簡易檢索 / 詳目顯示

研究生: 丁淑菱
Damayanti, Mia Kristina
論文名稱: 合成路徑對鎳錳層狀氧化物正極材料LiNi0.5Mn0.5O2 之結構與電化學行為之影響
Effect of Processing Routes on Electrochemical/Structural Behaviour of Co-free Layered LiNi0.5Mn0.5O2 Cathode for Li-ion Battery Application
指導教授: 方冠榮
Fung, Kuan-Zong
學位類別: 碩士
Master
系所名稱: 工學院 - 尖端材料國際碩士學位學程
International Curriculum for Advanced Materials Program
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 86
外文關鍵詞: Co-Free, Layered LiNi0.5Mn0.5O2, Sol-gel, Solid-state
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • High-capacity cathode materials typically contain a certain amount of Cobalt for stabilization and promoting their electrochemical properties. However, Co price has gone up significantly so high that Co-free cathode materials have been proposed and investigated recently. Co-free layered LiNi0.5Mn0.5O2 has received considerable attention due to high theoretical capacity (280 mAh g-1) and low cost comparable than LiCoO2. The ability of nickel to be oxidized (Ni2+/Ni3+/Ni4+) acts as electrochemical active and has a low activation energy barrier, while the stability of Mn4+ provides a stable host structure.
    However, selection of appropriate preparation method and condition are critical to providing an ideal layered structure of LiNi0.5Mn0.5O2 with good electrochemical performance. Layered LiNi0.5Mn0.5O2 has been synthesized using sol-gel and solid-state routes. FT-IR and X-Ray diffraction investigated thermal decomposition and phase formation growth, respectively. Scanning Electron Microscopy examined particle size and morphology. X-ray photoelectron spectroscopy and Four Point Probe were used to confirm the valence state of Ni2+/Mn4+ and electronic conductivity, respectively. Relative pure phase can be obtained by the sol-gel method at low temperature, due to the short distance among lithium and transition metal formed in the precursor. Conversely, incompletely three-phase transformation occurs on the solid-state method at the same temperature, indicate the deficient of energy. Materials prepared by sol-gel show better electrochemical performance instead of solid-state, correspond to the discharge capacity and cycle life performance.

    Abstract ii Acknowledgements iii Contents iv List of Tables vii List of Figures viii Chapter 1 Introduction 1 1.1 General Background 1 1.2 Motivation 7 1.3 Research Objective 8 Chapter 2 Theoretical Background 9 2.1 Lithium-Ion Battery 9 2.1.1 Working Principle 9 2.1.2 Galvanostatic cell cycling 10 2.1.3 Electrolyte and Binders 12 2.2 Layered Structure Metal Oxide 12 2.2.1 Lithium Cobalt Oxide (LiCoO2) 13 2.2.2 Lithium Nickel Oxide (LiNiO2) 14 2.2.3 Lithium Nickel Manganese Oxide (LiNi0.5Mn0.5O2) 14 2.3 Overview whole Characteristic of LiNi0.5Mn0.5O2 15 2.3.1 State of the art 15 2.3.2 The binary stoichiometric of LiNi0.5Mn0.5O2 16 2.3.3 Ordering Paradigm 17 2.3.4 Electronic Structure 18 2.3.5 Electrochemical Principle 19 2.3.6 Cathode Degradation 21 2.4 Synthesis Routes for Layered LiNi0.5Mn0.5O2 21 2.4.1 Solid-state reaction by high energy ball-milling 22 2.4.2 Co-precipitation 22 2.4.3 Hydrothermal 23 2.4.4 Spray Pyrolysis 23 2.4.5 Sol-gel 23 2.5 Structural and Phase Transformation LiNi0.5Mn0.5O2 26 2.5.1 The Li-Mn-Ni Oxide Pseudo-Ternary System 26 2.5.2 Phase Tranformation 