簡易檢索 / 詳目顯示

研究生: 王淇樂
Wang, Chi-Lo
論文名稱: 利用改質的二氧化鈦在非勻相系統中合成碳量子點與其性質探討
Characterizations of Carbon Quantum Dots Prepared with Modified TiO2 in Heterogeneous Nucleation Process
指導教授: 黃世宏
Hwang, Shyh-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 70
中文關鍵詞: 碳量子點溶劑熱法非勻相成核生長螢光量子產率
外文關鍵詞: Carbon Quantum Dots, Solvothermal, Heterogeneous nucleation and growth, Fluorescence quantum yield
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用溶劑熱法來合成碳量子點,以鄰苯二胺(o-Phenylenediamine, oPD)作為碳量子點的前驅物,並藉由TiO2奈米粒子的添加,以非勻相成核生長系統來進行反應,試圖合成具有高螢光量子產率的碳量子點。實驗中,除了使用一般的TiO2奈米粒子外,亦將TiO2以不同的分子改質,包括NH4HCO3、NH3(g)、(3-Aminopropyl)trimethoxysilane與硼酸,分別命名為NH4HCO3¬-TiO2、NH3-TiO2、NH2-TiO2、B0.5- TiO2。所製備出的碳量子點以紫外-可見光光譜儀(UV-vis)、螢光光譜儀、高解析穿透式電子顯微鏡(HR-TEM)、傅立葉轉換紅外光譜儀(FTIR)、X射線光電子能譜(XPS)的來分析其物性,了解其這些性質與製備方法及螢光量子產率的相互關係。實驗結果發現若以勻相成核生長的系統反應,合成出的碳量子點(oCD)之螢光量子效率約為15.66%,而加入純TiO2奈米粒子進行異相成核生長時,反應所需活化能會下降,所製備的碳量子點(TiO2-oCD)的螢光量子效率提升至63.96%。若利用NH4HCO3-TiO2於反應中,合成之碳量子點(NH4HCO3-TiO2-oCD)可以獲得最高的螢光量子產率85.92%,而其他改質後的TiO2則無顯著的效果。而由XPS分析得知NH4HCO3-TiO2可以提供碳量子點N、O元素,導致螢光量子產率提升。

    In this study, carbon quantum dots(CQDs) were synthesized by solvothermal method. o-Phenylenediamine (oPD) was used as the precursor of CQDs preparation, and TiO2 nanoparticles were added to form a heterogeneous nucleation growth system, to synthesize CQDs with high fluorescence quantum yield (QY). In the experiment, in addition to using general TiO2 nanoparticles, TiO2 was also modified with different molecules, including NH4HCO3, NH3(g), (3-Aminopropyl)trimethoxysilane and boric acid, named NH4HCO3-TiO2, NH3(g)-TiO2, NH2-TiO2, B0.5-TiO2. The prepared CQDs were analyzed by Ultraviolet–visible spectroscopy (UV-vis), Fluorescence spectrometer, High-resolution transmission electron microscope (HR-TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS). And through analyzing the physical properties, we can understand the relationship between the fluorescence QY and the characteristics of CQDs. The experimental results show that the fluorescence QY of the CQDs synthesized in homogeneous system (oCD) is 15.66%, while the QY of CQDs (TiO2-oCD) prepared in heterogeneous increases to 63.96% due to the reducing of energy barrier. If NH4HCO3-TiO2 is used in the reaction, the synthesized carbon quantum dots (NH4HCO3-TiO2-oCD) can obtain the highest fluorescence quantum yield 85.92% with emission 498 nm, while other modified TiO2 have no significant effect. The XPS analysis shows that NH4HCO3-TiO2 can provide carbon quantum dots N and O elements, resulting in an increment of the fluorescence quantum yield.

