the light that makes the user feel comfortable, this study analyzed the influence of brightness and color temperature changes on the comfort of users by watching LCD.
In experiment I, 12 males and 12 females were invited to observe the LCD with 18 light conditions in a completely dark environment, which were composed of 3 screen illuminance levels such as 10 lx, 100 lx, and 200 lx, as well as 6 color temperature values such as 2800 K, 3700 K, 5000 K, 6500 K, 7500 K, and 9300 K. After the experiment, the participants carried out the subjective feeling scoring of screen comfort under various light conditions. The experimental results showed that the correlated color temperature and illuminance of the screen were basically consistent with Kruithof curve. However, no matter how the illuminance changes in the middle color temperature region (6500 K- 7500 K), the comfort value of users always keeps a high level. As far as illuminance is concerned, the comfort level of 10 lx and 200 lx is lower than that of 100 lx in the absence of ambient light. Generally speaking, the influence of illuminance on comfort is not significant compared with color temperature. During the experiment, it was also found that the status attributes of operation ("work & study" and "leisure & entertainment") was significantly correlated with visual comfort. The maximum comfort mainly occurs in the higher color temperature range of 5000 K-6500 K in the "work & study" state, while the maximum comfort mainly occurs in the lower color temperature range of 3700 K-6500 K in the "leisure & entertainment" state. Moreover, the color temperature range of high comfort in the "work & study" state is relatively small, while the color temperature range of high comfort in the "leisure & entertainment" state is relatively loose. In addition, gender and age are significantly correlated with visual comfort. Females are more sensitive to color temperature, especially when the color temperature is low, and the female participant first shows uncomfortable reaction. The comfort of female participants appears in 6500 K-7500 K, which is slightly higher than that of male participants (5000 K-6500 K); the comfortable color temperature range of teenagers is 5000 K-6500 K, while the comfortable color temperature of participants over 60 years old is about 5000 K. Without the influence of ambient light, the elderly generally feel more comfortable with high-illuminance displays.
In experiment II, according to the results of experiment I, there is a significant correlation between the comfort of users and screen brightness, color temperature, gender, age and the nature of operation, which shows that this visual comfort is the result of a complex factor. In order to further explore the comfort situation of multiple factors, 15 males and 15 females were invited to evaluate the combination of different brightness and color temperature under three different ambient lights at random as well as the two states such as "work & study" and "leisure & entertainment", namely each user obtained 6 groups of experimental data through experiments. The blink frequency, pupil size and other information were recorded by using Tobii pro glasses 3 eye tracker. After correlation treatment between subjective evaluation and objective measurement, a multi-independent variable LCD display parameter prediction model based on Back Propagation Neural Network (BPNN) was established, which can more truly restore the usage of users. The trained network has a good fitting performance, and the average error is less than 10%, which can successfully and accurately predict the visual comfort of users under different parameters.
In experiment III, according to experiment II, it was found that blink frequency was significantly correlated with subjective comfort, with the strongest correlation. Therefore, the blink frequency index was used to explore the change of human visual comfort with time in experiment III, and the EOG module of Biopac MP160 Polysomnography was used to record. 12 participants were invited to calibrate the selected iPad Mini screen with a brightness meter in a dark room that can be completely protected from light. Combined with the general comfort range of experiment I, the blink frequency changes of human eyes during watching were recorded under 2 color temperature conditions (5000 K and 7500 K) and 2 illuminances (100 lx and 200 lx). The results showed that watching on a low color temperature screen for more than 1h will cause an increase in blink frequency earlier; under the condition of low brightness in the working environment, the brightness elevation of the display will effectively improve attention, but it will cause eye discomfort at the same time; in terms of the working state with tasks, fatigue occurs in advance within 1h compared with the leisure state.
In this study, the watching comfort of people for LCD screen brightness and color temperature was studied, which took into account the differences of individual users and working properties, and explored the change law of visual comfort with time. The results can provide reference for users to evaluate the comfort of watching LCD or design an adaptive light adjustment system, so as to improve the visual comfort quality of users watching LCD.
