| 研究生: |
蕭証文 Hsiao, Zheng-Wen |
|---|---|
| 論文名稱: |
高鉻肥粒鐵系不銹鋼於熱機過程中顯微組織的演變及Laves Phase的析出之研究 Microstructure Development and Precipitation Behavior of Laves Phase during Thermomechanical Process in High Chromium Ferritic Stainless Steel |
| 指導教授: |
郭瑞昭
Kuo, Jui-Chao |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | Crofer® 22 H 、Laves phase 、Schmid’s law 、電子背向散射繞射 、電子通道對比成像技術 |
| 外文關鍵詞: | Crofer® 22 H, Laves phase, Schmid’s law, EBSD, ECCI |
| 相關次數: | 點閱:66 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Crofer® 22 H因擁有低熱膨脹係數和高抗氧化之特性,使其被認為是SOFC中互連板材料的首選。因此,Crofer® 22 H於高溫下,其晶粒尺寸的變化與析出行為之研究顯得十分重要。本論文之研究主要探討退火溫度及不同變形量對於誘導Crofer® 22 H中Laves phase (Fe,Cr,Si)2(Nb,W)的析出行為。
本論文首先討論600°C、700°C及800°C之退火溫度,分別持溫10小時後,其對於Crofer® 22 H的析出行為之影響。由背向散射電子影像(BEI)結果顯示,當退火溫度提高時,Laves phase的析出位置會從晶界上擴散到晶粒內部,而肥粒鐵基地的晶粒尺寸沒有顯著變化,其平均晶粒尺寸為150μm。
在觀察不同退火溫度對於Crofer® 22 H的析出行為影響後,本論文接著使用電子背向散射繞射(EBSD)和電子通道對比成像(ECCI)技術,探討較大尺寸的肥粒鐵晶粒受3%,6%和10%之不同拉伸變形後的變形行為,由實驗結果發現材料中的刃差排在(110)[1-11]和(32-1)[1-11]滑移系統上的滑移現象,與學理上的Schmid’s law相反。
最後為本論文的研究重點,不同變形量於退火過程中析出行為和織構變化的影響。Crofer® 22 H經拉伸變形3%,6%和10%後,再進行700°C,持溫10小時的退火熱處理。其實驗結果顯示,隨著變形量增加,Laves phase會在晶粒內以及次晶界處析出。同時,其Laves phase的體積分率亦隨變形量的增加而增加,但是其平均粒徑卻變小。此外,在材料的織構方面,本論文研究發現以上實驗結果的晶粒皆沒有優選取向的特徵。
Crofer® 22 H has been considered as the metallic interconnect material for SOFC applications, due to the low thermal expansion coefficient and high oxidation resistance. Thus, it is very important in high temperature applications to tailor the grain size and precipitation behavior. In this work, we combined deformation and annealing, thermomechanical process, to induce the Laves phase precipitates in Crofer® 22 H.
First of all, we investigated the effect of annealing temperature on the precipitation behavior of Crofer® 22 H at 600°C, 700°C, and 800°C. Backscattered electron images (BEIs) showed that the Laves phase precipitated from the grain boundaries to the grain interiors when the temperature was increased. However, the average grain size (150 µm) of the ferritic matrix did not significantly increase at 600°C, 700°C, and 800°C for 10 h.
Then, for deformation analysis, electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) techniques were combined to investigate the deformation pattern of coarse ferrite grains after 3%, 6%, and 10% tensile deformation. We identified two edge dislocations that occurred on the (110)[1-11] and (32-1)[1-11] slip systems for selected grains, that is, breaking down Schmid’s law.
Finally, we investigated the influence of deformation on precipitation behavior and microstructure evolution during annealing process. Here, after the prior deformation of 3%, 6%, and 10%, the specimens were annealed at 700˚C for 10 hours.
Experimental results showed that fine Laves phase (Fe,Cr,Si)2(Nb,W) precipitates occurred in grains and along subgrain boundaries as increasing the deformation. Furthermore, the volume fraction of Laves phase was increased, but the average particle diameter of precipitate was reduced, as the deformation was increased. In addition, considering the deformation microstructure, the grains revealed no preferred orientation.
[1] Tietz, F., Buchkremer, H.P., and Stöver, D., 2002. Components manufacturing for solid oxide fuel cells. Solid State Ionics, Vol.152-153, pp.373-381.
[2] Blum, L., Meulenberg, W.A., Nabielek, H., and Steinberger‐Wilckens, R., 2005. Worldwide SOFC technology overview and benchmark. International Journal of Applied Ceramic Technology, Vol.2, pp.482-492.
[3] Mahapatra, M.K., Lu, K., and Reynolds, W.T., 2008. Thermophysical properties and devitrification of SrO-La2O3-Al2O3-B2O3-SiO2-based glass sealant for solid oxide fuel/electrolyzer cells. Journal of Power Sources, Vol.179, pp.106-112.
[4] Jin, T. and Lu, K., 2010. Thermal stability of a new solid oxide fuel/electrolyzer cell seal glass. Journal of Power Sources, Vol.195, pp.195-203.
[5] Yamamoto, O., Takeda, Y., Kanno, R., and Noda, M., 1987. Perovskite-type oxides as oxygen electrodes for high temperature oxide fuel cells. Solid State Ionics, Vol.22, pp.241-246.
[6] Divisek, J., De Haart, L.G.J., Holtappels, P., Lennartz, T., Mallener, W., Stimming, U., and Wippermann, K., 1994. The kinetics of electrochemical reactions on high temperature fuel cell electrodes. Journal of Power Sources, Vol.49, pp.257-270.
[7] Yokokawa, H., Sakai, N., Horita, T., and Yamaji, K., 2001. Recent developments in solid oxide fuel cell materials. Fuel cells, Vol.1, pp.117-131.
[8] Lin, C.K., Shiu, W.H., Wu, S.H., Liu, C.K., and Lee, R.Y., 2014. Interfacial fracture resistance of the joint of a solid oxide fuel cell glass-ceramic sealant with metallic interconnect. Journal of Power Sources, Vol.261, pp.227-237.
[9] Weber, A. and Ivers-Tiffée, E., 2004. Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, Vol.127, pp.273-283.
[10] Minh, N.Q., 2004. Solid oxide fuel cell technology-features and applications. Solid State Ionics, Vol.174, pp.271-277.