27 Chapter 3 Experimental 32 3.1 Materials Synthesis 32 3.2 Sample Preparation 33 3.2.1 Sol-gel synthesis 33 3.2.2 Solid State 34 3.2.3 Preparation of Electrodes 36 3.3 Materials Characterization and Measurement 37 3.3.1 Weight Loss Measurement 37 3.3.2 X-Ray Diffraction (XRD) 37 3.3.3 Scanning Electron Microscopy (SEM) 38 3.3.4 Electronic Conductivity 38 3.3.5 Fourier Transform Infrared Spectroscopy (FTIR) 39 3.3.6 X-ray Photoelectron spectroscopy (XPS) 39 3.4 Electrochemical Testing 40 3.4.1 Coin Test Cell Assembly 40 3.4.2 Galvanostatic Measurement 42 Chapter 4 Result and Discussion 43 4.1 Thermal Decomposition and Reaction precursor 43 4.1.1 Weight loss analysis 43 4.1.2 FT-IR Confirmation 45 4.2 Purpose Mechanism of Gel Formation and Reaction Equation 46 4.2.1 Possible Equation Reaction and Weight Lost Estimation 49 4.3 Crystal Structure Analysis 50 4.3.1 Phase Transition 50 4.3.2 Lattice Constant 58 4.4 Effect of Temperature 59 4.4.1 Crystallite size and morphology 59 4.4.2 Electrochemical Performance 61 4.5 Effect of Synthesis Routes 64 4.5.1 Particle size and Morphology 64 4.5.2 Electronic Conductivity 66 4.5.3 Oxidation State of Transition Metals 66 4.5.4 Electrochemical Performance 72 Chapter 5 Conclusion 76 References 77

    1. Battery storage is (almost) ready to play the flexibility game. https://www.iea.org/newsroom/news/2019/february/battery-storage-is-almost-ready-to-play-the-flexibility-game.html. Accessed 22 Apr 2019
    2. Whittingham MS (2004) Lithium Batteries and Cathode Materials. https://doi.org/10.1021/cr020731c
    3. Lee J (2015) Cation-Disordered Oxides for Rechargeable Lithium Battery Cathodes by
    4. Bréger J, Meng YS, Hinuma Y, et al (2006) Effect of high voltage on the structure and electrochemistry of LiNi 0.5Mn 0.5O 2: A joint experimental and theoretical study. Chem Mater 18:4768–4781. https://doi.org/10.1021/cm060886r
    5. Lee K, Myung S, Moon J, Sun Y (2008) Electrochimica Acta Particle size effect of Li [ Ni 0 . 5 Mn 0 . 5 ] O 2 prepared by co-precipitation. Electrochim Acta 53:6033–6037. https://doi.org/10.1016/j.electacta.2008.02.106
    6. Oberdorf I (PKM) (2019) KIT - PI 2018
    7. Pei Y, Chen Q, Xiao Y, et al (2017) Nano Energy Understanding the phase transitions in spinel-layered-rock salt system : Criterion for the rational design of LLO / spinel nanocomposites. Nano Energy 40:566–575. https://doi.org/10.1016/j.nanoen.2017.08.054
    8. Panasonic Pledges To Decrease Cobalt Content Of Tesla EV Batteries | CleanTechnica. https://cleantechnica.com/2018/07/17/panasonic-pledges-to-decrease-cobalt-content-of-tesla-ev-batteries/. Accessed 22 Apr 2019
    9. Meng YS (2005) Combining Ab Initio Computation with Experiments for Designing / Understanding High Energy Density Electrode Materials for Advanced Lithium Batteries by Combining Ab Initio Computation with Experiments for by. System
    10. Ohzuku T, Makimura Y (2001) OhzukuChemLetter2001-744.pdf. 2:744–745
    11. Karkoschka E, Duncan MJ, Lissauer JJ, et al (2006) Electrodes with High Power. 311:977–981
    12. Koyama Y, Makimura Y, Tanaka I, et al (2004) Systematic Research on Insertion Materials Based on Superlattice Models in a Phase Triangle of LiCoO[sub 2]-LiNiO[sub 2]-LiMnO[sub 2]. J Electrochem Soc 151:A1499. https://doi.org/10.1149/1.1783908