白生茂(2010). 用於LCD背光的白光LED光學特性研究. 青島市:中國海洋大學。[Bai Shengmao. (2010). Research on the optical characteristics of white LEDs used in LCD backlighting. Qingdao City, China: Ocean University of China.]
程雯婷(2011). 基於視覺工效學的閱讀臺燈參數化評估模型的研究(未發表的博士論文). 上海市:復旦大學。[Cheng Wenting. (2011). Research on the parametric evaluation model of reading lamp based on visual ergonomics (Unpublished doctor's thesis). Fudan University, Shanghai, China.]
韓力群(2017). 人工神經網路理論及應用. 北京市:機械工業出版社。[Han Liqun. (2017). Artificial Neural Network Theory and Application. Beijing City, China: Machinery Industry Press.]
黃子強(2008). 液晶顯示原理. 北京市:國防工業出版社。[Huang Ziqiang. (2008). Principles of Liquid Crystal Display. Beijing City, China: National Defense Industry Press.]
李宏汀、張豔霞、徐偉丹、張露超(2013). 不同環境照度下手機螢幕亮度最優參數研究. 心理科学,36(5),1110-1116。[Li Hongting, Zhang Yanxia, Xu Weidan, & Zhang Luchao, (2013). Research of optimal parameters of phone screen brightness under different environmental illuminance-Take Samsung S5660 for example. Journal of Psychological Science, 36(5), 1110-1116.]
李維是(2000). 液晶顯示應用技術. 北京市:電子工業出版社。[Li Weishi. (2000). Liquid Crystal Display Application Technology. Beijing City, China: Electronic Industry Press.]
龐蘊繁(2018). 視覺與照明. 北京市:中國鐵道出版社。[Pang Yunfan. (2018). Vision and Lighting. Beijing City, China: China Railway Publishing House.]
喬俊飛、 韓紅桂(2013). 前饋神經網路分析與設計. 北京市:科學出版社。[Qiao Junfei, Han Honggui. (2013). Analysis and design of feed forward neural network. Beijing City, China: Science Press.]
邱慶榮(2017). 對側入式led背光模組結構優化設計的幾點探討. 現代製造技術與裝備, (7)。[Qiu Qingrong. (2017). Several discussions on the structural optimization design of side-in LED backlight module. Modern Manufacturing Technology and Equipment (7).]
田會娟、關濤、蔡敏鵬、胡陽(2020). 基於瞳孔直徑的VDT視覺舒適度評價方法研究. 激光与光电子学进展,57(15)。[Tian Huijuan, Guan Tao, Cai Minpeng, Hu Yang. (2020). Evaluation model of VDT visual comfort based on pupil diameter. Progress in Laser and Optoelectronics, 57(15).]
田會娟、劉歡、郝甜甜、張輝(2019). 基於視覺舒適度的led背光顯示器最優亮度控制模型. 天津工業大學學報,38(001), 83-88。[Tian Huijuan, Liu Huan, Hao Tiantian, & Zhang Hui. (2019). Optimal brightness control model of LED back-light display based on visual comfort. Journal of Tianjin Polytechnic University, 38(001), 83-88.]
田會娟、趙一聰、劉歡、牛萍娟(2016). Led液晶顯示器對視疲勞的影響. 天津工業大學學報,(35),72-76。[Tian Huijuan, Zhao Yicong, Liu Huan, & Niu Pingjuan, Effect of LED liquid on visual fatigue. Journal of Tianjin Polytechnic University, 35(001), 72-76.]
王國全(2020). Tft-lcd玻璃基板製造過程中的幾點體會. 玻璃, 47(342-03),41-44。[Wang Guoquan. (2020). Several experiences in the manufacturing process of Tft-lcd glass substrates. Glass, 47(342-03), 41-44.]