[11] Wen, T.L., Wang, D., Chen, M., Tu, H., Lu, Z., Zhang, Z., Nie, H., and Huang, W., 2002. Material research for planar SOFC stack. Solid State Ionics, Vol.148, pp.513-519.
[12] Butz, B., 2011. Yttria-Doped Zirconia as Solid Electrolyte for Fuel-Cell Applications. Des Karlsruher Institute für Technologie, KIT.
[13] Kofstad, P. and Bredesen, R., 1992. High temperature corrosion in SOFC environments. Solid State Ionics, Vol.52, pp.69-75.
[14] Yang, Z.G., Weil, K.S., Paxton, D.M., and Stevenson, J.W., 2003. Selection and evaluation of heat-resistant alloys for SOFC interconnect applications. Journal of the Electrochemical Society, Vol.150, pp.A1188-A1201.
[15] Quadakkers, W.J., Piron-Abellan, J., Shemet, V., and Singheiser, L., 2003. Metallic interconnectors for solid oxide fuel cells-a review. Materials at High Temperatures, Vol.20, pp.115-127.
[16] Zhu, W.Z. and Deevi, S.C., 2003. Development of interconnect materials for solid oxide fuel cells. Materials Science and Engineering: A, Vol.348, pp.227-243.
[17] Kuhn, B., Jimenez, C.A., Niewolak, L., Hüttel, T., Beck, T., Hattendorf, H., Singheiser, L., and Quadakkers, W.J., 2011. Effect of Laves phase strengthening on the mechanical properties of high Cr ferritic steels for solid oxide fuel cell interconnect application. Materials Science and Engineering: A, Vol.528, pp.5888-5899.
[18] Chiu, Y.T. and Lin, C.K., 2012. Effects of Nb and W additions on high-temperature creep properties of ferritic stainless steels for solid oxide fuel cell interconnect. Journal of Power Sources, Vol.198, pp.149-157.
[19] Froitzheim, J., Meier, G.H., Niewolak, L., Ennis, P.J., Hattendorf, H., Singheiser, L., and Quadakkers, W.J., 2008. Development of high strength ferritic steel for interconnect application in SOFCs. Journal of Power Sources, Vol.178, pp.163-173.
[20] Niewolak, L., Savenko, A., Grüner, D., Hattendorf, H., Breuer, U., and Quadakkers, W.J., 2015. Temperature dependence of laves phase composition in Nb, W and Si-alloyed high chromium ferritic steels for SOFC interconnect applications. Journal of phase equilibria and diffusion, Vol.36, pp.471-484.
[21] Fergus, J.W., 2005. Metallic interconnects for solid oxide fuel cells. Materials Science and Engineering: A, Vol.397, pp.271-283.
[22] Wu, J. and Liu, X., 2010. Recent development of SOFC metallic interconnect. Journal of Materials Science & Technology, Vol.26, pp.293-305.
[23] Huang, K., Hou, P.Y., and Goodenough, J.B., 2000. Characterization of iron-based alloy interconnects for reduced temperature solid oxide fuel cells. Solid State Ionics, Vol.129, pp.237-250.
[24] Quadakkers, W.J., Greiner, H., Hänsel, M., Pattanaik, A., Khanna, A.S., and Mallener, W., 1996. Compatibility of perovskite contact layers between cathode and metallic interconnector plates of SOFCs. Solid State Ionics, Vol.91, pp.55-67.
[25] Fontana, S., Amendola, R., Chevalier, S., Piccardo, P., Caboche, G., Viviani, M., Molins, R., and Sennour, M., 2007. Metallic interconnects for SOFC: Characterisation of corrosion resistance and conductivity evaluation at operating temperature of differently coated alloys. Journal of Power Sources, Vol.171, pp.652-662.
[26] Xu, Y., Wen, Z., Wang, S., and Wen, T., 2011. Cu doped Mn-Co spinel protective coating on ferritic stainless steels for SOFC interconnect applications. Solid State Ionics, Vol.192, pp.561-564.
[27] Uehara, T., Yasuda, N., Okamoto, M., and Baba, Y., 2011. Effect of Mn-Co spinel coating for Fe-Cr ferritic alloys ZMG232L and 232J3 for solid oxide fuel cell interconnects on oxidation behavior and Cr-evaporation. Journal of Power Sources, Vol.196, pp.7251-7256.
[28] Zhu, W.Z. and Deevi, S.C., 2003. Opportunity of metallic interconnects for solid oxide fuel cells: a status on contact resistance. Materials Research Bulletin, Vol.38, pp.957-972.
[29] Huczkowski, P., Christiansen, N., Shemet, V., Piron-Abellan, J., Singheiser, L., and Quadakkers, W.J., 2004. Oxidation induced lifetime limits of chromia forming ferritic interconnector steels. Journal of Electrochemical Energy Conversion and Storage, Vol.1, pp.30-34.
[30] Quadakkers, W.J., Pirón-Abellán, J., and Shemet, V., 2004. Metallic materials in solid oxide fuel cells. Materials Research, Vol.7, pp.203-208.
[31] Steinberger‐Wilckens, R., Blum, L., Buchkremer, H.P., Gross, S., De Haart, L.B., Hilpert, K., Nabielek, H., Quadakkers, W.J., Reisgen, U., and Steinbrech, R.W., 2006. Overview of the development of solid oxide fuel cells at Forschungszentrum Juelich. International Journal of Applied Ceramic Technology, Vol.3, pp.470-476.
[32] Niewolak, L., Young, D.J., Hattendorf, H., Singheiser, L., and Quadakkers, W.J., 2014. Mechanisms of oxide scale formation on ferritic interconnect steel in simulated low and high pO2 service environments of solid oxide fuel cells. Oxidation of Metals, Vol.82, pp.123-143.
[33] Antepara, I., Villarreal, I., Rodriguez-Martinez, L.M., Lecanda, N., Castro, U., and Laresgoiti, A., 2005. Evaluation of ferritic steels for use as interconnects and porous metal supports in IT-SOFCs. Journal of Power Sources, Vol.151, pp.103-107.
[34] Holcomb, G.R. and Alman, D.E., 2006. Effect of manganese addition on reactive evaporation of chromium in Ni-Cr alloys. Journal of materials engineering and performance, Vol.15, pp.394-398.
