簡易檢索 / 詳目顯示

研究生: 蘇鳳婷
Su, Feng-Ting
論文名稱: 基於多群體環境下之適應性推薦機制
The Adaptive Recommendation Mechanism in the Multi-groups Environment
指導教授: 鄭憲宗
Cheng, Sheng-Tzong
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 44
中文關鍵詞: congestionnavigation systemmulti tourism groupmulti sightseeingAnt Colony SystemMarkov chain
外文關鍵詞: congestion, navigation system, multi tourism group, multi sightseeing, Ant Colony System, Markov chain
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,隨著科技的進步與變遷,人們的生活品質提升,造成人們越來越重視旅遊導覽上的參觀品質。因此,在現今的學術研究上,旅遊導覽系統部份亦成為重要的研究領域,截至目前為止已經有許多人在專研旅遊導覽領域,但是這些研究主要都著重在個人旅遊導覽系統或是針對多目的地去做壅塞控制的排程,大部分研究探討的使用者身份都是以個人為止,很少研究考慮到一般在現實狀況下,觀光遊客都是成群結伴的或者甚至是由好幾台遊覽車帶來的,所以我們提出一個推薦機制,為了要解決多群體在多目的地上的壅塞減少排程議題。
    為了解決多群體在拜訪多目標地時,在同個地點裡發生壅塞的狀況,造成參觀遊客的觀光品質降低,我們嘗試依據壅塞狀態,向每個群體推薦適合他們自己的下個最佳地點,將多群體依照不同時間點分散到不同的地點,以減少每個地點因為壅塞所造成的等待。本論文使用螞蟻演算法的費洛蒙機制來記錄遊客的常走路線,當某群體從入口處進入到園區中時,會收到十筆過去遊客常走的路線,當此群體走在一定範圍內會收到景點處的訊號,此時,我們提出的推薦機制會由一台超級電腦運行,其會根據這十筆過去遊客常走路線加上目前群體附近景點的壅塞程度,最後依照各群體的狀況去推薦下一個最適合此群體的目的地,主要的目的是讓每個地點的壅塞狀況減少,以達成多群體的平均等待時間越少越好的目標。

    In recent years, tourism navigation systems have become an important research area because people have focus on the quality of the tourism. There are a lots of researches on the tour guiding have been proposed so for. The researches are interested in personal tourism navigation system or congestion-aware scheduling method for traveling multiple destinations. However, those navigation systems mainly focus on the guiding for personal use. They don’t consider tourists as groups. So, we propose a recommend mechanism which is focus on congestion-aware scheduling method for multiple groups in traveling multiple destinations.
    In order to reduce congestions in the visiting multiple destinations problem for the multiple groups, we try to recommend the suitable next destination for groups. We need to distribute congestion over space and time. In this paper, we propose a novel multi tourism group routing path mechanism that will discover historic sightseeing routing path and recommend the suitable tour path based on multi tourism group and multi sightseeing. Our goal is reducing the average waiting time for the group by recommending the suitable tour path.

    摘 要...................................................iii Abstract.................................................iv Acknowledgement..........................................v 1. Introduction.....................................1 1.1. Motivations......................................1 1.2. Objectives.......................................2 1.3. Thesis Overview..................................3 2. Related Works....................................4 2.1. Theme Park Problem...............................4 2.2. Blocking Model...................................6 2.3. Markov Chain.....................................10 3. System model.....................................14 3.1. Problem Description..............................14 3.2. System mechanism.................................17 3.3. Analytical of Blocking Probability for Knowledge-based historic sightseeing routing path calculation module...................................................29 3.4. Analysis of Reliable Feedback....................32 4. Performance Analysis and Results.................34 4.1. Simulation preparation...........................34 4.2. Simulation and performance evaluation............34 5. Conclusions and future works.....................42 References...............................................43

    [1] A. Maruyama, N. Shibata, Y. Murata, K.Yasumoto, and M. Ito, “A personal tourism navigation system to support traveling multiple destinations with time restrictions,” Proc. of 18th Int'l. Conf. on Advanced Information Networking and Applications, 2004, pp. 18–21.
    [2] Andreas Butz, Jorg Baus, Antonio Kruger, and Marco Lohse, “A Hybrid Indoor Navigation System,” International Conference on ntelligent User Interfaces, 2001, pp. 25–33.
    [3] Hidenori Kawamura, Takashi Kataoka, Koichi Kurumatani and Azuma Ohuchi, “Investigation of Global Performance Affected by Congestion Avoiding Behavior in Theme Park Problem,” IEEJ Transactions on Electronics, Information and Systems, Vol. 124, No. 10, 2004, pp. 1922–1929.
    [4] Takashi Kataoka, Hidenori Kawamura, Koichi Kurumatani and Azuma Ohuchi, “Distributed Visitors Coordination System in Theme Park Problem,” Proc. of International Workshop on Massively Multi-Agent Systems, pp. 105–119, 2004.
    [5] Nakamura, Y., Ren, G., Nakamura, M., Umedu, T. and Higashino, T., “Personally Customizable Group Navigation System Using Cellular Phones and Wireless Ad-Hoc Communication,” IEEE International Conference on Multimedia and Expo, 2005, pp. 1342–1345.
    [6] Po-Yu Chen, Wen-Tsuen Chen, Yu-Chee Tseng and Chi-Fu Huang, “Providing Group Tour Guide by RFIDs and Wireless Sensor Networks,” IEEE Transactions on Wireless Communications, Vol. 8, No. 6, June 2009, pp. 3059–3067.
    [7] Hisaka Kuriyama, Yoshihiro Murata, Naoki Shibata, Keiichi Yasumoto and Minoru Ito, “Congestion Alleviation Scheduling Technique for Car Drivers Based on Prediction of Future Congestion on Roads and Spots,” Proceedings of the 2007 IEEE Intelligent Transportation Systems Conference Seattle, 2007, pp. 910–915.
    [8] Yoshihiro Ohtani and Shinya Nogami, “Congestion Reduction in Theme Parks.”
    [9] Hidenori Kawamura, Koichi Kurumatani and Azuma Ohuchi, “Modeling of Theme Park Problem with multiagent for mass User support,” Multi-agent for Mass User Support (MAMUS 2003), Vol. 3012, 2003, pp. 1–7.
    [10] Leonard E. Miller, “Models for MSE Traffic and Blocking Under Stress,” AD-B166477.
    [11] Giovanni Giambene, “Queuing Theory and Telecommunications,” pp. 305–383, 2005, ISBN: 978-0-387-24065-7.
    [12] D. G. Kendall, “Stochastic Processes Occurring in the Theory of Queues and their Analysis by the Method of Imbedded Markov Chain,” Annals of Math. Stat, vol. 24, 1953, pp. 338–354.
    [13] S. Ross, “Stochastic Processes,” Second Ed. Wiley & Sons, 1996.
    [14] Kelly, F. P., “Reversibility and Stochastic Networks,” 1979, New York: Wiley.
    [15] Vittorio Maniezzo, Luca Maria Gambardella and Fabio de Luigi,“ Ant Colony Optimization,” pp. 101–121, New Optimization Techniques in Engineering, Springer 2004.

    下載圖示 校內:2013-08-18公開
    校外:2013-08-18公開
    QR CODE