王慶(2015). LED室內照明舒適性視覺評價方法及技術的研究(未發表的博士論文). 杭州市:浙江大學。[Wang Qing. (2015). Study of visual evaluation methodology and technology for comfort under LED interior illumination (Unpublished doctor's thesis). Zhejiang University, Hangzhou, China.]
徐海松(2005). 顏色資訊工程. 杭州市:浙江大學出版社。 [Xu Haisng. (2005) Color Information Engineering. Hangzhou City, China: Zhejiang University Press.]
楊超普、方文卿、王昭、劉明寶、李春、張美麗等(2017). 不同顯示器的藍光危害及節律效應比較. 鐳射與光電子學進展,54(12),384-390。 [Yang Chaopu, Fang Wenqing, Wang Zhao, Liu Mingbao, Li Chun, & Zhang Meili. (2017). Comparison of blue light hazards and rhythmic effects of different displays. Progress in Laser and Optoelectronics, 54(12), 384-390.]
鄭聖德(2005). Lcd/pdp/oled的綜合比較. 電子工藝技術,26(005),304-307。[Zheng Shengde. (2005). Comprehensive comparison of Lcd/pdp/oled. Electronic Process Technology, 26(005), 304-307.]
周淩翱(2010). 改進BP神經網路在模式識別中的應用及研究(未發表的博士論文). 南京市:南京理工大學。 [Zhou Lingao. (2010) Application and research of improved BP neural network in pattern recognition (Unpublished doctor's thesis). Nanjing University of Science and Technology, Nanjing, China.]
Anandan, M. (2012). Progress of led backlights for lcds. Journal of the Society for Information Display, 16(2), 287-310.
Arzi, M., Laissard, G., & Prablanc, C. (1998). A self calibration method using a soft clustering procedure for eye movement recordings. Journal of Neuroscience Methods, 80(1), 1.
Bartlett, N. R., Williams, S. B., & Hanes, R. M. (1949). Visibility on cathode. Journal of the Optical Society of America, 39(6), 463-469.
Berson, David, M., Dunn, Felice, A., Takao, & Motoharu. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science, 295(5557), 1070-1073.
Betts, A. M., Mitchell, G. L., & Zadnik, K. (2002). Visual performance and comfort with the rose k lens for keratoconus. Optometry & Vision Science, 79(8), 493-501.
Blehm, C., Seema Vishnu, F., Khattak, A., Mitra, S., & Yee, R. W. (2005). Computer vision syndrome: a review. Survey of Ophthalmology, 50(3), 253-262.
Boyce, P. R., & Cuttle, C. (1990). Effect of correlated colour temperature on the perception of interiors and colour discrimination performance. Lighting Research & Technology, 22(1), 19-36.
Brainard, G. C., Hanifin, J. P., Greeson, J. M., Byrne, B., Glickman, G., & Gerner, E. (2001). Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. The Journal of Neuroscience, 21(16), 6405-6412.
Brainard, G. C., Hanifin, J. P., MD Rollag, Jeffrey, G., Brenda, B., & Gena, G. (2001). Human melatonin regulation is not mediated by the three cone photopic visual system. Journal of Clinical Endocrinology & Metabolism, (1), 433-436.
Buquet, C., Charlier, J. R., & Paris, V. (1988). Museum application of an eye tracker. Medical and Biological Engineering and Computing, 26(3), 277-281.
Chen, L., & Lin, J. H. (2004). Pathologic quiz case-supraclavicular subcutaneous nodule in a 24-year-old woman. Archives of Pathology & Laboratory Medicine, 128(8), 931-932.
Choi, J. H., & Zhu, R. (2015). Investigation of the potential use of human eye pupil sizes to estimate visual sensations in the workplace environment. Building & Environment, 88(6), 73-81.