[35] Horita, T., Kishimoto, H., Yamaji, K., Xiong, Y., Sakai, N., Brito, M.E., and Yokokawa, H., 2008. Evaluation of Laves-phase forming Fe-Cr alloy for SOFC interconnects in reducing atmosphere. Journal of Power Sources, Vol.176, pp.54-61.
[36] Yun, D.W., Seo, H.S., Jun, J.H., Lee, J.M., Kim, D.H., and Kim, K.Y., 2011. Oxide modification by chi phase formed on oxide/metal interface of Fe-22Cr-0.5 Mn ferritic stainless steel for SOFC interconnect. International Journal of Hydrogen Energy, Vol.36, pp.5595-5603.
[37] Liu, Y. and Zhu, J., 2010. Stability of Haynes 242 as metallic interconnects of solid oxide fuel cells (SOFCs). International Journal of Hydrogen Energy, Vol.35, pp.7936-7944.
[38] Yun, D.W., Seo, H.S., Jun, J.H., Lee, J.M., and Kim, K.Y., 2012. Molybdenum effect on oxidation resistance and electric conduction of ferritic stainless steel for SOFC interconnect. International Journal of Hydrogen Energy, Vol.37, pp.10328-10336.
[39] Stanislowski, M., Froitzheim, J., Niewolak, L., Quadakkers, W.J., Hilpert, K., Markus, T., and Singheiser, L., 2007. Reduction of chromium vaporization from SOFC interconnectors by highly effective coatings. Journal of Power Sources, Vol.164, pp.578-589.
[40] Stanislowski, M., Wessel, E., Hilpert, K., Markus, T., and Singheiser, L., 2007. Chromium vaporization from high-temperature alloys I. Chromia-forming steels and the influence of outer oxide layers. Journal of the Electrochemical Society, Vol.154, pp.A295-A306.
[41] Sachitanand, R., Sattari, M., Svensson, J.E., and Froitzheim, J., 2013. Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects. International Journal of Hydrogen Energy, Vol.38, pp.15328-15334.
[42] Amendola, R., Gannon, P., Ellingwood, B., Hoyt, K., Piccardo, P., and Genocchio, P., 2012. Oxidation behavior of coated and preoxidized ferritic steel in single and dual atmosphere exposures at 800°C. Surface and Coatings Technology, Vol.206, pp.2173-2180.
[43] Magdefrau, N.J., Chen, L., Sun, E.Y., and Aindow, M., 2013. Effects of alloy heat treatment on oxidation kinetics and scale morphology for Crofer 22 APU. Journal of Power Sources, Vol.241, pp.756-767.
[44] Tucker, M.C., Lau, G.Y., Jacobson, C.P., DeJonghe, L.C., and Visco, S.J., 2007. Performance of metal-supported SOFCs with infiltrated electrodes. Journal of Power Sources, Vol.171, pp.477-482.
[45] Brylewski, T., Nanko, M., Maruyama, T., and Przybylski, K., 2001. Application of Fe-16Cr ferritic alloy to interconnector for a solid oxide fuel cell. Solid State Ionics, Vol.143, pp.131-150.
[46] Kadowaki, T., Shiomitsu, T., Matsuda, E., Nakagawa, H., Tsuneizumi, H., and Maruyama, T., 1993. Applicability of heat resisting alloys to the separator of planar type solid oxide fuel cell. Solid State Ionics, Vol.67, pp.65-69.
[47] Garcia-Vargas, M.J., Lelait, L., Kolarik, V., Fietzek, H., and Juez-Lorenzo, M.d.M., 2005. Oxidation of potential SOFC interconnect materials, Crofer 22 APU and Avesta 353 MA, in dry and humid air studied in situ by X-ray diffraction. Materials at High Temperatures, Vol.22, pp.245-251.
[48] Hammer, J.E., Laney, S.J., Jackson, R.W., Coyne, K., Pettit, F.S., and Meier, G.H., 2007. The oxidation of ferritic stainless steels in simulated solid-oxide fuel-cell atmospheres. Oxidation of Metals, Vol.67, pp.1-38.
[49] Phaniraj, M.P., Kim, D.I., and Cho, Y.W., 2011. Effect of grain boundary characteristics on the oxidation behavior of ferritic stainless steel. Corrosion Science, Vol.53, pp.4124-4130.
[50] Molin, S., Chen, M., and Hendriksen, P.V., 2014. Oxidation study of coated Crofer 22 APU steel in dry oxygen. Journal of Power Sources, Vol.251, pp.488-495.
[51] Velraj, S., Zhu, J.H., Painter, A.S., Du, S.W., and Li, Y.T., 2014. Impedance spectroscopy of the oxide films formed during high temperature oxidation of a cobalt-plated ferritic alloy. Journal of Power Sources, Vol.247, pp.314-321.
[52] Yang, Z., Walker, M.S., Singh, P., Stevenson, J.W., and Norby, T., 2004. Oxidation behavior of ferritic stainless steels under SOFC interconnect exposure conditions. Journal of the Electrochemical Society, Vol.151, pp.B669-B678.
[53] Przybylski, K., Brylewski, T., Durda, E., Gawel, R., and Kruk, A., 2014. Oxidation properties of the Crofer 22 APU steel coated with La0.6Sr0.4Co0.2Fe0.8O3 for IT-SOFC interconnect applications. Journal of Thermal Analysis and Calorimetry, Vol.116, pp.825-834.
[54] Bi, Z.H., Zhu, J.H., Du, S.W., and Li, Y.T., 2013. Effect of alloy composition on the oxide scale formation and electrical conductivity behavior of Co-plated ferritic alloys. Surface and Coatings Technology, Vol.228, pp.124-131.
[55] Gil, A., Wyrwa, J., and Brylewski, T., 2016. Improving the oxidation resistance and electrical properties of ferritic stainless steels for application in SOFC interconnects. Oxidation of Metals, Vol.85, pp.151-169.
[56] Hilpert, K., Das, D., Miller, M., Peck, D.H., and Weiss, R., 1996. Chromium vapor species over solid oxide fuel cell interconnect materials and their potential for degradation processes. Journal of the Electrochemical Society, Vol.143, pp.3642-3647.
[57] Jiang, S.P. and Chen, X.b., 2014. Chromium deposition and poisoning of cathodes of solid oxide fuel cells-a review. International Journal of Hydrogen Energy, Vol.39, pp.505-531.