    摘要 I EXTENDED ABSTRACT II 目錄 XI 圖目錄 XIV 表目錄 XVIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 第二章 文獻回顧3 2.1 碳量子點的歷史 3 2.2 碳量子點的性質4 2.2.1 碳量子點的結構4 2.2.2 碳量子點的光學性質5 2.3 碳量子點的製備方法 8 2.3.1 由上而下(Top-down)的合成途徑 8 2.3.2 由下而上(Bottom-up)的合成途徑 9 2.4 碳量子點的成核與生長 12 2.5 碳量子點的應用 14 2.5.1 生物成像 14 2.5.2 藥物傳遞 16 2.5.3 化學傳感器 18 2.5.4 太陽能電池 19 第三章 實驗方法 21 3.1 實驗藥品與材料 21 3.2 實驗裝置與儀器 23 3.3 實驗步驟 24 3.3.1 二氧化鈦的改質 24 3.3.2 碳量子點的製備 26 3.3.3 碳量子點的純化 27 3.3.4 碳量子點後處理 27 3.4 檢測方法 29 3.4.1 紫外-可見光分光光度計(UV-Visible Spectrophotometer) 29 3.4.2 光致螢光光譜儀(Photoluminescence, PL) 29 3.4.3 螢光量子產率計算 30 3.4.4 傅立葉轉換紅外光譜儀(Fourier-Transform Infrared Spectroscopy, FTIR) 31 3.4.5 X 射線光電子能譜學(X-ray Photoelectron Spectroscopy, XPS) 32 3.4.6 穿透式電子顯微鏡 (High-Resolution Transmission Electron Microscope, HR-TEM) 32 第四章 結果與討論 34 4.1 勻相與非勻相系統合成之碳量子點的比較 34 4.2 調整反應溶劑的碳量子點合成 36 4.3 碳量子點的氧化與修飾 38 4.4 加入修飾後之二氧化鈦的碳量子點合成 41 4.5 加入以碳酸氫銨修飾之二氧化鈦所合成碳量子點的物性分析 46 4.5.1 高解析穿透式電子顯微鏡 (HR-TEM) 46 4.5.2 光物理性質分析 47 4.5.3 傅立葉轉換紅外光譜 (FTIR) 49 4.5.4 X 射線光電子光譜 (XPS) 50 4.6 修飾後二氧化鈦的物性分析 55 4.7 以對苯二胺前驅物合成之碳量子點分析59 第五章 結論與建議 63 5.1 結論 63 5.2 建議 64 參考文獻65

    [1] Baker, S.N. and G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed Engl, 2010. 49(38): p. 6726-6744.
    [2] Sahu, S., B. Behera, T.K. Maiti, and S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem Commun (Camb), 2012. 48(70): p. 8835-8837.
    [3] Luo, P.G., S. Sahu, S.T. Yang, S.K. Sonkar, J. Wang, H. Wang, G.E. LeCroy, L. Cao, and Y.P. Sun, Carbon "quantum" dots for optical bioimaging. J Mater Chem B, 2013. 1(16): p. 2116-2127.
    [4] Wang, W., Y. Li, L. Cheng, Z. Cao, and W. Liu, Water-soluble and phosphorus-containing carbon dots with strong green fluorescence for cell labeling. J Mater Chem B, 2014. 2(1): p. 46-48.
    [5] De, B. and N. Karak, A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Advances, 2013. 3(22): p. 8286.
    [6] Wu, M., J. Zhan, B. Geng, P. He, K. Wu, L. Wang, G. Xu, Z. Li, L. Yin, and D. Pan, Scalable synthesis of organic-soluble carbon quantum dots: superior optical properties in solvents, solids, and LEDs. Nanoscale, 2017. 9(35): p. 13195-13202.
    [7] Huo, X., L. Liu, Y. Bai, J. Qin, L. Yuan, and F. Feng, Facile synthesis of yellowish-green emitting carbon quantum dots and their applications for phoxim sensing and cellular imaging. Anal Chim Acta, 2022. 1206: p. 338685.
    [8] Guo, Y., L. Zhang, F. Cao, and Y. Leng, Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg(2). Scientific Reports, 2016. 6: p. 35795.
    [9] Xu, X., R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, and W.A. Scrivens, Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004. 126(40): p. 12736-12737.