    13. Hoang K (2017) First-principles theory of doping in layered oxide electrode materials. 075403:1–10. https://doi.org/10.1103/PhysRevMaterials.1.075403
    14. Reed J, Ceder G (2002) Charge, Potential, and Phase Stability of Layered Li(Ni[sub 0.5]Mn[sub 0.5])O[sub 2]. Electrochem Solid-State Lett 5:A145. https://doi.org/10.1149/1.1480135
    15. Yu H, Qian Y, Otani M, et al (2014) Study of the lithium/nickel ions exchange in the layered LiNi 0.42 Mn 0.42 Co 0.16 O 2 cathode material for lithium ion batteries: Experimental and first-principles calculations. Energy Environ Sci 7:1068–1078. https://doi.org/10.1039/c3ee42398k
    16. Yan P, Zheng J, Lv D, et al (2015) Atomic-Resolution Visualization of Distinctive Chemical Mixing Behavior of Ni , Co , and Mn with Li in Layered Lithium Transition- Metal Oxide Cathode Materials. https://doi.org/10.1021/acs.chemmater.5b02016
    17. Science A (2017) Sol-gel and solid-state fluorination of lithium cobalt oxide for Li-ion secondary batteries
    18. Murali N, Margarette SJ, Rao VK, et al (2017) Structural , morphological , impedance and magnetic studies of nanostructured materials for lithium-ion batteries. South African J Chem Eng 24:213–221. https://doi.org/10.1016/j.sajce.2017.10.005
    19. Lai S, Hu C, Li Y, et al (2008) Preparation and properties of LiNi 0 . 5 Mn 0 . 5 O 2 thin films by spin-coating for lithium micro-batteries. 179:1754–1757. https://doi.org/10.1016/j.ssi.2008.03.013
    20. Kim YS, Moon DJ, Yoo KS, et al ion Batteries. 1–7
    21. Lengyel M (2014) Optimization of layered battery cathode materials synthesized via spray pyrolysis. Paper 1246.
    22. Lobintsev V (2016) Synthesis of Li-ion battery cathode materials by flame spray pyrolysis. Nor Univ Sci Technol - NTNU 86f.
    23. Popović J (2011) Novel lithium iron phosphate materials for lithium-ion batteries. Thesis
    24. Pengfei X (2012) DEVELOPMENT OF HIGH RATE PERFORMANCE LITHIUM-ION BATTERIES
    25. Liu C, Neale ZG, Cao G (2016) Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater Today 19:109–123. https://doi.org/10.1016/j.mattod.2015.10.009
    26. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1981) LixCoO2 (0. Solid State Ionics 3–4:171–174. https://doi.org/10.1016/0167-2738(81)90077-1
    27. Park J Advanced Lithium-Ion Batteries
    28. Massaccesi V, Prof O, Grilo DF (2016) Electrode materials for Na-ion batteries : a new route for low-cost energy storage . Química
    29. He P, Yu H, Li D, Zhou H (2012) Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J Mater Chem 22:3680–3695. https://doi.org/10.1039/c2jm14305d
    30. Manthiram A (2002) DESIGNING CHEMICALLY AND STRUCTURALLY STABLE CATHODE HOSTS FOR LITHIUM ION CELLS. 23–34
    31. Guo Z (2014) Investigation on cathode materials for lithium-ion batteries
    32. Xu J, Lin F, Doeff MM, Tong W (2017) A review of Ni-based layered oxides for rechargeable Li-ion batteries. J Mater Chem A 5:874–901. https://doi.org/10.1039/C6TA07991A
    33. Yamada S, Fujiwara M, Kanda M (1995) Synthesis and properties of LiNiO2 as cathode material for secondary batteries. J Power Sources 54:209–213. https://doi.org/10.1016/0378-7753(94)02068-E
