| 研究生: |
徐銓亨 Hsu, Chyuan-Heng |
|---|---|
| 論文名稱: |
親油基化聚乙烯亞胺之合成與其在製備金屬奈米粒子及燃料電池觸媒之應用 Syntheses of Alkylated Polyethylenimines and their Applications for Preparing Metal Nanoparticles and being as Catalysts for Fuel Cell |
| 指導教授: |
郭炳林
Kuo, Ping-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 白金/金合金奈米粒子 、親兩媒性高分子 、聚乙烯亞胺 、非等向性成長 、金奈米粒子 |
| 外文關鍵詞: | amphiphilic polymer, polyethylenimine, gold nanoparticles, anisotropic growth, Pt/Au alloy nanoparticles |
| 相關次數: | 點閱:162 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以烷基化聚乙烯亞胺,合成在親水主鏈上接不同親油基含量之親兩媒性高分子,並應用於在製備金屬奈米粒子,針對奈米粒子的分佈及形狀控制,還有金屬在奈米級的尺度時所展現的催化性質,作為兩大研究主題。本研究利用簡單且溫和的化學濕式法在水相中製備金屬奈米粒子,以烷基化聚乙烯亞胺形成親兩媒性高分子,利用紅外線光譜儀(FT-IR)、核磁共振光譜儀(NMR)、胺基滴定法鑑定所合成之高分子,並測量其在水溶液中的行為,包括表面張力、螢光強度(I1/I3)與動態粒徑分析。藉由聚乙烯亞胺及烷基化聚乙烯亞胺作為還原劑及保護劑,於還原四氯金酸前趨鹽的過程中利用UV-vis吸收光譜儀觀察還原前後吸收曲線的變化,TEM觀察金奈米粒子的之粒徑大小、分佈與形狀。結果顯示改變不同的條件,可以達到控制金奈米粒子分佈情形及形狀控制的目的,如球形奈米粒子的環狀分佈與金奈米平板。金奈米平板為一沿著(111)面成長之單晶結構,研究過程中觀察到聚乙烯亞胺烷基化程度與溶液的pH值都會影響金奈米平板的生成。藉由烷基化聚乙烯亞胺作為保護劑,NaBH4作為還原劑,製備白金與金的合金奈米粒子,使其覆載於碳黑上做為觸媒,探討不同熱處理時間及合金比例對觸媒效能的影響;PtxAuy/C觸媒經由電化學測試分析,隨著隨著PtAu合金中Au所佔比例的增加,越不易起始氧氣還原反應的發生,對甲醇氧化的活性則逐漸衰退;實際使用於DMFC單電池測試,結果顯示以PtxAuy/C做為陰極觸媒,雖然PtxAuy/C觸媒有抗甲醇反應的效果,但起始氧氣還原反應的能力降低造成電池效能不如以Pt/C作為陰極觸媒。
In this study, the amphiphilic polymers synthesized by alkylated polyethylenimines with different amounts of alkyl-chain were used to prepare shape-controlled metal nanoparticles and to act as catalysts for DMFC. These amphiphilic polymers was characterized by 1H-NMR, and total amine values were estimated by potentiometric titration. The measurements of surface tension, the ratio of the fluorescence intensities of pyrene and dynamic light scattering for polymer solution were used to interpret their behaviors in water. Gold nanoparticles were prepared in the aqueous solution by utilizing HAuCl4 and alkylated polyethylenimines as a precursor and reducing agents, respectively. The polymer stabilized gold nanoparticles were characterized by UV-vis spectrophotometer and TEM. The results showed that ring-like gold nanoparticles and gold nanoplates can be prepared under different conditions. The gold particle shape not only can be easily tuned by varying the alkylation degree of PEI but also the reaction medium such as the solution pH value. Then the amphiphilic polymers were used as a stabilizer to prepare carbon-supported PtAu catalysts through the reduction of NaBH4. As compared to the Pt/C catalyst, the bimetallic alloy catalysts with different Pt/Au atomic ratio exhibited much higher methanol tolerance during the oxygen reduction reaction (ORR) in methanol-containing H2SO4 solution. However, the PtAu/C catalysts showed more negative onset potential for ORR in H2SO4 solution than Pt/C. The Pt/C and PtAu/C catalysts were employed for cathode in direct methanol fuel cell test, PtAu/C showed worse cell performance than Pt/C, logically attributed to its lower ORR reactivity.