Chuang, Y. S., & Hobday, M. (2013). Technological upgrading in taiwan's tft-lcd industry: signs of a deeper absorptive capacity?. Technology Analysis & Strategic Management, 25(9), 1045-1066.
Cimini, G., Freddi, A., Ippoliti, G., Monteriu, A., & Pirro, M. (2015). A smart lighting system for visual comfort and energy savings in industrial and domestic use. Electric Power Components and Systems, 43(11-15), 1696-1706.
Collins, M. J., Brown, B., Bowman, K. J., & Carkeet, A. (1990). Workstation variables and visual discomfort associated with vdts. Applied Ergonomics, 21(2), 157-161.
Dawson, W., Nakanishi-Ueda, T., Armstrong, D., Reitze, D., Samuelson, D., & Hope, M. (2001). Local fundus response to blue (led and laser) and infrared (led and laser) sources - sciencedirect. Experimental Eye Research, 73(1), 137-147.
Donald Arthur Norman. (1998). The design of everyday things, currency. Design of Everyday Things, 7(4), 245-246.
Han, J. X., Ma, M. Y., & Wang, K. (2021). Product modeling design based on genetic algorithm and bp neural network. Neural Computing and Applications, 33(9), 4111-4117.
Hecht. (1933). Intermittent stimulation by light : iii. the relation between intensity and critical fusion frequency for different retinal locations. Journal of General Physiology, 17(2), 251-268.
Harezlak, K., Kasprowski, P., & Stasch, M. (2014). Towards accurate eye tracker calibration-methods and procedures. Procedia Computer Science, 35(1), 1073-1081.
Huang, H. P., Ou, L. C., & Yuan, Y. (2017). Effects of age and ambient illuminance on visual comfort for reading on a mobile device. Color Research & Application, doi:10.1002/col.22089.
Hung, S. W., Tsai, J. M., Cheng, M. J., & Chen, P. C. (2012). Analysis of the development strategy of late-entrants in taiwan and korea's tft-lcd industry. Technology in Society, 34(1), 9-22.
Igor Knez. (1995) Effects of indoor lighting on mood and cognition. Journal of Environmental Psychology, 15(1), 9-51.
Isensee, S. H., & Bennett, C. A. (1983). The perception of flicker and glare on computer crt displays. Human Factors, 25(2), 177-184.
Katarzyna, A., Baczynska, Luke, L., & Price, A. (2015). Estimating sun exposure of children in day care nurseries in south oxfordshire, uk. Photochemistry & Photobiology, doi:10.1111/php.12536.
Kawashima, M., Uchino, M., Yokoi, N., Dogru, M., Uchino, Y., & Komuro, A. (2014). Decreased tear volume in patients with metabolic syndrome: the osaka study. British Journal of Ophthalmology, 98(3), 418.
Kelker, N. E., & Anderson, R. L. (1972). Evidence for vectorial phosphorylation of d-fructose by intact cells of aerobacter aerogenes. Journal of Bacteriology, 112(3), 1441.
Kong, X., & Wilson, G. F.(1998). A new eog-based eyeblink detection algorithm. Behavior Research Methods Instruments & Computers, 30(4), 713-719.
Kooi, F. L., & Toet, A. (2004). Visual comfort of binocular and 3d displays. Displays, 25(2/3), 99-108.
Kruithof, A. A. (1941). Tubular luminescence lamps for general illumination. Philips Technical Review, 6.
Kurumisawa, M., Suzuki, T., & Shimozono, H. (1997). Human sensitivity of brightness uniformity for LCDs. IEEE/ASME International Conference on Advanced Intelligent Mechatronics 97 Final Program & Abstracts.
Lee, H., & Whang, K. W. (2012). A quantitative measurement of LCD and PDP TVs for human visual preference and fatigue. Displays, 33(1), 1-6.
Lin, B. R., Huang, K., & Wang, D. (2006). Analysis, design, and implementation of an active clamp forward converter with synchronous rectifier. IEEE Transactions on Circuits & Systems I Regular Papers, 53(6), 1310-1319.