[58] Collins, C., Lucas, J., Buchanan, T.L., Kopczyk, M., Kayani, A., Gannon, P.E., Deibert, M.C., Smith, R.J., Choi, D.S., and Gorokhovsky, V.I., 2006. Chromium volatility of coated and uncoated steel interconnects for SOFCs. Surface and Coatings Technology, Vol.201, pp.4467-4470.
[59] Kurokawa, H., Jacobson, C.P., DeJonghe, L.C., and Visco, S.J., 2007. Chromium vaporization of bare and of coated iron-chromium alloys at 1073 K. Solid State Ionics, Vol.178, pp.287-296.
[60] Yokokawa, H., Horita, T., Sakai, N., Yamaji, K., Brito, M.E., Xiong, Y.P., and Kishimoto, H., 2006. Thermodynamic considerations on Cr poisoning in SOFC cathodes. Solid State Ionics, Vol.177, pp.3193-3198.
[61] Horita, T., Xiong, Y., Kishimoto, H., Yamaji, K., Brito, M.E., and Yokokawa, H., 2010. Chromium poisoning and degradation at (La, Sr) MnO3 and (La, Sr) FeO3 cathodes for solid oxide fuel cells. Journal of the Electrochemical Society, Vol.157, pp.B614-B620.
[62] Trebbels, R., Markus, T., and Singheiser, L., 2010. Investigation of chromium vaporization from interconnector steels with spinel coatings. Journal of Fuel Cell Science and Technology, Vol.7, p.011013.
[63] Froitzheim, J., Ravash, H., Larsson, E., Johansson, L.G., and Svensson, J.E., 2010. Investigation of chromium volatilization from FeCr interconnects by a denuder technique. Journal of the Electrochemical Society, Vol.157, pp.B1295-B1300.
[64] Chen, L., Sun, E.Y., Yamanis, J., and Magdefrau, N.J., 2010. Oxidation kinetics of Mn1.5Co1.5O4-coated Haynes 230 and Crofer 22 APU for solid oxide fuel cell interconnects. Journal of the Electrochemical Society, Vol.157, pp.B931-B942.
[65] Wei, P., Deng, X., Bateni, M.R., and Petric, A., 2007. Oxidation and electrical conductivity behavior of spinel coatings for metallic interconnects of solid oxide fuel cells. Corrosion, Vol.63, pp.529-536.
[66] Xu, L., Wencong, L., Chunrong, P., Qiang, S., and Jin, G., 2009. Two semi-empirical approaches for the prediction of oxide ionic conductivities in ABO3 perovskites. Computational Materials Science, Vol.46, pp.860-868.
[67] Kidner, N.J., Arkenberg, G., Ibanez, S., Smith, K., Akanda, S.R., Seabaugh, M.M., and Walter, M.E., 2013. Development of protective coatings for SOFC metallic components. ECS Transactions, Vol.57, pp.2349-2356.
[68] Yang, Z., 2008. Recent advances in metallic interconnects for solid oxide fuel cells. International Materials Reviews, Vol.53, pp.39-54.
[69] Balland, A., Gannon, P., Deibert, M., Chevalier, S., Caboche, G., and Fontana, S., 2009. Investigation of La2O3 and/or (Co,Mn)3O4 deposits on Crofer22APU for the SOFC interconnect application. Surface and Coatings Technology, Vol.203, pp.3291-3296.
[70] Mikkelsen, L., Chen, M., Hendriksen, P.V., Persson, Å., Pryds, N., and Rodrigo, K., 2007. Deposition of La0.8Sr0.2Cr0.97V0.03O3 and MnCr2O4 thin films on ferritic alloy for solid oxide fuel cell application. Surface and Coatings Technology, Vol.202, pp.1262-1266.
[71] Shaigan, N., Qu, W., Ivey, D.G., and Chen, W., 2010. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects. Journal of Power Sources, Vol.195, pp.1529-1542.
[72] Hu, Y.Z., Li, C.X., Yang, G.J., and Li, C.J., 2014. Evolution of microstructure during annealing of Mn1.5Co1.5O4 spinel coatings deposited by atmospheric plasma spray. International Journal of Hydrogen Energy, Vol.39, pp.13844-13851.
[73] Gambino, L.V., Magdefrau, N.J., and Aindow, M., 2016. Microstructural evolution in manganese cobaltite films grown on Crofer 22 APU substrates by pulsed laser deposition. Surface and Coatings Technology, Vol.286, pp.206-214.
[74] Yang, Z.G., Xia, G.G., Li, X.H., and Stevenson, J.W., 2007. (Mn,Co)3O4 spinel coatings on ferritic stainless steels for SOFC interconnect applications. International Journal of Hydrogen Energy, Vol.32, pp.3648-3654.
[75] Chen, X., Hou, P.Y., Jacobson, C.P., Visco, S.J., and De Jonghe, L.C., 2005. Protective coating on stainless steel interconnect for SOFCs: Oxidation kinetics and electrical properties. Solid State Ionics, Vol.176, pp.425-433.
[76] Gavrilov, N.V., Ivanov, V., Kamenetskikh, A.S., and Nikonov, A.V., 2011. Investigations of Mn-Co-O and Mn-Co-Y-O coatings deposited by the magnetron sputtering on ferritic stainless steels. Surface and Coatings Technology, Vol.206, pp.1252-1258.
[77] Miguel-Pérez, V., Martínez-Amesti, A., Nó, M.L., Calvo-Angós, J., and Arriortua, M.I., 2014. EB-PVD deposition of spinel coatings on metallic materials and silicon wafers. International Journal of Hydrogen Energy, Vol.39, pp.15735-15745.
[78] Hosseini, N., Abbasi, M.H., Karimzadeh, F., and Choi, G.M., 2015. Development of Cu1.3Mn1.7O4 spinel coating on ferritic stainless steel for solid oxide fuel cell interconnects. Journal of Power Sources, Vol.273, pp.1073-1083.
[79] Spotorno, R., Piccardo, P., Perrozzi, F., Valente, S., Viviani, M., and Ansar, A., 2015. Microstructural and electrical characterization of plasma sprayed Cu‐Mn oxide spinels as coating on metallic interconnects for stacking solid oxide fuel cells. Fuel Cells, Vol.15, pp.728-734.
[80] Hosseini, S.N., Karimzadeh, F., Enayati, M.H., and Sammes, N.M., 2016. Oxidation and electrical behavior of CuFe2O4 spinel coated Crofer 22 APU stainless steel for SOFC interconnect application. Solid State Ionics, Vol.289, pp.95-105.