參考文獻
1.C&E NEWS, 24, 47, 1995
2.Nanoscale Materials in chemistry; Klabunde, K. J.,Ed.; John Wiley &Sons: 2001
3.C. J. Murphy and N. R. Jana,”Controlling the Aspect Ratio of Inorganic
Nanorods and Nanowires”, Adv. Mater., 14, 80, 2002
4.D. Zhang, L. Qi, J. Yang, J. Ma, H. Cheng, and L. Huang, “Wet Chemical
Synthesis of Silver Nanowire Thin Films at Ambient Temperature”, Chem.
Mater., 16, 872, 2004
5.Y. Sun and Y. Xia, “Shape-Controlled Synthesis of Gold and Silver
Nanoparticles”, Science, 298, 2176, 2002
6.S. Chen, Z. L. Wang, J. Ballato, S. H. Foulger, and D. L. Carroll,
“Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals”
J. Am. Chem. Soc., 125, 16186, 2003
7.S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. R. C. Wang,
”The Shape Transition of Gold Nanorods”, Langmuir, 15, 701, 1999
8.B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, C. Schonenberger,
“Colloidal Dispersions of Gold Rods: Synthesis and Optical Properties”,
Langmuir, 16, 451, 2000
9.N. R. Jana, L. Gearheart, and C. J. Murphy, “Wet Chemical Synthesis of
High Aspect Ratio Cylindrical Gold Nanorods”, J. Phys. Chem.B,
105, 4065, 2001
10.F. Kim, J. H. Song, P. Yang, “Photochemical Synthesis of Gold Nanorods”,
J. Am. Chem. Soc., 124, 14316, 2002
11.Y. Zhou, C. Y. Wang, Y. R. Zhu, and Z. Y. Chen, “A Novel Ultraviolet
Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles
at Room Temperature”, Chem. Mater., 11, 2310, 1999
12.M. Tsuji, M. Hashimoto, Y. Nishizawa, T. Tsuji, “Preparation of gold
nanoplates by a Microwave-polyol method”, Chemistry Letter, 32, 1114, 2003
13.3.D. Ibano, Y. Yokota, T. Tominaga, “Preparation of Gold Nanoplates
Protected by an Anionic Phospholipid”, Chemistry Letter, 32, 574, 2003
14.Y. Shao, Y. Gin, S. J. Dong, “Synthesis of gold nanoplates by aspartate
reduction of gold chloride”, Chem. Comm., 1104, 2004
15.Natalie Malikova, Isabel Pastoriza-Santos, Martin Schierhorn, Nicholas A.
Kotov, Luis M. Liz-Marzán, Langmuir, 18, 3694, 2002
16.S. Porel, S. Singh, T. P. Radhakrishnan, “Polygonal gold nanoplats in a
polymr matrix”, Chem. Comm., 2387, 2005
17.Tapan K. Sau, Catherine J. Murphy, ” Room Temperature, High-Yield
Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution”,
J. Am. Chem. Soc, 126, 8648, 2004
18.Luyan Wang, Xiao Chen, Jie Zhan, Yongcun Chai, Chunjie Yang, Limei Xu,
Wenchang Zhuang, Bo Jing, ”Synthesis of Gold Nano- and Microplates in
Hexagonal Liquid Crystals”, The Journal of Physical Chemistry B,
109, 3189, 2005
19.J. M. Leger., C. Lamy, “The direct oxidation of methanol at
platinum-based catalytic electrodes - What is new since 10 years”,
Ber. Bunsenges. Phys. Chem. 94, 1021, 1990
20.Ostwald W., Z. Elektrotech. Electrochem., 4, 122, 1894
21.K. Kordesch, G. Simader, “Fuel Cell and Their Applications”, by VCH, 1996
22.鄭煜騰、鄭耀宗,質子交換膜型燃料電池的製造技術,能源季刊,第二十七卷,
第二期,118頁,1997
23.A. J. Appleby, F.R. Folkes, “Fuel Cell Handbook” Van Nostrand Reinhold,
New York, 1989
24.William H. Lizcano-Valbuena, Valdecir A. Paganin, Carlos A. P. Leite,
Fernando Galembeck, Ernesto R. Gonzalez, “Catalysts for DMFC: relation
between morphology and electrochemical performance”, Electrochimica Acta,