Lin, M. W., Hsieh, P. H., Chang, E. C., & Chen, Y. C. (2014). Flicker-glare and visual-comfort assessments of light emitting diode billboards. Applied Optics, 53(22), 61-8.
Lin, Y., Fotios, S., Wei, M., Liu, Y., Guo, W., & Sun, Y. (2015). Eye movement and pupil size constriction under discomfort glare. Investigative Ophthalmology & Visual Science, 56(3), 1649-1656.
Li, S., Zhang, Y. N., & Wang, J. (2019). Pupil diameterestimation model. Acta Optica Sinica, 39(1), 0133002.
Liu, H. S., Chen, X., Zhou, J., & Liu, W. (2014). External appearance and internal decoration design of loader based on eye tracker. Applied Mechanics & Materials, doi:10.3788/AOS201939.0133002.
Liu, S., & Luo, X. (2011). LED packaging for lighting applications: design, manufacturing and testing. doi:10.1002/9780470827857, 349-352.
Liu, X. Zhong, M. L. Lin,Y. F. & Liu, Z. W. (2019). Design and Implementation of a Real-time Emotion Recognition System Based on Physiological signals. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 39 (176-180), 1001-0645.
Ludvík Eger. (2018). How people acquire knowledge from a web page: an eye tracking study. Knowledge Management and E-Learning, 10(3), 350-366.
Matin, E. (1974). Saccadic suppression: a review and an analysis. Psychol. Bull, 81 (12), 899.
Matsushita, S., Yatsuya, H., Iwasaki, Y., Hashimoto, T., Miyao, M., Saito, S., Nakaishi, H., & Ishihara, H. (1999). Eye fixation direction and tear evaporation during computer work. The Japanese Journal of Ergonomics, 35(2), 524-525.
Mccamy, C. S. (1992). Correlated color temperature as an explicit function of chromaticity coordinates. Color Research & Application, 17, doi:10.1002/col.5080170211.
Miki, Uchino, Debra, A., & Schaumberg. (2008). Prevalence of dry eye disease among Japanese visual display terminal users. Ophthalmology, 115(11), 1982-1988.
Murata, A., Uetake, A., Otsuka, M., & Takasawa, Y. (2001). Proposal of an index to evaluate visual fatigue induced during visual display terminal tasks. International Journal of Human Computer Interaction, 13(3), 305-321.
Oi, N., & Takahashi, H. (2007). Preferred combinations between illuminance and color temperature in several settings for daily living activities.
Noell, W., Walker, U., Kang, B., & Berman, S. (1966). Retinal damage by light in rats. Investigative Ophthalmology, 5(5), 450-473.
Nooree, Na, Hyeon-Jeong, & Suk. (2015). Adaptive display luminance for viewing smartphones under low illuminance. Optics Express, 23(13), 16912.
Okabe, M. (1993). Wide viewing angle tft-lcds : domain-divided tn-lcd and polymer-dispersed lcd with crossed nicols. Lcd Technologies, 17, 13-18.
Price, L., Khazova, M., & O'Hagan, J. (2016). Human responses to lighting based on LED lighting solutions. Report for CIBSE/SLL.
Qu, X., Zeng, S., Wei, K., Wen, R., & Chen, Y. (2019). Comparative Study on the Influence of Quantum Dot Display and Liquid Crystal Display on Human Visual Function. 2019 18th International Conference on Optical Communications and Networks (ICOCN). IEEE.
Rashid, T., & Shahinpoor, M. (1999). Force optimization of ionic polymeric platinum composite artificial muscles by means of an orthogonal array manufacturing method. Proceedings of SPIE - The International Society for Optical Engineering, 3669(1), 289-298.
Rattleff, & Anker. (1956). A study of visual movements determined by form, colour or brightness. Acta Psychologica, 12(1-2), 65-75.
Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye movement control in reading. Psychological Review, 105(1), 125-157.
Rynkiewicz, F., & Napieralski, P. (2017). Blinking Extraction in Eye gaze System for Stereoscopy Movies. Code Life Scientific Data Science Algorithms, Techniques and Architectures in Healthcare.
Sahoo, A. K., Mishra, S. K., Majhi, B., Panda, G., & Satapathy, S. C. (2021). Real-time identification of fuzzy pid-controlled maglev system using tlbo-based functional link artificial neural network. doi:10.1007/s13369-020-05292-x.
Sakamoto, K., Aoyama, S., Asahara, S., Yamashita, K., & Okada, A. (2012). Physiological and psychological measurements of visual fatigue for TVs in a home viewing environment. SID Symposium Digest of Technical Papers, 40(1), 1196-1199.
Shamsul, B.M.T, Sia, C.C, & Ng, Y.G. (2013). Effects of light 's colour temperatures on visual comfort level,task performances, and alertness among students. American Journal of Public Health Research, 1(7), 159-165.
Sivaji, A., Shopian, S., Nor, Z. M., Chuan, N. K., & Bahri, S. (2013). Lighting does matter: preliminary assessment on office workers. Procedia-Social and Behavioral Sciences, 97(1), 638-647.
Staff Hygge, & Igor Knez. (2001). Effcets of noise, heat and indoor lighting on cognitive performance and self-reported affect. Journal of Environmental Psychology, 21(3), 291-299.
Stevens, J. C., & Stevens, S. S. (1963). Brightness function: effects of adaptation. Journal of the Optical Society of America, 53(3), 375.
Takeda, Tsunehiro, Oestberg, Olov, Fukui, & Yukio. (1988). Dynamic accommodation measurements for objective assessment of eyestrain and visual fatigue. Journal of Human Ergology, 17, 21-35.
Tariq Rashid. (2016). Make your own neural network. CreateSpace Independent Publishing Platform.
Tseng, F. M., Chiu, Y. J., & Chen, J. S. (2009). Measuring business performance in the high-tech manufacturing industry: a case study of taiwan's large-sized tft-lcd panel companies. Omega, 37(3), 686-697.
Veitch, J. A., & Mccoll, S. L. (1997). Correspondence re: modulation of fluorescent light: flicker rate and light source effects on visual performance and visual comfort. Lighting Research and Technology, 29(1), 10.1177/14771535970290010401.
Wang, K., Ho, C. H., Tian, C., & Zong, Y. (2020). Optical health analysis of visual comfort for bright screen display based on back propagation neural network. Computer Methods and Programs in Biomedicine, 196, 105600.
Wang, K., Ho, C. H., & Zong, Y. (2020). Analysis of brightness and color temperature of liquid crystal display on visual comfort based on eye health monitoring of humans. Journal of Medical Imaging and Health Informatics, 10(6), 1359-1364.
Yano, S., Ide, S., Mitsuhashi, T., & Thwaites, H. (2002). A study of visual fatigue and visual comfort for 3d hdtv/hdtv images. Displays, 23(4), 191-201.
Yoon, G. H., & Kim, J. T. (2014). The effects of illuminance and correlated color temperature on visual comfort of occupants' behavior. Kieae Journal, 14(1), 23-30.
Youssef, P. N., Sheibani, N., & Albert, D. M. (2011). Retinal light toxicity. Eye, 25(1), 1-14.
Yuan, Y., Chuo, L., Tu, H., Tsai, W., Chong, H., & Jeng, M. (2016) Effects of age and gender on visual comfort for reading using white LED lights. "Proceedings of CIE 2016 Lighting Quality and Energy Efficiency". Melbourne, Australia, 463-467.
Zhang, W., Guo, X., Wang, C., & Wu, C. (2007). A POD-based center selection for RBF neural network in time series prediction problems. Adaptive and Natural Computing Algorithms, 8th International Conference, 4(2), 11-14.