[81] Lin, C.K., Chen, T.T., Chyou, Y.P., and Chiang, L.K., 2007. Thermal stress analysis of a planar SOFC stack. Journal of Power Sources, Vol.164, pp.238-251.
[82] Lin, C.K., Huang, L.H., Chiang, L.K., and Chyou, Y.P., 2009. Thermal stress analysis of planar solid oxide fuel cell stacks: Effects of sealing design. Journal of Power Sources, Vol.192, pp.515-524.
[83] Chiu, Y.T. and Lin, C.K., 2012. Thermo-mechanical fatigue properties of a ferritic stainless steel for solid oxide fuel cell interconnect. Journal of Power Sources, Vol.219, pp.112-119.
[84] Lin, C.K., Lin, K.L., Yeh, J.H., Wu, S.H., and Lee, R.Y., 2014. Creep rupture of the joint of a solid oxide fuel cell glass-ceramic sealant with metallic interconnect. Journal of Power Sources, Vol.245, pp.787-795.
[85] Kuhn, B., Talik, M., Niewolak, L., Zurek, J., Hattendorf, H., Ennis, P.J., Quadakkers, W.J., Beck, T., and Singheiser, L., 2014. Development of high chromium ferritic steels strengthened by intermetallic phases. Materials Science and Engineering: A, Vol.594, pp.372-380.
[86] Cerjak, H., Hofer, P., and Schaffernak, B., 1999. The influence of microstructural aspects on the service behaviour of advanced power plant steels. ISIJ international, Vol.39, pp.874-888.
[87] Bhadeshia, H.K.D.H., 2001. Design of ferritic creep-resistant steels. ISIJ international, Vol.41, pp.626-640.
[88] Maruyama, K., Sawada, K., and Koike, J.I., 2001. Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ international, Vol.41, pp.641-653.
[89] Kostka, A., Tak, K.G., Hellmig, R.J., Estrin, Y., and Eggeler, G., 2007. On the contribution of carbides and micrograin boundaries to the creep strength of tempered martensite ferritic steels. Acta Materialia, Vol.55, pp.539-550.
[90] Prat, O., Garcia, J., Rojas, D., Carrasco, C., and Kaysser-Pyzalla, A.R., 2010. Investigations on coarsening of MX and M23C6 precipitates in 12% Cr creep resistant steels assisted by computational thermodynamics. Materials Science and Engineering: A, Vol.527, pp.5976-5983.
[91] Yamamoto, K., Kimura, Y., Wei, F.G., and Mishima, Y., 2002. Design of Laves phase strengthened ferritic heat resisting steels in the Fe-Cr-Nb (-Ni) system. Materials Science and Engineering: A, Vol.329, pp.249-254.
[92] Hosoi, Y., Wade, N., Kunimitsu, S., and Urita, T., 1986. Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel. Journal of Nuclear Materials, Vol.141, pp.461-467.
[93] Klueh, R.L. and Harries, D.R., 2001. High-chromium ferritic and martensitic steels for nuclear applications. ASTM International.
[94] Rojas, D., Garcia, J., Prat, O., Carrasco, C., Sauthoff, G., and Kaysser-Pyzalla, A.R., 2010. Design and characterization of microstructure evolution during creep of 12% Cr heat resistant steels. Materials Science and Engineering: A, Vol.527, pp.3864-3876.
[95] Niewolak, L., Wessel, E., Singheiser, L., and Quadakkers, W.J., 2010. Potential suitability of ferritic and austenitic steels as interconnect materials for solid oxide fuel cells operating at 600°C. Journal of Power Sources, Vol.195, pp.7600-7608.
[96] Palcut, M., Mikkelsen, L., Neufeld, K., Chen, M., Knibbe, R., and Hendriksen, P.V., 2010. Corrosion stability of ferritic stainless steels for solid oxide electrolyser cell interconnects. Corrosion Science, Vol.52, pp.3309-3320.
[97] Singheiser, L., Huczkowski, P., Markus, T., and Quadakkers, W.J., 2010. High temperature corrosion issues for metallic materials in solid oxide fuel cells. Shreir’s Corrosion.
[98] Taneike, M., Abe, F., and Sawada, K., 2003. Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions. Nature, Vol.424, pp.294-296.
[99] Rojas, D., Garcia, J., Prat, O., Sauthoff, G., and Kaysser-Pyzalla, A.R., 2011. 9% Cr heat resistant steels: Alloy design, microstructure evolution and creep response at 650°C. Materials Science and Engineering: A, Vol.528, pp.5164-5176.
[100] Dutta, B. and Sellars, C.M., 1986. Strengthening of austenite by niobium during hot rolling of microalloyed steel. Materials Science and Technology, Vol.2, pp.146-153.
[101] Park, J.S., Ha, Y.S., Lee, S.J., and Lee, Y.K., 2009. Dissolution and precipitation kinetics of Nb (C,N) in austenite of a low-carbon Nb-microalloyed steel. Metallurgical and Materials Transactions A, Vol.40, pp.560-568.
[102] Llanos, L., Pereda, B., and López, B., 2015. Interaction between recovery, recrystallization, and NbC strain-induced precipitation in high-Mn steels. Metallurgical and Materials Transactions A, Vol.46, pp.5248-5265.
[103] Liu, W.J. and Jonas, J.J., 1989. Nucleation kinetics of Ti carbonitride in microalloyed austenite. Metallurgical Transactions A, Vol.20, pp.689-697.
[104] Dutta, B., Palmiere, E.J., and Sellars, C.M., 2001. Modelling the kinetics of strain induced precipitation in Nb microalloyed steels. Acta Materialia, Vol.49, pp.785-794.
[105] Mukherjee, M., Prahl, U., and Bleck, W., 2014. Modelling the strain-induced precipitation kinetics of vanadium carbonitride during hot working of precipitation-hardened ferritic-pearlitic steels. Acta Materialia, Vol.71, pp.234-254.
[106] Nöhrer, M., Zamberger, S., and Leitner, H., 2013. Strain‐induced precipitation behavior of a Nb-Ti-V steel in the austenite phase field. Steel Research International, Vol.84, pp.827-836.