48, 3869-3878, 2003
25.M.-S. Löffler, H. Natter, R. Hempelmann, K. Wippermann, ”Preparation and
characterisation of Pt-Ru model electrodes for the direct methanol fuel
cell”, Electrochimica Acta, 48, 3047-3051, 2003
26.Jong-Ho Choi, Kyung-Won Park, Hye-Kyung Lee, Young-Min Kim, Jae-Suk Lee,
Yung-Eun Sung, “Nano-composite of PtRu alloy electrocatalyst and
electronically conducting polymer for use as the anode in a direct
methanol fuel cell”, Electrochimica Acta, 48, 2781-2789, 2003
27.William H. Lizcano-Valbuena, Valdecir A. Paganin, Ernesto R. Gonzalez,
“Methanol electro-oxidation on gas diffusion electrodes prepared with
Pt-Ru/C catalysts”, Electrochimica Acta, 47, 3715-3722, 2002
28.Itaru Honmaz, Takako Toda, “Temperature Dependence of Kinetics of
Methanol Electro-oxidation on PtSn Alloys”, Journal of The
Electrochemical Society, 150, 12, A1689-A1692, 2003
29.Jong-Ho Choi, Kyung-Won Park, Boo-Kil Kwon, and Yung-Eun Sung, “Methanol
Oxidation on PtÕRu, PtÕNi, and PtÕRuÕNi Anode Electrocatalysts at
Different Temperatures for DMFCs”, Journal of The Electrochemical Society,
150, 7, A973-A978, 2003
30.Bogdan Gurau, Rameshkrishnan Viswanathan, Renxuan Liu, Todd J. Lafrenz,
Kevin L. Ley, and E. S. Smotkin, “Structural and Electrochemical
Characterization of Binary, Ternary, and Quaternary Platinum Alloy
Catalysts for Methanol Electro-oxidation”, J. Phys. Chem. B, 102,
9997-10003, 1998
31.B. Bittins-Cattaneo, S. Wasmus, W. Vielstich, J of Applied
Electrochemistry. 23, 625, 1993
32.Rongzhong Jiang, Deryn Chu, “Remarkably Active Catalysts for the
Electroreduction of O2 to H2O for Use in an Acidic Electrolyte Containing
Concentrated Methanol”, Journal of The Electrochemical Society,
147 ,12, 4605-4609, 2000
33.O. El Mouahid, C. Coutanceau, E.M. Belgsir, P. Crouigneau, J.M. Léger,
C. Lamy, “Electrocatalytic reduction of dioxygen at macrocycle conducting
polymer electrodes in acid media”, Journal of Electroanalytical Chemistry,
426, 117, 1997
34.P. Convert, C. Coutanceau, F. Gloaguen, C. Lamy, J of Applied
Electrochemistry, 31, 945, 2001
35.N. Alonso-Vante, H. Tributsch, “Energy conversion catalysis using
semiconducting transition metal cluster compounds ”, Nature, 323, 431, 1986
36.T. J. Schmidt, U. A. Paulus, H. A. Gasteiger, N. Alonso-Vante, R. J. Behm,
“Oxygen Reduction on Ru1.92Mo0.08SeO4, Ru/Carbon, and Pt/Carbon in Pure and
Methanol-Containing Electrolytes”, Journal of The Electrochemical Society,
147 , 7, 2620-2624, 2000
37.M. Bron, P. Bogdanoff, S. Fiechter, M. Hilgendorff, J. Radnik, I. Dorbandt,
H. Schulenburg, H. Tributsch, “Carbon supported catalysts for oxygen
reduction in acidic media prepared by thermolysis of Ru3(CO)12”, Journal
of Electroanalytical Chemistry, 517, 85–94, 2001
38.N. Alonso-Vante, P. Bogdanoff, H. Tributsch, “On the Origin of the
Selectivity of Oxygen Reduction of Ruthenium-Containing Electrocatalysts
in Methanol-Containing Electrolyte”, Journal of Catalysis, 190, 240–246,
2000
39.Hui Yang, Nicola´s Alonso-Vante, Jean-Michel Le´ger, and Claude Lamy,
“Tailoring, Structure, and Activity of Carbon-Supported Nanosized Pt-Cr