    34. Sreedhar K, McElfresh M, Perry D, et al (1994) Low-Temperature Electronic Properties of the Lan+1NinO3n+1 (n = 2, 3, and ∞) System: Evidence for a Crossover from Fluctuating-Valence to Fermi-Liquid-like Behavior. J Solid State Chem 110:208–215. https://doi.org/10.1006/JSSC.1994.1161
    35. Meng YS, Arroyo-De Dompablo ME (2013) Recent advances in first principles computational research of cathode materials for lithium-ion batteries. Acc Chem Res 46:1171–1180. https://doi.org/10.1021/ar2002396
    36. Yoon W-S, Balasubramanian M, Yang X-Q, et al (2004) Soft X-Ray Absorption Spectroscopic Study of a LiNi[sub 0.5]Mn[sub 0.5]O[sub 2] Cathode during Charge. J Electrochem Soc 151:A246. https://doi.org/10.1149/1.1637896
    37. Julien C (2006) The Layered LiNi0 . 5Mn0 . 5O2 Positive Electrode Material for Li-ion Batteries. 0–36
    38. Abdellahi A, Urban A, Dacek S, Ceder G (2016) Understanding the Effect of Cation Disorder on the Voltage Profile of Lithium Transition-Metal Oxides. Chem Mater 28:5373–5383. https://doi.org/10.1021/acs.chemmater.6b01438
    39. Trevey JE (2011) Advances and Development of All-Solid-State Lithium-Ion Batteries
    40. Cao X, Zhao Y, Zhu L, et al (2016) Synthesis and Characterization of LiNi 1/3 Co 1/3 Mn 1/3 O 2 as Cathode Materials for Li-Ion Batteries via an Efficacious Sol-Gel Method. Int J Electrochem Sci 11:5267–5278. https://doi.org/10.20964/2016.06.93
    41. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341. https://doi.org/10.1016/0079-6786(88)90005-2
    42. Jun Lin *, Min Yu, Cuikun Lin and, Liu X (2007) Multiform Oxide Optical Materials via the Versatile Pechini-Type Sol−Gel Process:  Synthesis and Characteristics. https://doi.org/10.1021/JP070062C
    43. Afzal M, Butt PK, Ahrnad H (1991) ACETATES. 37:1015–1023
    44. Pyrolysis A (1995) and chemical events in the decomposition of manganese compounds course. 34:265–278
    45. Mccalla E, Carey GH, Dahn JR (2012) Lithium loss mechanisms during synthesis of layered Li x Ni 2 − x O 2 for lithium ion batteries. Solid State Ionics 219:11–19. https://doi.org/10.1016/j.ssi.2012.05.007
    46. Wyrzykowski D (2014) Thermal behaviour of citric acid and isomeric aconitic acids Thermal behaviour of citric acid and isomeric aconitic acids. https://doi.org/10.1007/s10973-010-1015-2
    47. Evangelista JW, Avedisian CT, Tsang W (2012) International Journal of Heat and Mass Transfer Thermal and catalytic decomposition of aqueous ethylene glycol mixtures by film boiling. Int J Heat Mass Transf 55:6425–6434. https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.030
    48. Tiie IN (1951) The Isotope Effect. 1 1 . Pyrolysis of Lithium Acetate-l-CI4. 44:4–5
    49. Park K, Park J, Hong S, et al (2017) Re-construction layer effect of evaporation process. Nat Publ Gr 1–10. https://doi.org/10.1038/srep44557
    50. Luo D, Li G, Guan X, et al (2013) Novel synthesis of Li 1.2 Mn 0.4 Co 0.4 O 2 with an excellent electrochemical performance from -10.4 to 45.4 °c. J Mater Chem A 1:1220–1227. https://doi.org/10.1039/c2ta00205a
    51. Jesus JC De, Gonz I (2005) Thermal decomposition of nickel acetate tetrahydrate : An integrated study by Thermal decomposition of nickel acetate tetrahydrate : an integrated study by TGA , QMS and XPS techniques. https://doi.org/10.1016/j.molcata.2004.09.065