    [10] Sun, Y.-P., B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, X.W. Barbara A Harruff, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, and S.-Y. Xie, Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006. 128: p. 7756-7757.
    [11] Zhu, S., Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Research, 2015. 8: p. 355-381.
    [12] LeCroy, G.E., S.K. Sonkar, F. Yang, L.M. Veca, P. Wang, K.N. Tackett, J.-J. Yu, E. Vasile, H. Qian, Y. Liu, P. Luo, and Y.-P. Sun, Toward Structurally Defined Carbon Dots as Ultracompact Fluorescent Probes. ACS Nano, 2014. 8: p. 4522–4529.
    [13] Wang, Y., S. Kalytchuk, Y. Zhang, H. Shi, S.V. Kershaw, and A.L. Rogach, Thickness-Dependent Full-Color Emission Tunability in a Flexible Carbon Dot Ionogel. J Phys Chem Lett, 2014. 5(8): p. 1412-1420.
    [14] Zhu, S., J. Shao, Y. Song, X. Zhao, J. Du, L. Wang, H. Wang, K. Zhang, J. Zhang, and B. Yang, Investigating the surface state of graphene quantum dots. Nanoscale, 2015. 7(17): p. 7927-7933.
    [15] Shen, J., Y. Zhu, X. Yang, J. Zong, J. Zhang, and C. Li, One-pot hydrothermal synthesis of graphenequantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem., 2012. 36(1): p. 97-101.
    [16] Li, H., Z. Kang, Y. Liu, and S.-T. Lee, Carbon nanodots: synthesis, properties and applications. Journal of Materials Chemistry, 2012. 22(46): p. 24230.
    [17] Robertson, J. and E.P. O'Reilly, Electronic and atomic structure of amorphous carbon. Phys Rev B Condens Matter, 1987. 35(6): p. 2946-2957.
    [18] Zhu, S., Y. Song, X. Zhao, J. Shao, J. Zhang, and B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Research, 2014. 8: p. 355–381.
    [19] Ding, H., S.B. Yu, J.S. Wei, and H.M. Xiong, Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano, 2016. 10(1): p. 484-491.
    [20] Wang, Z., F. Yuan, X. Li, Y. Li, H. Zhong, L. Fan, and S. Yang, 53% Efficient Red Emissive Carbon Quantum Dots for High Color Rendering and Stable Warm White-Light-Emitting Diodes. Advance Materials, 2017. 29(37): p. 1702910.
    [21] Zhang, T., J. Zhu, Y. Zhai, H. Wang, X. Bai, B. Dong, H. Wang, and H. Song, A novel mechanism for red emission carbon dots: hydrogen bond dominated molecular states emission. Nanoscale, 2017. 9(35): p. 13042-13051.
    [22] Tao, H., K. Yang, Z. Ma, J. Wan, Y. Zhang, Z. Kang, and Z. Liu, In Vivo NIR Fluorescence Imaging, Biodistribution, and Toxicology of Photoluminescent Carbon Dots Produced from Carbon Nanotubes and Graphite. Small, 2012. 8(2): p. 281-290.
    [23] Teng, C.Y., B.S. Nguyen, T.F. Yeh, Y.L. Lee, S.J. Chen, and H. Teng, Roles of nitrogen functionalities in enhancing the excitation-independent green-color photoluminescence of graphene oxide dots. Nanoscale, 2017. 9(24): p. 8256-8265.
    [24] Lu, J., J.-x. Yang, J. Wang, A. Lim, S. Wang, and K.P. Loh, One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS Nano, 2009. 3(8): p. 2367–2375.
    [25] Zhou, J., C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun, and Z. Ding, An Electrochemical Avenue to Blue Luminescent Nanocrystals from Multiwalled Carbon Nanotubes (MWCNTs). J. Am. Chem. Soc., 2007. 129(4): p. 744-745.
    [26] Zhu, S., J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hu, and B. Yang, Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission. RSC Advances, 2012. 2(7): p. 2717.
    [27] Ray, S.C., A. Saha, N.R. Jana, and R. Sarkar, Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application. J. Phys. Chem. C, 2009. 113: p. 18546–18551.