AlloyElectrocatalysts for Oxygen Reduction in Pure and Methanol-Containing
Electrolytes”, J. Phys. Chem. B, 108, 1938-1947, 2004
40.R.C. Koffi, C. Coutanceau , E. Garnier, J.-M. L´eger , C. Lamy,
“Synthesis, characterization and electrocatalytic behaviour of non-alloyed
PtCr methanol tolerant nanoelectrocatalysts for the oxygen reduction
reaction (ORR)”, Electrochimica Acta, 50, 4117–4127, 2005
41.Takako Toda, Hiroshi Igarashi, and Masahiro Watanabe, “Role of Electronic
Property of Pt and Pt Alloys on Electrocatalytic Reduction of Oxygen”,
Journal of The Electrochemical Society, 145, 12, 4185-4188, 1998
42.J.-F. Drillet, A. Ee, J. Friedemann, R. Ko¨ tz, B. Schnyder, V.M. Schmidt,
“Oxygen reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution”,
Electrochimica Acta, 47, 1983-1988, 2002
43.Hui Yang, Walter Vogel, Claude Lamy, Nicola´s Alonso-Vante, “Structure and
Electrocatalytic Activity of Carbon-Supported Pt-Ni Alloy Nanoparticles
Toward the Oxygen Reduction Reaction”, J. Phys. Chem. B, 108,
11024-11034, 2004
44.Hui Yang, Christophe Coutanceau, Jean-Michel Le’ger, Nicolas Alonso-Vante,
Claude Lamy, “Methanol tolerant oxygen reduction on carbon-supported
Pt–Ni alloy nanoparticles”, Journal of Electroanalytical Chemistry,
576, 305–313, 2005
45.Sanjeev Mukerjee, Supramaniam Srinivasan, Manuel P. Soriaga, James McBreen,
“Effect of Preparation Conditions of Pt Alloys on Their Electronic,
Structural, and Electrocatalytic Activities for Oxygen Reduction - XRD,
XAS, and Electrochemical Studies”, J. Phys. Chem., 99, 4577-4589, 1995
46.Myoung-ki Min, Jihoon Cho, Kyuwoong Cho, Hasuck Kim, “Particle size and
alloying effects of Pt-based alloy catalysts for fuel cell applications”,
Electrochimica Acta, 45, 4211–4217, 2000
47.Wenzhen Li, Weijiang Zhoua, Huanqiao Li, Zhenhua Zhoua, Bing Zhoub,
Gongquan Suna, Qin Xin, “Nano-stuctured Pt–Fe/C as cathode catalyst in
direct methanol fuel cell”, Electrochimica Acta, 49, 1045–1055, 2004
48.莊萬發編撰,超微粒子理論應用,復漢出版社,1995
49.Fendler, J. H., Nanoparticles and nanostructured films: preparation,
characterization and applications, Wiley-VCH: Weinhein, 1998
50.Hayash, C., Ultrafine Particles, Phys. Today, 40, 44, 1987
51.Gleiter, H., Nanocrystalline Materials, Prog. Mater. Sci, 33, 223, 1989
52.Fendler, J. H., Atomic and Molecular Cluster in membrane Mimetic Chemistry,
Chem. Rev., 87, 877, 1987
53.Henglein, A., Small-Particle Research-Physicochemical Properties of
Extremely Small Colloidal Metal and Semiconductor Particles, Chem. Rev,
89, 1861, 1989
54.Schimid, G., Clusters and Colloids: From Theory to Application, VCH:
New York, 1994
55.張立德,牟季美,納米材料和納米結構。
56.Choy, J.h, Citrate Sol-Gel Method for the Preparation of Beta-Alumina,
Mater.Lett., 120, 64, 1993
57.吳國卿,董玉蘭,奈米粒子材料的觸媒性質,1995年5月,化工資訊。
58.Linnert, T.; Mulvaney, P.; Henglein, A., Surface –chemistry of Colloidal
Silver - Surface-Plasmon Damping by Chemisorbed I-, SH-, and C6H5S,
J. Phys. Chem., 97, 679, 1993
59.Toshima, N.; Yonezawa, T,, Bimetallic Nanoparticles-Novel Materials for
Chemical and Physical Applications, New J. Chem., 1179, 1998
60.史宗懷,微粉製程技術簡介,化工,42(6),28,1995
