簡易檢索 / 詳目顯示

研究生: 傅承芸
Fu, Cheng-Yun
論文名稱: 評估反射訊號萃取對GNSS-R計算海水面高之影響
Assessing the Effect of Reflected Signal Extraction on GNSS-R Derived Sea Level Heights
指導教授: 郭重言
Kuo, Chung-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 117
中文關鍵詞: GNSS-R訊噪比資料海水面高度經驗模態分解總體經驗模態分解奇異譜分析
外文關鍵詞: Global Navigation Satellite System Reflectometry (GNSS-R), Signal-to-Noise Ratio (SNR), Sea Level Height (SLH), Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD), Singular Spectrum Analysis (SSA)
相關次數: 點閱:134下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來氣候變遷造成之全球海水面上升對沿海地區已造成嚴重的威脅,因此有效且準確的監測海水面變化已成為一項重要的議題。常見監測海水面變化的方法有潮位站觀測或是透過衛星測高資料實現;然而潮位站觀測量包含地表垂直運動的影響而不能直接求得絕對海水面變化,而衛星測高在沿岸地區存在精度不佳的問題。全球導航衛星系統反射技術(Global Navigation Satellite System Reflectometry, GNSS-R)已被證實可有效應用於監測海水面變化,其透過分析訊噪比(Signal-to-Noise Ratio, SNR)資料中衛星直接訊號與反射訊號的干涉現象推求海水面高度。本研究使用沿岸GNSS測站之訊噪比資料,透過最小二乘頻譜分析(Lomb Scargle Periodogram, LSP)並以調和分析法輔助推求海水面高度。本研究評估使用二階多項式擬合(Quadratic Fitting)、經驗模態分解(Empirical Mode Decomposition, EMD)、總體經驗模態分解(Ensemble Empirical Mode Decomposition, EEMD)及奇異譜分析(Singular Spectrum Analysis, SSA)於訊噪比資料中萃取反射訊號之效益;此外,也針對衛星仰角資料進行對流層折射改正並評估其影響。本研究選用三個具有不同潮差的GNSS連續站進行研究,分別為潮差1公尺的瑞典Onsala Space Observatory (OSO)、3公尺的美國 Friday Harbor、7公尺的法國Brest,並以共站或鄰近潮位站資料進行精度評估。在無折射改正及調和分析之輔助下,瑞典OSO站之GNSS-R解算成果顯示,透過EMD、EEMD及SSA相比二階多項式擬合可顯著提升成果精度,均方根誤差最低可達7.8 公分;美國 Friday Harbor站之GNSS-R解算成果以SSA結果最佳,其成果之均方根誤差為20.0 公分;潮差最大且周遭環境較複雜的法國Brest站則僅有透過SSA之解算成果可行。在採用折射改正及調和分析之輔助下,四種方法在瑞典OSO站及美國 Friday Harbor站之GNSS-R解算成果中之精度無顯著差異,兩站的成果均方根誤差分別為7.3 - 7.9 公分及13.2 - 13.6 公分。法國Brest站之GNSS-R解算成果以SSA之結果為最佳,均方根誤差則可達39.1公分。此外結果也顯示,三種訊號處理方法中以SSA萃取反射訊號所解算之成果最為穩定;SSA可將訊號分解為基於不同頻率的訊號分量並依其重要程度排序,應用於本研究可精確地提取訊噪比資料中的反射訊號,利於後續頻譜分析的判斷且有效提升演算法的穩定度及精準度。

    Global warming has caused sea level rise, which has posed great threats to life and property in coastal regions. Therefore, effective and accurate monitoring of sea level changes is a significantly important task. The common methods for monitoring coastal sea level heights (SLH) are based on tide gauges and satellite altimetry. However, the measurements from tide gauges are affected by land motions, while satellite altimetry shows poor accuracy in coastal areas due to waveform contamination and inaccurate geophysical corrections. Global Navigation Satellite System Reflectometry (GNSS-R) based on signal-to-noise ratio (SNR) data has been applied to measure SLH in the past two decades and has been proven useful. In this research, Quadratic Fitting, Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD), and Singular Spectrum Analysis (SSA) are adopted for extracting the reflected signals in SNR and analyzing it with Lomb Scargle Periodogram (LSP) assisted with tidal harmonic analysis. In addition, the correction of tropospheric refraction is applied in the GNSS-R model. In this study, three continuous GNSS stations including Onsala Space Observatory (OSO) in Sweden, Friday Harbor in the United States, and Brest in France with the tidal ranges of 1 m, 3 m, and 7 m, respectively, are used. The results are evaluated by comparing with the nearby or