[107] Isik, M.I., Kostka, A., Yardley, V.A., Pradeep, K.G., Duarte, M.J., Choi, P.P., Raabe, D., and Eggeler, G., 2015. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12% Cr tempered martensite ferritic steels. Acta Materialia, Vol.90, pp.94-104.
[108] Guiu, F. and Pratt, P.L., 1966. The effect of orientation on the yielding and flow of molybdenum single crystals. Physica Status Solidi A, Vol.15, pp.539-552.
[109] Kaun, L., Luft, A., Richter, J., and Schulze, D., 1968. Slip line pattern and active slip systems of tungsten and molybdenum single crystals weakly deformed in tension at room temperature. Physica Status Solidi B, Vol.26, pp.485-499.
[110] Takeuchi, S. and Maeda, K., 1977. Slip in high purity tantalum between 0.7 and 40 K. Acta Metallurgica, Vol.25, pp.1485-1490.
[111] Nagakawa, J. and Meshii, M., 1981. The deformation of niobium single crystals at temperatures between 77 and 4.2 K. Philosophical Magazine A, Vol.44, pp.1165-1191.
[112] Blum, W. and Li, Y.J., 2004. Influence of grain boundaries on steady‐state deformation resistance of ultrafine‐grained Cu. Physica Status Solidi A, Vol.201, pp.2915-2921.
[113] Seeger, A. and Wasserbäch, W., 2002. Anomalous slip-a feature of high‐purity body‐centred cubic metals. Physica Status Solidi A, Vol.189, pp.27-50.
[114] Christian, J.W., 1983. Some surprising features of the plastic deformation of body-centered cubic metals and alloys. Metallurgical and Materials Transactions A, Vol.14, pp.1237-1256.
[115] Maddin, R. and Chen, N.K., 1954. Plasticity of molybdenum single crystals at high temperature. Transactions of the AIME, Vol.10, pp.937-944.
[116] Taylor, G.I., 1928. The deformation of crystals of β-brass. Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, Vol.118, pp.1-24.
[117] Gough, H., 1928. The behaviour of a single crystal of α-Iron subjected to alternating torsional stresses. Proceedings of the Royal Society of London. Series A, Mathematical and physical sciences, Vol.118, pp.498-534.
[118] Hirth, J.P. and Lothe, J., 1982. Theory of Dislocations, 2nd. John Willey & Sons.
[119] Seeger, A., 2001. Why anomalous slip in body-centred cubic metals? Materials Science and Engineering: A, Vol.319, pp.254-260.
[120] Seeger, A., 1995. The flow stress of high-purity refractory body-centred cubic metals and its modification by atomic defects. Journal de Physique IV, Vol.5, pp.C7-45-C7-65.
[121] Raabe, D., 1995. Simulation of rolling textures of bcc metals considering grain interactions and crystallographic slip on {110},{112} and {123} planes. Materials Science and Engineering: A, Vol.197, pp.31-37.
[122] Sestak, B. and Seeger, A., 1978. Glide and work-hardening in bcc metals and alloys. II. Zeitschrift für Metallkunde, Vol.69, pp.355-363.
[123] Sestak, B. and Seeger, A., 1978. Glide and work-hardening in bcc metals and alloys. III. Zeitschrift für Metallkunde, Vol.69, pp.425-432.
[124] Noble, F.W. and Hull, D., 1965. Deformation of single crystals of iron 3% Silicon. Philosophical Magazine Vol.12, pp.777-796.
[125] Caillard, D., 2010. Kinetics of dislocations in pure Fe. Part I. In situ straining experiments at room temperature. Acta Materialia, Vol.58, pp.3493-3503.
[126] Caillard, D., 2010. Kinetics of dislocations in pure Fe. Part II. In situ straining experiments at low temperature. Acta Materialia, Vol.58, pp.3504-3515.
[127] Duesbery, M.S. and Foxall, R.A., 1969. A detailed study of the deformation of high purity niobium single crystals. Philosophical Magazine Vol.20, pp.719-751.
[128] Garratt-Reed, A.J. and Taylor, G., 1979. Optical and electron microscopy of niobium crystals deformed below room temperature. Philosophical Magazine Vol.39, pp.597-646.
[129] Duesbery, M.S. and Vitek, V., 1998. Plastic anisotropy in bcc transition metals. Acta Materialia, Vol.46, pp.1481-1492.
[130] Vitek, V., Perrin, R.C., and Bowen, D.K., 1970. The core structure of ½ (111) screw dislocations in bcc crystals. Philosophical Magazine Vol.21, pp.1049-1073.
[131] Woodward, C. and Rao, S.I., 2001. Ab-initio simulation of isolated screw dislocations in bcc Mo and Ta. Philosophical Magazine Vol.81, pp.1305-1316.
[132] Woodward, C. and Rao, S.I., 2002. Flexible ab initio boundary conditions: simulating isolated dislocations in bcc Mo and Ta. Physical Review Letters, Vol.88, p.216402.
[133] Vitek, V., Mrovec, M., and Bassani, J.L., 2004. Influence of non-glide stresses on plastic flow: from atomistic to continuum modeling. Materials Science and Engineering: A, Vol.365, pp.31-37.
[134] Chaussidon, J., Fivel, M., and Rodney, D., 2006. The glide of screw dislocations in bcc Fe: Atomistic static and dynamic simulations. Acta Materialia, Vol.54, pp.3407-3416.
[135] Ito, K. and Vitek, V., 2001. Atomistic study of non-Schmid effects in the plastic yielding of bcc metals. Philosophical Magazine A, Vol.81, pp.1387-1407.
[136] Gröger, R., Bailey, A.G., and Vitek, V., 2008. Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2<111> screw dislocations at 0K. Acta Materialia, Vol.56, pp.5401-5411.
[137] Gröger, R., Racherla, V., Bassani, J.L., and Vitek, V., 2008. Multiscale modeling of plastic deformation of molybdenum and tungsten: II. Yield criterion for single crystals based on atomistic studies of glide of 1/2<111> screw dislocations. Acta Materialia, Vol.56, pp.5412-5425.
[138] Mrovec, M., Chen, Z.M., and Gumbsch, P., 2013. Atomistic aspects of 1/2 <111> screw dislocation behavior in alpha-iron and the derivation of microscopic yield criterion. Modelling and Simulation in Materials Science and Engineering, Vol.21, p.055023.
[139] Coates, D.G., 1967. Kikuchi-like reflection patterns obtained with the scanning electron microscope. Philosophical Magazine Vol.16, pp.1179-1184.