61.Sugimoto, T., Preparation of Monodispersed Colloidal Particles,
Advanced in Colloid and Interface Science, 28, 65, 1987
62.D. T. Thompson, G. C. Bond, Catal. Rev.-SCI. ENG., 41, 319-388, 1999
63.Masataka Haruta, Masakazu Date, Appl. Catal. A: Gen., 222, 427-437, 2001
64.N. Bartlett, Gold Bull., 31, 22, 1998
65.林清安,林德培,丁幸一,界面活性劑化學,逢甲書局,1979。
66.羅金祥,界面活性劑溶液的研究,國立台灣大學化學研究所碩士論文,1990。
67.L.M. Bronstein, S.N. Sidorov, A. Y. Gourkova, P. M. Valetsky, J. Hartmann,
M. Breulmann, “Interaction of metal compounds with ‘double-hydrophilic’
block copolymers in aqueous medium and metal colloid formation”,
Inorganica Chimica Acta, 280, 348, 1998
68.(a)H. I. Schlesinger, Herbert C. Brown, A. E. Finholt, James R. Gilbreath,
Henry R. Hoekstra, Earl K. Hyde, “Sodium Borohydride, Its Hydrolysis and
its Use as a Reducing Agent and in the Generation of Hydrogen”, J. of Am
Chem. Soc., 75, 215, 1953 (b) Herbert C. Brown, Charles A. Brown, “New,
Highly Active Metal Catalysts for the Hydrolysis of Borohydride”,
J. of Am Chem. Soc., 84, 474, 1993
69.G. N. Glavee, K. J. Klabunde, C. M. Sorensen, G. C. Hadjapanayis,
“Borohydride reductions of metal ions. A new understanding of the chemistry
leading to nanoscale particles of metals, borides, and metal borates”,
Langmuir, 8, 771, 1992
70.Turro, N. J.; Geiger, M. W.; Hautala, R. R.; Schore, N. E. Fluorescent
Probes for Micellar System. In Micellization, Solublization and
Microemulsions; Plenum Press, New York, 75-86, 1997
71.Mukerjee, P.; Mysels, K. J. Critical Micelle Concentrations of Aqueous
Surfactant Systems; NSTOS-NBS 36, National Bureau of Standards, US
Government Printing Office, Washington, D.C., 1971
72.S. Chen, D. L. Carroll, Nano Lett., 2, 1003, 2002
73.Y. Sun, B. Mayers, Y. Xia, Nano Lett., 3, 675, 2003
74.Hiroaki Imai, Hitoshi Nakamura, Tomoyuki Fukuyo, “Anisotropic Growth of
Silver Crystals with Ethylenediamine Tetraacetate and Formation of Planar
and Stacked Wires”, Crystal growth & design, 5, 3, 1073-1077, 2005
75.Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim,
H. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization,
and Applications”, Advanced Materials, 15, 5, 353-389, 2003
76.Ananthapadmanabhan, K. P.; Goddard, E. D.; Turro, N. J.; Kuo, P. L.
Langmuir, 1, 352., 1985
77.Khuanga, U.; Selinger, B. K.; Mcdonald, R. Aust. J. Chem., 29, 1, 1987
78.(a)Turro, N. J. Modern Molecular Photochemistry, 103, 1987
(b)Forster, T. Angew. Chem., 8, 333, 1969
79.(a) Nicholas J. Turro, Bruce H. Baretz, Ping Lin Kuo, “Photoluminescence
probes for the investigation of interactions between sodium dodecylsulfate
and water-soluble polymers”, Macromolecules, 17, 1321, 1984 (b) E. D.
Goddard, N. J. Turro, P. L. Kuo, “Fluorescence probes for critical micelle
concentration determination”, Langmuir, 1, 352, 1985 (c) Ping Lin Kuo,
Masami Okamoto, Nicholas J. Turro, “Photochemical methods for
characterizing the nature of polymer aggregates in aqueous solutions
and on a silica surface”, J. Phys. Chem., 91, 2934, 1987 (d)J. B. Birks,
“Photophysics of Aromatic Molecules”, Wiley, Interscience, 1970 (e)M.
Tachiga, “Kinetics of quenching of luminescent probes in micellar systems.
