| 研究生: |
詹承育 Zhan, Cheng-Yu |
|---|---|
| 論文名稱: |
合成鈀鎘-鈀異質結構以提升鈀鎘金屬奈米立方體對甲酸氧化反應的穩定性 Synthesis of PdCd-Pd heterostructure to enhance the stability of PdCd intermetallic nanocrystals for formic acid oxidation |
| 指導教授: |
吳欣倫
Wu, Hsin-Lun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 鈀鎘奈米立方體 、金屬間化合物 、異質結構 、甲酸氧化反應 、綠色化學 |
| 外文關鍵詞: | PdCd nanocubes, intermetallic, heterostructure, formic acid oxidation (FAOR), green chemistry |
| 相關次數: | 點閱:121 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
不同於一般的雙金屬奈米晶體,金屬間化合物具有各自特定的電子結構,因此可能具有原金屬沒有的物理、化學性質,在催化方面會產生很大的影響。本研究探討鈀鎘金屬間化合物奈米立方體的甲酸氧化活性,雖然起始具有高活性的表現,但是經過多圈測試發現有快速衰退的現象,而過往文獻透過理論計算的結果得知鈀鎘立方體的電子結構與銅相似,而銅金屬對二氧化碳具有良好的吸附能力,推測可能是催化劑對最終產物二氧化碳的強吸附,導致催化活性減少,但是站在綠色化學的角度上,電池需要避免一次性的使用,因此多圈穩定性是評估催化劑的重點之一。
本文以具有體心立方結構,尺寸為10奈米的鈀鎘奈米立方體當作晶種,利用濕化學外延生長法,成功的在鈀鎘奈米立方體的邊角上生長鈀金屬形成鈀鎘-鈀異質結構,透過兩種材料間的協同效應,來減少對二氧化碳的吸附提升穩定性。關於催化的測試結果,雖然鈀鎘-鈀異質結構在甲酸氧化反應的起始活性為鈀鎘奈米立方體的80%,但是經過100圈的循環後,鈀鎘奈米立方體的活性降低了85%,而鈀鎘-鈀異質結構的活性只降低了20%,且鈀鎘-鈀異質結構的電流值甚至為鈀鎘奈米立方體的4倍。
In this study, 10 nm of PdCd nanocubes with a body-centered tetragonal (bct) structure was synthesized as seed. PdCd-Pd heterostructures was successfully formed by reducing Pd atoms on the corner of PdCd nanocubes in a wet chemical epitaxial growth method. The reduction of adsorption of CO2 and improvement of the stability of PdCd nanocubes were achieved through the synergistic effect between Pd and PdCd. According to the catalytic results, although the initial activity of PdCd-Pd heterostructures in the formic acid oxidation reaction is only 80% to that of the PdCd nanocubes, the retained activity of PdCd nanocubes is only 15% to that of its original value after 100 cycles. And the retained activity of PdCd-Pd heterostructures is 80% to that of its original value. The current value of PdCd-Pd heterostructures is even 4 times higher than that of PdCd nanocubes.
[1] R. Larsen; S. Ha; J. Zakzeski; R. I. Masel. Unusually active palladium-based catalysts for the electrooxidation of formic acid. J. Power Sources. 2006, 157, 78-84.
[2] V. Mazumder; S. H. Sun. Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation. J. Am. Chem. Soc. 2009, 131, 4588-4589.
[3] X. Li; Y. M. Liu; J. J. Zhang; B. Yan, C. Q. Jin; J. J. Dou; M. Y. Li; X. H. Feng; G. Liu. No Annealing Synthesis of Ordered Intermetallic PdCu Nanocatalysts for Boosting Formic Acid Oxidation. Chem. Mater. 2022, 34, 1385-1391.
[4] K. Jiang; H. X. Zhang; S. Z. Zou; W. B. Cai. Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys. Chem. Chem. Phys. 2014, 16, 20360-20376.
[5] Y. S. Kang; D. Choi; J. Cho; H. Y. Park; K. S. Lee; M. Ahn; I. Jang; T. Park; H. C. Ham; S. J. Yoo. Highly Active and Durable Ordered Intermetallic PdFe Electrocatalyst for Formic Acid Electrooxidation Reaction. ACS Appl. Energy. Mater. 2020, 3, 4226-4237.