    [28] Liu, H., T. Ye, and C. Mao, Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed Engl, 2007. 46(34): p. 6473-6475.
    [29] Bourlinos, A.B., A. Stassinopoulos, D. Anglos, R. Zboril, M. Karakassides, and E.P. Giannelis, Surface Functionalized Carbogenic Quantum Dots. Small, 2008. 4(4): p. 455-458.
    [30] Wang, H., P. Sun, S. Cong, J. Wu, L. Gao, Y. Wang, X. Dai, Q. Yi, and G. Zou, Nitrogen-Doped Carbon Dots for "green" Quantum Dot Solar Cells. Nanoscale Res Lett, 2016. 11(1): p. 27.
    [31] Yang, Z.C., M. Wang, A.M. Yong, S.Y. Wong, X.H. Zhang, H. Tan, A.Y. Chang, X. Li, and J. Wang, Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of glucose in the presence of monopotassium phosphate. Chem Commun (Camb), 2011. 47(42): p. 11615-11617.
    [32] Liu, J., D. Li, K. Zhang, M. Yang, H. Sun, and B. Yang, One-Step Hydrothermal Synthesis of Nitrogen-Doped Conjugated Carbonized Polymer Dots with 31% Efficient Red Emission for In Vivo Imaging. Small, 2018. 14(15): p. 1703919.
    [33] Jiang, K., S. Sun, L. Zhang, Y. Lu, A. Wu, C. Cai, and H. Lin, Red, green, and blue luminescence by carbon dots: full-color emission tuning and multicolor cellular imaging. Angew Chem Int Ed Engl, 2015. 54(18): p. 5360-5363.
    [34] Zhu, H., X. Wang, Y. Li, Z. Wang, F. Yang, and X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun (Camb), 2009(34): p. 5118-5120.
    [35] Deng, Z., C. Liu, Y. Jin, J. Pu, B. Wang, and J. Chen, High quantum yield blue- and orange-emitting carbon dots: one-step microwave synthesis and applications as fluorescent films and in fingerprint and cellular imaging. Analyst, 2019. 144(15): p. 4569-4574.
    [36] LaMer, V.K. and R.H. Dinegar, Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. J. Am. Chem. Soc., 1950. 72(11): p. 4847–4854.
    [37] Ostwald, W., Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Zeitschrift für physikalische Chemie, 1900. 34(1): p. 495-503.
    [38] Shimpi, J.R., D.S. Sidhaye, and B.L.V. Prasad, Digestive Ripening: A Fine Chemical Machining Process on the Nanoscale. Langmuir, 2017. 33(38): p. 9491-9507.
    [39] Li, X., K. Zhang, J. Li, J. Chen, Y. Wu, K. Liu, J. Song, and H. Zeng, Heterogeneous Nucleation toward Polar‐Solvent‐Free, Fast, and One‐Pot Synthesis of Highly Uniform Perovskite Quantum Dots for Wider Color Gamut Display. Advanced Materials Interfaces, 2018. 5(8): p. 1800010.
    [40] Yang, S.-T., L. Cao, P.G. Luo, F. Lu, X. Wang, H. Wang, M.J. Meziani, G.Q. Yuanfang Liu, and Y.-P. Sun, Carbon Dots for Optical Imaging in Vivo. J. Am. Chem. Soc., 2009. 131(32): p. 11308-11309.
    [41] Molaei, M.J., Carbon quantum dots and their biomedical and therapeutic applications: a review. RSC advances, 2019. 9(12): p. 6460-6481.
    [42] Karthik, S., B. Saha, S.K. Ghosh, and N.D. Pradeep Singh, Photoresponsive quinoline tethered fluorescent carbon dots for regulated anticancer drug delivery. Chem Commun (Camb), 2013. 49(89): p. 10471-10473.
    [43] Su, W., R. Guo, F. Yuan, Y. Li, X. Li, Y. Zhang, S. Zhou, and L. Fan, Red-Emissive Carbon Quantum Dots for Nuclear Drug Delivery in Cancer Stem Cells. J Phys Chem Lett, 2020. 11(4): p. 1357-1363.