co-located tide gauge records. The accuracy of the results without tropospheric refraction correction or tidal harmonic analysis from EMD, EEMD, and SSA with significantly improved compared with that from Quadratic Fitting at OSO. The root-mean-square (RMS) differences are significantly reduced from 20.7 cm to 11.1 cm, 8.2 cm, and 7.8 cm by adopting EMD, EEMD, and SSA, respectively. For Friday Harbor, the result of SSA shows a remarkable improvement with the RMS of 20.0 cm compared to the other three methods. For Brest, where the tidal range is the largest and the surrounding is relatively complicated, only SSA provides reliable results. For the results with tropospheric refraction correction and tidal harmonic analysis, four methods give the results with the RMS at the same level of 7.3 – 7.9 cm and 13.2 – 13.6 cm at OSO and Friday Harbor, respectively. For Brest, the result of SSA shows a remarkable improvement with the RMS of 39.1 cm at Brest. The experimental results show that SSA can provides the most stable solutions among the proposed methods. SSA can not only distinguish signals in different frequencies but also order the signal components according to their eigenvalue, demonstrating the potential to extract the reflected signals from SNR and improve the stability and accuracy of GNSS-R applications.

    摘要 I ABSTRACT II 致謝 IV Table of Contents V List of Table VII List of Figures X Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Structure 10 Chapter 2 GNSS Reflectometry 11 2.1 Introduction of GNSS 11 2.1.1 GNSS Architecture 11 2.1.2 GNSS Biases and Errors 12 2.1.3 Global Positioning System (GPS) 13 2.2 Reflected GNSS Signals 14 2.2.1 Signal Polarization 14 2.2.2 Reflecting Surface – Fresnel Zone 17 2.3 GNSS-based Tide Gauge 19 Chapter 3 Methodology 21 3.1 Flowchart 21 3.2 Refraction Correction 23 3.3 GNSS SNR Analysis 25 3.4 Reflected Signal Extracting 29 3.4.1 Quadratic Fitting 30 3.4.2 Empirical Mode Decomposition (EMD) 31 3.4.3 Ensemble Empirical Mode Decomposition (EEMD) 33 3.4.4 Singular Spectrum Analysis (SSA) 34 3.4.4.1 The main algorithm of SSA 34 3.4.4.2 Embedding dimension 37 3.5 Spectral Analysis 42 3.5.1 Lomb Scargle Periodogram 42 3.5.2 Tidal Harmonic Analysis 44 Chapter 4 Results and Discussion 46 4.1 Experimental Areas and Data 46 4.1.1 Experimental Areas 46 4.1.2 Data 48 4.2 GNSS SNR Data at Onsala 51 4.2.1 Sea Level Height Retrieval at Onsala 54 4.3 GNSS SNR Data at Friday Harbor 70 4.3.1 Sea Level Height Retrieval at Friday Harbor 72 4.4 GNSS SNR Data at Brest 86 4.4.1 Sea Level Height Retrieval at Brest 88 Chapter 5 Conclusions and Recommendations 104 REFERENCE 109

    Anderson, K. D. (2000). Determination of water level and tides using interferometric observations of GPS signals. Journal of Atmospheric and Oceanic Technology, 17(8), 1118-1127.
    Beckheinrich, J., Hirrle, A., Schön, S., Beyerle, G., Semmling, M., & Wickert, J. (2014). Water level monitoring of the Mekong Delta using GNSS reflectometry technique. Paper presented at the 2014 IEEE Geoscience and Remote Sensing Symposium.