[6] Y. C. Yan, J. S. S. Du, K. D. Gilroy, D. R. Yang, Y. N. Xia, H. Zhang, Adv. Mater., 2017, 29, 1605997.
[7] A. P. Tsai; S. Kameoka; K. Nozawa; M. Shimoda; Y. Ishii. Intermetallic Nanocrystals: Syntheses and Catalytic Applications. Acc. Chem. Res. 2017, 50, 2879-2885.
[8] H. T. Jhao; C. Y. Zhan; H. L. Wu. Light-Enhanced Catalytic Activity of Intermetallic PdCd Nanocubes for Suzuki Coupling. ACS Appl. Nano Mater. 2022, 5, 9990-9995.
[9] X. Y. Peng; D. T. Lu; Y. N. Qin; M. M. Li; Y. J. Guo; S. J. Guo. Pt-on-Pd Dendritic Nanosheets with Enhanced Bifunctional Fuel Cell Catalytic Performance. ACS Appl. Mater. Interfaces. 2020, 12, 30336-30342.
[10] J. C. Qiu; Q. N. Nguyen; Z. H. Lyu; Q. X. Wang; Y. N. Xia. Bimetallic Janus Nanocrystals: Syntheses and Applications. Chem. Mater. 2022, 34, 1385-1391.
[11] G. F. Du; J. Pei; Z. Y. Jiang; Q. L. Chen; Z. M. Ca; Q. Kuang; Z. X. Xie; L. S. Zheng. Origin of symmetry breaking in the seed-mediated growth of bi-metal nano-heterostructures. Sci. Bull. 2018, 63, 892-899.
[12] B. Lim; M. J. Jiang; P. H. C. Camargo; E. C. Cho; J. Tao; X. M. Lu; Y. M. Zhu; Y. N. Xia. Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction. Science. 2009, 324, 1302-1305.
[13] J. Liu; J. T. Zhang. Nanointerface Chemistry: Lattice-Mismatch-Directed Synthesis and Application of Hybrid Nanocrystals. Chem. Rev. 2020, 120, 2123-2170.
[14] X. Q. Huang; H. H. Zhang; C. Y. Guo; Z. Y. Zhou; N. F. Zheng. Simplifying the Creation of Hollow Metallic Nanostructures: One-Pot Synthesis of Hollow Palladium/Platinum Single-Crystalline Nanocubes. Angew. Chem. Int. Ed. Engl. 2009, 48, 4808-4812.
[15] Y. G. Feng; W. W. Xu; B. L. Huang; Q. Shao; L. Xu; S. Z. Yang; X. Q. Huang. On-Demand, Ultraselective Hydrogenation System Enabled by Precisely Modulated Pd-Cd Nanocubes. JACS. 2020, 142, 962-972.
[16] Y. J. Xiong; J. Y. Chen; B. Wiley; Y. N. Xia; Y. D. Yin; Z. Y. Li. Size-dependence of surface plasmon resonance and oxidation for pd nanocubes synthesized via a seed etching process. Nano Lett. 2005, 5, 1237-1242.
[17] M. H. Xie; Z. H. Lyu; R. H. Chen; Y. N. Xia. A Mechanistic Study of the Multiple Roles of Oleic Acid in the Oil-Phase Synthesis of Pt Nanocrystals. Chem. Eur. J. 2020, 26, 15636-15642.
[18] Y. Feng; X. H. Ma; L. Han; Z. J. Peng; J. Yang. A universal approach to the synthesis of nanodendrites of noble metals. Nanoscale. 2014, 6, 6173-6179.
[19] S. De Marchi; S. Nunez-Sanchez; G. Bodelon; J. Perez-Juste; I. Pastoriza-Santos. Pd nanoparticles as a plasmonic material: synthesis, optical properties and applications. Nanoscale. 2020, 12, 23424-23443.
[20] Y. H. Lee; G. Lee; J. H. Shim; S. Hwang; J. Kwak; K. Lee; H. Song; J. T. Park. Monodisperse PtRu nanoalloy on carbon as a high-performance DMFC catalyst. Chem. Mater. 2006, 18, 4209-4211.
[21] Y. M. Asal; A. M. Mohammad; S. S. Abd El Rehim; I. M. Al-Akraa. Synergistic enhancement of formic acid electro-oxidation on PtxCuy co-electrodeposited binary catalysts. J. Saudi Chem. Soc. 2022, 26, 101437.
校內:2028-08-16公開