    [44] Zhang, Y.-Q., D.-K. Ma, Y.-G. Zhang, W. Chen, and S.-M. Huang, N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells. Nano Energy, 2013. 2(5): p. 545-552.
    [45] Mekprasart, W. and W. Pecharapa, Synthesis and Characterization of Nitrogen-Doped Tio2 and Its Photocatalytic Activity Enhancement Under Visible Light. Energy Procedia, 2011. 9: p. 509-514.
    [46] Zaleska, A., J.W. Sobczak, E. Grabowska, and J. Hupka, Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light. Applied Catalysis B: Environmental, 2008. 78(1-2): p. 92-100.
    [47] Etgar, L., G. Schuchardt, D. Costenaro, F. Carniato, C. Bisio, S.M. Zakeeruddin, M.K. Nazeeruddin, L. Marchese, and M. Graetzel, Enhancing the open circuit voltage of dye sensitized solar cells by surface engineering of silica particles in a gel electrolyte. Journal of Materials Chemistry A, 2013. 1(35): p. 10142.
    [48] Williams, A.T.R., S.A. Winfield, and J.N. Miller, Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst, 1983. 108: p. 1067-1071.
    [49] Liu, W., H. Jia, J. Zhang, J. Tang, J. Wang, and D. Fang, Preparation of nitrogen-doped carbon quantum dots (NCQDs) and application for non-enzymatic detection of glucose. Microchemical Journal, 2020. 158: p. 105187.
    [50] Yang, P., Z. Zhu, M. Chen, W. Chen, and X. Zhou, Microwave-assisted synthesis of xylan-derived carbon quantum dots for tetracycline sensing. Optical Materials, 2018. 85: p. 329-336.
    [51] Hummers, W.S., Jr., and R.E. Offeman, Preparation of Graphitic Oxide. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1957. 80: p. 1339.
    [52] Cheng, Y., M. Bai, J. Su, C. Fang, H. Li, J. Chen, and J. Jiao, Synthesis of fluorescent carbon quantum dots from aqua mesophase pitch and their photocatalytic degradation activity of organic dyes. Journal of Materials Science & Technology, 2019. 35(8): p. 1515-1522.
    [53] Lu, S., L. Sui, J. Liu, S. Zhu, A. Chen, M. Jin, and B. Yang, Near-Infrared Photoluminescent Polymer-Carbon Nanodots with Two-Photon Fluorescence. Advance Materials, 2017. 29(15): p. 1603443.
    [54] Jiang, K., X. Feng, X. Gao, Y. Wang, C. Cai, Z. Li, and H. Lin, Preparation of Multicolor Photoluminescent Carbon Dots by Tuning Surface States. Nanomaterials (Basel), 2019. 9(4).
    [55] Zheng, J., Y. Xie, Y. Wei, Y. Yang, X. Liu, Y. Chen, and B. Xu, An Efficient Synthesis and Photoelectric Properties of Green Carbon Quantum Dots with High Fluorescent Quantum Yield. Nanomaterials, 2020. 10(1): p. 82.
    [56] Hao, Y.-N., H.-L. Guo, L. Tian, and X. Kang, Enhanced photoluminescence of pyrrolic-nitrogen enriched graphene quantum dots. RSC Advances, 2015. 5(54): p. 43750-43755.
    [57] Bai, J., Y. Ma, G. Yuan, X. Chen, J. Mei, L. Zhang, and L. Ren, Solvent-controlled and solvent-dependent strategies for the synthesis of multicolor carbon dots for pH sensing and cell imaging. Journal of Materials Chemistry C, 2019. 7(31): p. 9709-9718.
    [58] Qu, D., M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R.E. Haddad, H. Fan, and Z. Sun, Formation mechanism and optimization of highly luminescent N-doped graphene quantum dots. Scientific Reports, 2014. 4: p. 5294.

    下載圖示 校內:2024-08-31公開
    校外:2024-08-31公開
    QR CODE