    Bennett, G. (1982). The calculation of astronomical refraction in marine navigation. The Journal of Navigation, 35(2), 255-259.
    Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research: Atmospheres, 97(D14), 15787-15801.
    Bilich, A., & Larson, K. M. (2007). Mapping the GPS multipath environment using the signal-to-noise ratio (SNR). Radio Science, 42(6).
    Bilich, A., Larson, K. M., & Axelrad, P. (2008). Modeling GPS phase multipath with SNR: Case study from the Salar de Uyuni, Boliva. Journal of Geophysical Research-Solid Earth, 113(B4), 12.
    Bindoff, N. L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J. M., Gulev, S., . . . Nojiri, Y. (2007). Observations: oceanic climate change and sea level.
    Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L.-L., & Callahan, P. S. (2001). Satellite altimetry. In International geophysics (Vol. 69, pp. 1-ii): Elsevier.
    Church, J. A., & White, N. J. (2011). Sea-level rise from the late 19th to the early 21st century. Surveys in geophysics, 32(4), 585-602.
    Cohen, J. E., Small, C., Mellinger, A., Gallup, J., & Sachs, J. (1997). Estimates of coastal populations. Science, 278(5341), 1209-1213.
    Duraiappah, A. K., Naeem, S., Agardy, T., Ash, N. J., Cooper, H. D., Diaz, S., . . . Mooney, H. A. (2005). Ecosystems and human well-being: biodiversity synthesis; a report of the Millennium Ecosystem Assessment.
    Hall, C., & Cordey, R. (1988). Multistatic scatterometry. Paper presented at the International Geoscience and Remote Sensing Symposium,'Remote Sensing: Moving Toward the 21st Century.
    Hamlington, B., Thompson, P., Hammond, W. C., Blewitt, G., & Ray, R. (2016). Assessing the impact of vertical land motion on twentieth century global mean sea level estimates. Journal of Geophysical Research: Oceans, 121(7), 4980-4993.
    Hannah, B. M. (2001). Modelling and simulation of GPS multipath propagation. Queensland University of Technology.
    Herring, T. A., Davis, J. L., & Shapiro, I. I. (1990). Geodesy by radio interferometry: The application of Kalman filtering to the analysis of very long baseline interferometry data. Journal of Geophysical Research: Solid Earth, 95(B8), 12561-12581.
    Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more: Springer Science & Business Media.
    Hu, Y., Yuan, X., Liu, W., Wickert, J., Jiang, Z., & Haas, R. (2021). GNSS-IR Model of Sea Level Height Estimation Combining Variational Mode Decomposition. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 10405-10414.
    Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. C., Shih, H. H., Zheng, Q. N., . . . Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 454(1971), 903-995.
    Huang, N. E., Wu, M.-L. C., Long, S. R., Shen, S. S., Qu, W., Gloersen, P., & Fan, K. L. (2003). A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 459(2037), 2317-2345.
    ICAO. (2018). International Standards and Recommended Practices, Annex 10 to the Convention on International Civil Aviation, Radio Navigation Aids.
    IOC. (2006). Manual on sea level measurement and interpretation. Volume IV-An update to 2006.
    IPCC. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2.
    Jacobson, M. (2010). Snow-covered lake ice in GPS multipath reception–Theory and measurement. Advances in Space Research, 46(2), 221-227.
    Jin, S., & Najibi, N. (2014). Sensing snow height and surface temperature variations in Greenland from GPS reflected signals. Advances in Space Research, 53(11), 1623-1633.
    Johansson, J. M., Davis, J. L., Scherneck, H. G., Milne, G. A., Vermeer, M., Mitrovica, J. X., . . . Elósegui, P. (2002). Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. Journal of Geophysical Research: Solid Earth, 107(B8), ETG 3-1-ETG 3-27.
    Klein, R. J., & Nicholls, R. J. (1999). Assessment of coastal vulnerability to climate change. Ambio, 182-187.
    Löfgren, J. S., & Haas, R. (2014a). Sea level measurements using multi-frequency GPS and GLONASS observations. Eurasip Journal on Advances in Signal Processing, 2014(1), 1-13.