    52. Noda Y, Koga N (2014) Phenomenological Kinetics of the Carbonation Reaction of Lithium Hydroxide Monohydrate : Role of Surface Product Layer and Possible Existence of a Liquid Phase
    53. Terayama K, Ikeda M (2014) Study on Thermal Decomposition of MnO<SUB>2</SUB> and Mn<SUB>2</SUB>O<SUB>3</SUB> by Thermal Analysis. Trans. Japan Inst. Met. 24:754–758
    54. Kalyani P, Kalaiselvi N, Kalyani P, Kalaiselvi N (2006) Various aspects of LiNiO 2 chemistry : A review Various aspects of LiNiO 2 chemistry : A review. 6996:. https://doi.org/10.1016/j.stam.2005.06.001
    55. Wang X, Chen X, Gao L, et al (2003) Citric acid-assisted sol – gel synthesis of nanocrystalline LiMn 2 O 4 spinel as cathode material. 256:123–127. https://doi.org/10.1016/S0022-0248(03)01289-2
    56. Gummow RJ (1993) Lithium intercalation reactions with transition metal oxides
    57. Davidson A, Tempere JF, Che M, et al (1996) Spectroscopic studies of nickel(II) and nickel(III) species generated upon thermal treatments of nickel/ceria-supported materials. J Phys Chem 100:4919–4929. https://doi.org/10.1021/jp952268w
    58. Sun CF, Amruthnath N, Yu JS, Li WJ (2016) Enhanced electrochemical performances of layered LiNi0.5Mn0.5O2as cathode materials by Ru doping for lithium-ion batteries. Ionics (Kiel) 22:1501–1508. https://doi.org/10.1007/s11581-016-1751-9
    59. Fundamentals of Ceramic Powder Processing and Synthesis - Terry A. Ring - Google Books. https://books.google.com.tw/books/about/Fundamentals_of_Ceramic_Powder_Processin.html?id=xVr9I_YRoPUC&printsec=frontcover&source=kp_read_button&redir_esc=y#v=onepage&q&f=false. Accessed 17 Jul 2019
    60. Pei Y, Xu C, Xiao Y, et al (2017) Phase Transition Induced Synthesis of Layered / Spinel Heterostructure with Enhanced Electrochemical Properties. https://doi.org/10.1002/adfm.201604349
    61. Li D, Lian F, Hou X, Chou K (2012) by low-heating solid state reaction. 19:856–862. https://doi.org/10.1007/s12613-012-0639-6
    62. Nowak-wiczk DWEHG (2011) Thermal behaviour of citric acid and isomeric aconitic acids. 731–735. https://doi.org/10.1007/s10973-010-1015-2
    63. Abdul Aziz NA, Abdullah TK, Mohamad AA (2018) Synthesis of LiCoO2 via sol-gel method for aqueous rechargeable lithium batteries. Ionics (Kiel) 24:403–412. https://doi.org/10.1007/s11581-017-2225-4
    64. Lu C-H, Saha SK (2001) Low Temperature Synthesis of Nano-Sized Lithium Manganese Oxide Powder by the Sol-Gel Process Using PVA. J Sol-Gel Sci Technol 20:27–34. https://doi.org/10.1023/A:1008720515800
    65. Wu HLÆYP, Holze ÆERÆR (2004) Cathode Materials for Lithium Ion Batteries Prepared by Sol — Gel Methods Cathode materials for lithium ion batteries prepared by sol-gel methods. https://doi.org/10.1007/s10008-004-0521-1
    66. McCalla E, Carey GH, Dahn JR (2012) Lithium loss mechanisms during synthesis of layered Li xNi 2 - XO 2 for lithium ion batteries. Solid State Ionics 219:11–19. https://doi.org/10.1016/j.ssi.2012.05.007
    67. Xia Y, Sakai T, Wang C, et al (2001) Defect Spinel Li 8 n / n ϩ 4 Mn 8 / n ϩ 4 O 4 Cathode Materials for Solid-State Lithium-Polymer Batteries. 148:112–119
    68. Kovanda F, Grygar T, Dorniˇ V (2003) Thermal behaviour of Ni – Mn layered double hydroxide and characterization of formed oxides. 5:1019–1026. https://doi.org/10.1016/S1293-2558(03)00129-8