[140] Booker, G.R., Shaw, A.M.B., Whelan, M.J., and Hirsch, P.B., 1967. Some comments on the interpretation of the ‘kikuchi-like reflection patterns’ observed by scanning electron microscopy. Philosophical Magazine Vol.16, pp.1185-1191.
[141] Howie, A. and Whelan, M.J., 1961. Diffraction contrast of electron microscope images of crystal lattice defects. II. The development of a dynamical theory. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol.263, pp.217-237.
[142] Howie, A. and Whelan, M.J., 1962. Diffraction contrast of electron microscope images of crystal lattice defects. III. Results and experimental confirmation of the dynamical theory of dislocation image contrast. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol.267, pp.206-230.
[143] Hirsch, P.B., Howie, A., and Whelan, M.J., 1962. On the production of X-rays in thin metal foils. Philosophical Magazine Vol.7, pp.2095-2100.
[144] Schulson, E.M., 1977. Electron channelling patterns in scanning electron microscopy. Journal of Materials Science, Vol.12, pp.1071-1087.
[145] Joy, D.C., Newbury, D.E., and Davidson, D.L., 1982. Electron channeling patterns in the scanning electron microscope. Journal of Applied Physics, Vol.53, pp.R81-R122.
[146] Wilkinson, A.J. and Hirsch, P.B., 1997. Electron diffraction based techniques in scanning electron microscopy of bulk materials. Micron, Vol.28, pp.279-308.
[147] Gutierrez-Urrutia, I., Zaefferer, S., and Raabe, D., 2009. Electron channeling contrast imaging of twins and dislocations in twinning-induced plasticity steels under controlled diffraction conditions in a scanning electron microscope. Scripta Materialia, Vol.61, pp.737-740.
[148] Crimp, M.A., 2006. Scanning electron microscopy imaging of dislocations in bulk materials, using electron channeling contrast. Microscopy research and technique, Vol.69, pp.374-381.
[149] Zhai, T., Martin, J.W., Briggs, G.A.D., and Wilkinson, A.J., 1996. Fatigue damage at room temperature in aluminium single crystals-III. Lattice rotation. Acta Materialia, Vol.44, pp.3477-3488.
[150] Zhang, Z.F., Wang, Z.G., and Sun, Z.M., 2001. Evolution and microstructural characteristics of deformation bands in fatigued copper single crystals. Acta Materialia, Vol.49, pp.2875-2886.
[151] Ng, B.C., Simkin, B.A., and Crimp, M.A., 1998. Application of the electron channeling contrast imaging technique to the study of dislocations associated with cracks in bulk specimens. Ultramicroscopy, Vol.75, pp.137-145.
[152] Kaneko, Y., Ishikawa, M., and Hashimoto, S., 2005. Dislocation structures around crack tips of fatigued polycrystalline copper. Materials Science and Engineering: A, Vol.400, pp.418-421.
[153] Crimp, M.A., Simkin, B.A., and Ng, B.C., 2001. Demonstration of the g• bxu=0 edge dislocation invisibility criterion for electron channelling contrast imaging. Philosophical magazine letters, Vol.81, pp.833-837.
[154] Morin, P., Pitaval, M., Besnard, D., and Fontaine, G., 1979. Electron-channelling imaging in scanning electron microscopy. Philosophical Magazine Vol.40, pp.511-524.
[155] Gutierrez-Urrutia, I., Zaefferer, S., and Raabe, D., 2013. Coupling of electron channeling with EBSD: Toward the quantitative characterization of deformation structures in the SEM. The Journal of The Minerals, Metals & Materials Society, Vol.65, pp.1229-1236.
[156] Czernuszka, J.T., Long, N.J., Boyes, E.D., and Hirsch, P.B., 1990. Imaging of dislocations using backscattered electrons in a scanning electron microscope. Philosophical Magazine Letters, Vol.62, pp.227-232.
[157] Wilkinson, A.J., Anstis, G.R., Czernuszka, J.T., Long, N.J., and Hirsch, P.B., 1993. Electron channelling contrast imaging of interfacial defects in strained silicon-germanium layers on silicon. Philosophical Magazine Vol.68, pp.59-80.
[158] Zauter, R., Petry, F., Bayerlein, M., Sommer, C.H., Christ, H.J., and Mughrabi, H., 1992. Electron channelling contrast as a supplementary method for microstructural investigations in deformed metals. Philosophical Magazine Vol.66, pp.425-436.
[159] Ahmed, J., Wilkinson, A.J., and Roberts, S.G., 1999. Study of dislocation structures near fatigue cracks using electron channelling contrast imaging technique (ECCI). Journal of Microscopy, Vol.195, pp.197-203.
[160] Essen, C., Schulson, E.M., and Donaghay, R.H., 1971. The generation and identification of SEM channelling patterns from 10 μm selected areas. Journal of Materials Science, Vol.6, pp.213-217.
[161] Van Essen, C.G., Schulson, E.M., and Donaghay, R.H., 1970. Electron channelling patterns from small (10 µm) selected areas in the scanning electron microscope. Nature, Vol.225, pp.847-848.
[162] Zaefferer, S. and Elhami, N.N., 2014. Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Materialia, Vol.75, pp.20-50.
[163] Gutierrez-Urrutia, I., Zaefferer, S., and Raabe, D., 2010. The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.% Mn-0.6 wt.% C TWIP steel. Materials Science and Engineering: A, Vol.527, pp.3552-3560.
[164] Zhang, J.l., Zaefferer, S., and Raabe, D., 2015. A study on the geometry of dislocation patterns in the surrounding of nanoindents in a TWIP steel using electron channeling contrast imaging and discrete dislocation dynamics simulations. Materials Science and Engineering: A, Vol.636, pp.231-242.
[165] Hsiao, Z.W., Chen, D., Kuo, J.C., and Lin, D.Y., 2017. Effect of prior deformation on microstructural development and Laves phase precipitation in high‐chromium stainless steel. Journal of Microscopy, Vol.226, pp.35-47.
[166] Hsiao, Z.W., Kuhn, B., Chen, D., Singheiser, L., Kuo, J.C., and Lin, D.Y., 2015. Characterization of Laves phase in Crofer 22 H stainless steel. Micron, Vol.74, pp.59-64.