    Löfgren, J. S., Haas, R., & Johansson, J. M. (2011a). Monitoring coastal sea level using reflected GNSS signals. Advances in Space Research, 47(2), 213-220.
    Löfgren, J. S., Haas, R., & Scherneck, H.-G. (2014b). Sea level time series and ocean tide analysis from multipath signals at five GPS sites in different parts of the world. Journal of Geodynamics, 80, 66-80.
    Löfgren, J. S., Haas, R., Scherneck, H.-G., & Bos, M. (2011b). Three months of local sea level derived from reflected GNSS signals. Radio Science, 46(06), 1-12.
    Larson, K. M., Gutmann, E. D., Zavorotny, V. U., Braun, J. J., Williams, M. W., & Nievinski, F. G. (2009). Can we measure snow depth with GPS receivers? Geophysical Research Letters, 36(17).
    Larson, K. M., Lofgren, J. S., & Haas, R. (2013a). Coastal sea level measurements using a single geodetic GPS receiver. Advances in Space Research, 51(8), 1301-1310.
    Larson, K. M., Ray, R. D., Nievinski, F. G., & Freymueller, J. T. (2013b). The Accidental Tide Gauge: A GPS Reflection Case Study From Kachemak Bay, Alaska. IEEE Geoscience and Remote Sensing Letters, 10(5), 1200-1204.
    Larson, K. M., Ray, R. D., & Williams, S. D. (2017). A 10-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge. Journal of Atmospheric and Oceanic Technology, 34(2), 295-307.
    Larson, K. M., & Small, E. E. (2014). GPS ground networks for water cycle sensing. Paper presented at the 2014 IEEE Geoscience and Remote Sensing Symposium.
    Larson, K. M., Small, E. E., Gutmann, E., Bilich, A., Axelrad, P., & Braun, J. (2008). Using GPS multipath to measure soil moisture fluctuations: initial results. GPS Solutions, 12(3), 173-177.
    Lee, C.-M., Kuo, C.-Y., Sun, J., Tseng, T.-P., Chen, K.-H., Lan, W.-H., . . . Chu, P. (2019). Evaluation and improvement of coastal GNSS reflectometry sea level variations from existing GNSS stations in Taiwan. Advances in Space Research, 63(3), 1280-1288.
    Liu, L., & Larson, K. M. (2018). Decadal changes of surface elevation over permafrost area estimated using reflected GPS signals. The Cryosphere, 12(2), 477-489.
    Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and space science, 39(2), 447-462.
    Martin-Neira, M. (1993). A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry. ESA journal, 17(4), 331-355.
    Martin Miguez, B., Testut, L., & Wöppelmann, G. (2012). Performance of modern tide gauges: towards mm-level accuracy. Scientia Marina, 76(S1), 221-228.
    Moore, J. C., Grinsted, A., & Jevrejeva, S. (2005). New tools for analyzing time series relationships and trends. Eos, Transactions American Geophysical Union, 86(24), 226-232.
    Press, W. H. (1992). The art of scientific computing: Cambridge university press.
    Purnell, D., Gomez, N., Chan, N. H., Strandberg, J., Holland, D. M., & Hobiger, T. (2020). Quantifying the uncertainty in ground-based GNSS-reflectometry sea level measurements. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4419-4428.
    Raiabi, M., Hoseini, M., Nahavandchi, H., Semmling, M., Ramatschi, M., Goli, M., . . . Wickert, J. (2021). A Performance Assessment of Polarimetric GNSS-R Sea Level Monitoring in the Presence of Sea Surface Roughness. Paper presented at the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.
    Rees, W. G. (2013). Physical principles of remote sensing: Cambridge university press.
    Roussel, N., Frappart, F., Ramillien, G., Darrozes, J., Desjardins, C., Gegout, P., . . . Biancale, R. (2014). Simulations of direct and reflected wave trajectories for ground-based GNSS-R experiments. Geoscientific Model Development, 7(5), 2261-2279.