    69. Cupid DM, Li D, Gebert C, et al (2016) Enthalpy of formation and heat capacity of Li 2 MnO 3
    70. Lin SP, Fung KZ, Hon YM, Hon MH (2002) Crystallization kinetics and mechanism of the Li x Ni 2 À x O 2 ( 0 o x p 1 ) from Li 2 CO 3 and NiO. 234:176–183
    71. Hinuma Y, Meng YS, Kang K, Ceder G (2007) Phase Transitions in the LiNi 0 . 5 Mn 0 . 5 O 2 System with Temperature. 1790–1800. https://doi.org/10.1021/cm062903i
    72. Idris MS, Osman RAM (2013) Structure Refinement Strategy of Li-based Complex Oxides Using GSAS-EXPGUI Software Package . 795:479–482. https://doi.org/10.4028/www.scientific.net/AMR.795.479
    73. Borhani-haghighi S, Kieschnick M, Motemani Y, et al (2013) High-Throughput Compositional and Structural Evaluation of a Li. https://doi.org/10.1021/co4000166
    74. Hui KS, Zhang H, Li HP, et al (2015) Experimental study on the electrical conductivity of quartz andesite at high temperature and high pressure: Evidence of grain boundary transport. Solid Earth 6:1037–1043. https://doi.org/10.5194/se-6-1037-2015
    75. Habibi A, Jalaly M (2018) growth and battery performance of nanocrystalline. 19026–19033. https://doi.org/10.1039/c8nj05007d
    76. Kumar PS, Sakunthala A, Prabu M, et al (2014) Structure and electrical properties of lithium nickel manganese oxide (LiNi0.5Mn0.5O2) prepared by P123 assisted hydrothermal route. Solid State Ionics 267:1–8. https://doi.org/10.1016/j.ssi.2014.09.002
    77. Park M, Zhang X, Chung M, et al (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195:7904–7929. https://doi.org/10.1016/j.jpowsour.2010.06.060
    78. Andre D, Kim S-J, Lamp P, et al Future generations of cathode materials: an automotive industry perspective
    79. Kang S (2002) Layered Li(Ni0.5-xMn0.5-xM’2x)O2 (M′=Co, Al, Ti; x=0, 0.025) cathode materials for Li-ion rechargeable batteries. J Power Sources 112:41–48. https://doi.org/10.1016/S0378-7753(02)00360-9
    80. Fu Z, Hu J, Hu W, et al (2018) Applied Surface Science Quantitative analysis of Ni 2 + / Ni 3 + in Li [ Ni x Mn y Co z ] O 2 cathode materials : Non-linear least-squares fitting of XPS spectra. Appl Surf Sci 441:1048–1056. https://doi.org/10.1016/j.apsusc.2018.02.114
    81. Weidler N, Schuch J, Knaus F, et al (2017) X-ray Photoelectron Spectroscopic Investigation of Plasma- Enhanced Chemical Vapor Deposited NiO. https://doi.org/10.1021/acs.jpcc.6b12652
    82. Solid State Ionics: Trends In The New Millennium, Proceedings Of The 8th ... - Google Books. https://books.google.com.tw/books?id=f7XUCgAAQBAJ&pg=PA30&lpg=PA30&dq=tendency+LiMnO+than+LiNiO&source=bl&ots=Yq8_p4jtln&sig=ACfU3U3iFYvVh-Rstr05eaEX05zONLDpMQ&hl=en&sa=X&ved=2ahUKEwjQuZPQrNTiAhVE6bwKHcv1CSAQ6AEwDHoECAgQAQ#v=onepage&q&f=true. Accessed 22 Jun 2019
    83. Fahlman A, Nordling C, Siegbahn K (1967) ESCA : atomic, molecular and solid state structure studied by means of electron spectroscopy. Publ 1967 Uppsala by Almqvist Wiksell
    84. Du M, Bu Y, Zhou Y, et al (2017) RSC Advances nanowires with improved electrochemical. RSC Adv 7:12711–12718. https://doi.org/10.1039/C7RA00829E
    85. Mccalla E, Dahn JR (2013) The spinel and cubic rocksalt solid-solutions in the Li – Mn – Ni oxide pseudo-ternary system. Solid State Ionics 242:1–9. https://doi.org/10.1016/j.ssi.2013.04.003

    下載圖示 校內:2023-08-31公開
    校外:2023-08-31公開
    QR CODE