II”, J. Chem. Phys., 76, 340, 1982
80.(a)A.K. Shukla, M.K. Ravikumar, K.S. Gandhi, “Direct methanol fuel cells
for vehicular applications”, J Solid State Electrochem., 2, 117-122, 1998
(b)H. J. Doo, H. L. Chang; S. K. Chang; R. S. Dong, “Performance of a
direct methanol polymer electrolyte fuel cell”, Journal of Power Sources,
71, 169, 1998
81.S. D. Thompson, L. R. Jordan, M. Forsyth, “Platinum electrodeposition for
polymer electrolyte membrane fuel cells”, Electrochimica Acta, 46, 1657,
2001
82.S.A. Lee, K. W. Park, J. H. Choi, B. K. Kwon, Y. E. Sung, “Nanoparticle
Synthesis and Electrocatalytic Activity of Pt Alloys for Direct Methanol
Fuel Cells”, Journal of The Electrochemical Society, 149 ,10, A1299-A1304,
2002
83.K-L. Hsueh, E. R. Gonzalez, S. Srinivasan, D-T. Chin, J.Electrochem. Soc.,
131, 823, 1884
84.Takako Toda, Hiroshi Igarashi, Hiroyuki Uchida, Masahiro Watanabe,
“Enhancement of the Electroreduction of Oxygen on Pt Alloys with Fe, Ni,
and Co”, Journal of The Electrochemical Society, 146 , 3750, 1999
85.Seol-Ah Lee, Kyung-Won Park, Jong-Ho Choi, Boo-Kil Kwon, Yung-Eun Sung,
”Nanoparticle Synthesis and Electrocatalytic Activity of Pt Alloys for
Direct Methanol Fuel Cells”, Journal of The Electrochemical Society,
149, A1299-A1304, 2002
86.Götz, M., Wendt, “Binary and ternary anode catalyst formulations including
the elements W, Sn and Mo for PEMFCs operated on methanol or reformate
gas”, Electrochimica Acta, 43, 3637, 1998
87.M.J. Escudero, E. Hontan˜o´n, S. Schwartz, M. Boutonnet, L. Daza,
“Development and performance characterisation of new electrocatalysts for
PEMFC”, Journal of Power Sources , 106, 206–214, 2002
88.G. Neri, C. Milone, S. Galvagno, A.P.J. Pijpers, J. Schwank,
“Characterization of Pt-Sn/carbon hydrogenation catalysts”, Applied
Catalysis A: General, 227,105–115, 2002
89.S. Wasmus, W. Vielstich, “Methanol oxidation at carbon supported Pt and
Pt-Ru electrodes: an on line MS study using technical electrodes”,
Journal of Applied Electrochemistry, 23, 120, 1993
90.J. B. Goodenough, A. Hamnett, B. J. Kennedy, R. Manoharan, S. A. Weeks,
“Porous Carbon Anodes For The DMFC –I. The Role Of The Reaction Method For
Carbon Supported Platinum Electrodes”, Electrochimica Acta, 35, 199, 1990
91.A. Pozio, R. F. Silva, M. De Francesco, F. Cardellini, L. Giorgi,
“A novel route to prepare stable Pt–Ru/C electrocatalysts for polymer
electrolyte fuel cell”, Electrochimica Acta, 48, 255, 2002
92.H. E. Van Dam, H. Van Bekkum, “Preparationof Platinum of Activated
Carbon”, Journal of Catalysis, 131, 335, 1991
93.B. D. Cullity, “Elements of X-RAY Diffraction, 2nd edition”, Addison-
Wesley, 1978
94.陳力俊,材料電子顯微鏡學,國科會精儀中心,1994
95.A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi,
“Comparison of high surface Pt/C catalyst by cyclic voltammetry”,
Journal of Power Sources, 105, 13, 2002
96.A. I. Kirkland, D. A. Jefferson, D. G. Duff, P. P. Edwards, I. Gameson,
B. F. G. Johnson, D. J. Smith, Proc. R. Soc. London Ser. A, 440, 589, 1993
97.W. O. Milligan, R. H. Morriss, “Morphology of Colloidal Gold-A Comparative
Study”, J. Am. Chem. Soc., 86, 3461, 1964
98.S. Chen, D. L. Carroll, “Silver Nanoplates: Size Conyrol in Two Dimension
and Formation Mechanism”, J. Phys. Chem. B, 108, 5500, 2004
99.Chil Seong Ah, Yong Ju Yun, Hyung Ju Park, Wan-Joong Kim, Dong Han Ha, and
Wan Soo Yun, “Size-Controlled Synthesis of Machinable Single Crystalline
Gold Nanoplates”, Chemistry of Materials, 17, 5558-5561, 2005
100.Nikhil R. Jana, Latha Gearheart, and Catherine J. Murphy, “Evidence for
Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold
Nanoparticles”, Chemistry of Materials, 13, 2313-2322, 2001
101.Yugang Sun, Younan Xia, “Shape-Controlled Synthesis of Gold and Silver
Nanoparticles”, Science, 298, 2176, 2002
102.H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, “Temperature-
Dependent Methanol Electro-Oxidation on Well-Characterized Pt-Ru Alloys”,
J. Electrochem. Soc., 141, 1795, 1994