    Roussel, N., Ramillien, G., Frappart, F., Darrozes, J., Gay, A., Biancale, R., . . . Allain, D. (2015). Sea level monitoring and sea state estimate using a single geodetic receiver. Remote Sensing of Environment, 171, 261-277.
    Santamaría-Gómez, A., & Watson, C. (2017). Remote leveling of tide gauges using GNSS reflectometry: case study at Spring Bay, Australia. GPS Solutions, 21(2), 451-459.
    Santamaría-Gómez, A., Watson, C., Gravelle, M., King, M., & Wöppelmann, G. (2015). Levelling co-located GNSS and tide gauge stations using GNSS reflectometry. Journal of Geodesy, 89(3), 241-258.
    Saraceno, M., Simionato, C. G., & Ruiz-Etcheverry, L. A. (2014). Sea surface height trend and variability at seasonal and interannual time scales in the Southeastern South American continental shelf between 27 S and 40 S. Continental Shelf Research, 91, 82-94.
    Scargle, J. D. (1982). Studies in astronomical time series analysis. II-Statistical aspects of spectral analysis of unevenly spaced data. The Astrophysical Journal, 263, 835-853.
    Schwartz, M. (2006). Encyclopedia of coastal science: Springer Science & Business Media.
    Seeber, G. (2008). Satellite geodesy. In Satellite Geodesy: de Gruyter.
    Shum, C., Ries, J., & Tapley, B. (1995). The accuracy and applications of satellite altimetry. Geophysical Journal International, 121(2), 321-336.
    Small, C., & Nicholls, R. J. (2003). A global analysis of human settlement in coastal zones. Journal of Coastal Research, 584-599.
    Strandberg, J., Hobiger, T., & Haas, R. (2016). Improving GNSS-R sea level determination through inverse modeling of SNR data. Radio Science, 51(8), 1286-1296.
    Tralli, D. M., & Lichten, S. M. (1990). Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. Bulletin géodésique, 64(2), 127-159.
    Tralli, D. M., Lichten, S. M., & Herring, T. A. (1992). Comparison of Kalman filter estimates of zenith atmospheric path delays using the global positioning system and very long baseline interferometry. Radio Science, 27(6), 999-1007.
    Vagle, N., Broumandan, A., Jafarnia-Jahromi, A., & Lachapelle, G. (2016). Performance analysis of GNSS multipath mitigation using antenna arrays. The Journal of Global Positioning Systems, 14(1), 1-15.
    Vautard, R., & Ghil, M. (1989). Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D: Nonlinear Phenomena, 35(3), 395-424.
    Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1-4), 95-126.
    Wan, W., Larson, K. M., Small, E. E., Chew, C. C., & Braun, J. J. (2015). Using geodetic GPS receivers to measure vegetation water content. GPS Solutions, 19(2), 237-248.
    Watkins, K. (2007). Human Development Report 2007/8. Fighting Climate Change: Human Solidarity in a Divided World. Fighting Climate Change: Human Solidarity in a Divided World (November 27, 2007). UNDP-HDRO Human Development Report.
    Watson, P. (2016). Identifying the best performing time series analytics for sea level research. In Time series analysis and forecasting (pp. 261-278): Springer.
    Wells, D., Beck, N., Kleusberg, A., Krakiwsky, E. J., Lachapelle, G., Langley, R. B., . . . Delikaraoglou, D. (1987). Guide to GPS positioning. Paper presented at the Canadian GPS Assoc.
    Wu, Y.-F., Wu, C.-H., Lai, D.-Y., & Chen, F.-C. (2007). A reconfigurable quadri-polarization diversity aperture-coupled patch antenna. IEEE Transactions on Antennas and Propagation, 55(3), 1009-1012.
    Wu, Z., & Huang, N. E. (2009). Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in adaptive data analysis, 1(01), 1-41.
    Zhang, S., Liu, K., Liu, Q., Zhang, C., Zhang, Q., & Nan, Y. (2019). Tide variation monitoring based improved GNSS-MR by empirical mode decomposition. Advances in Space Research, 63(10), 3333-3345.

    下載圖示 校內:2024-08-26公開
    校外:2024-08-26公開
    QR CODE