[167] Du, J.l., Strangwood, M., and Davis, C.L., 2012. Effect of TiN particles and grain size on the charpy impact transition temperature in steels. Journal of Materials Science & Technology, Vol.28, pp.878-888.
[168] Fairchild, D.P., Howden, D.G., and Clark, W.A.T., 2000. The mechanism of brittle fracture in a microalloyed steel: Part I. Inclusion-induced cleavage. Metallurgical and Materials Transactions A, Vol.31, pp.641-652.
[169] Rudy, E., Benesovsky, F., and Toth, L., 1963. Untersuchung der dreistoffsysteme der Va-metalle und VIa-metalle Mit Bor und kohlenstoff. Zeitschrift für Metallkunde, Vol.54, pp.345-353.
[170] Christensen, A.N., 1975. A Neutron diffraction investigation on single crystals of titanium carbide titanium nitride and zirconium nitride. Acta Chemica Scandinavica A, Vol.29, pp.563-568.
[171] Gottstein, G., 2013. Physical foundations of materials science. Springer Science & Business Media.
[172] Kornilov, I.I., Alisova, S.P., and Budberg, P.B., 1965. Equilibrium phase diagram for the NbCr2-ZrCr2 metallic compound system. Inorganic Materials, Vol.1, pp.1993-1995.
[173] Fujita, N., Ohmura, K., and Yamamoto, A., 2003. Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels. Materials Science and Engineering: A, Vol.351, pp.272-281.
[174] Hsiao, Z.W., Wu, T.Y., Chen, D., Kuo, J.C., and Lin, D.Y., 2017. EBSD and electron channeling study of anomalous slip in oligocrystals of high chromium ferritic stainless steel. Micron, Vol.94, pp.15-25.
[175] Wright, S.I., Nowell, M.M., and Field, D.P., 2011. A review of strain analysis using electron backscatter diffraction. Microscopy and Microanalysis, Vol.17, pp.316-329.
[176] Schwartz, A.J., Kumar, M., Adams, B.L., and Field, D.P., 2009. Electron backscatter diffraction in materials science. Springer.
[177] Schmid, E. and Boas, W., 2013. Kristallplastizität: mit besonderer Berücksichtigung der Metalle. Springer-Verlag.
[178] Carroll, J.D., Clark, B.G., Buchheit, T.E., Boyce, B.L., and Weinberger, C.R., 2013. An experimental statistical analysis of stress projection factors in bcc tantalum. Materials Science and Engineering: A, Vol.581, pp.108-118.
[179] Bieler, T.R., Sutton, S.C., Dunlap, B.E., Keith, Z.A., Eisenlohr, P., Crimp, M.A., and Boyce, B.L., 2014. Grain boundary responses to heterogeneous deformation in tantalum polycrystals. The Journal of The Minerals, Metals & Materials Society, Vol.66, pp.121-128.
[180] Jeffcoat, P.J., Mordike, B.L., and Rogausch, K.D., 1976. Anomalous slip in Mo-5 at.% Nb and Mo-5 at.% Re alloy single crystals. Philosophical Magazine Vol.34, pp.583-592.
[181] Marichal, C., Van Swygenhoven, H., Van Petegem, S., and Borca, C., 2013. {110} Slip with {112} slip traces in bcc Tungsten. Scientific Reports, Vol.3, p.2547.
[182] Marichal, C., Srivastava, K., Weygand, D., Van Petegem, S., Grolimund, D., Gumbsch, P., and Van Swygenhoven, H., 2014. Origin of anomalous slip in tungsten. Physical Review Letters, Vol.113, p.025501.
[183] Hsiung, L.L., 2010. On the mechanism of anomalous slip in bcc metals. Materials Science and Engineering: A, Vol.528, pp.329-337.
[184] Spencer, J.P., Humphreys, C.J., and Hirsch, P.B., 1972. A dynamical theory for the contrast of perfect and imperfect crystals in the scanning electron microscope using backscattered electrons. Philosophical Magazine, Vol.26, pp.193-213.
[185] Wilkinson, A.J. and Hirsch, P.B., 1995. The effects of surface stress relaxation on electron channelling contrast images of dislocations. Philosophical Magazine A, Vol.72, pp.81-103.
[186] Chen, D., Chang, C.P., and Loretto, M.H., 2015. Orientation contrast of secondary electron images from electropolished metals. Ultramicroscopy, Vol.156, pp.41-49.
[187] Hölscher, M., Raabe, D., and Lücke, K., 1991. Rolling and recrystallization textures of bcc steels. Steel Research International, Vol.62, pp.567-575.
[188] Raabe, D. and Lüucke, K., 1993. Textures of ferritic stainless steels. Materials Science and Technology, Vol.9, pp.302-312.
[189] Raabe, D., 1995. Textures of strip cast and hot rolled ferritic and austenitic stainless steel. Materials Science and Technology, Vol.11, pp.461-468.
[190] Lin, H.P., Chen, Y.C., Chen, D., and Kuo, J.C., 2014. Effect of cold deformation on the recrystallization behavior of FePd alloy at the ordering temperature using electron backscatter diffraction. Materials Characterization, Vol.94, pp.138-148.
[191] Nagarajan, V., Palmiere, E.J., and Sellars, C.M., 2009. New approach for modelling strain induced precipitation of Nb (C,N) in HSLA steels during multipass hot deformation in austenite. Materials Science and Technology, Vol.25, pp.1168-1174.
[192] Wang, Z.G., Mao, X., Yang, Z., Sun, X., Yong, Q., Li, Z., and Weng, Y., 2011. Strain-induced precipitation in a Ti micro-alloyed HSLA steel. Materials Science and Engineering: A, Vol.529, pp.459-467.
[193] Poddar, D., Cizek, P., Beladi, H., and Hodgson, P.D., 2014. Evolution of strain-induced precipitates in a model austenitic Fe-0Ni-Nb steel and their effect on the flow behaviour. Acta Materialia, Vol.80, pp.1-15.
[194] Rainforth, W.M., Black, M.P., Higginson, R.L., Palmiere, E.J., Sellars, C.M., Prabst, I., Warbichler, P., and Hofer, F., 2002. Precipitation of NbC in a model austenitic steel. Acta Materialia, Vol.50, pp.735-747.
[195] Sellars, C.M. and Palmiere, E.J., 2005. Modelling strain induced precipitation of niobium carbonitride during multipass deformation of austenite. Materials Science Forum, Vol.500.