簡易檢索 / 詳目顯示

研究生: 鍾政賢
Chung, Cheng-Hsien
論文名稱: 聚焦式 P(VDF-TrFE) 換能器應用於寬頻超聲波量測系統與鍍層材料機械性質之量測
Focusing P(VDF-TrFE) Transducers for Broad Band Acoustic Wave Measurement and Characterization of Coating Materials
指導教授: 李永春
Lee, Yung-Chun
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 166
中文關鍵詞: 鍍層材料材料性質聚焦換能器頻散曲線敏感度分析疊波理論奈米壓痕試驗機
外文關鍵詞: Coating material properties, Elastic constants, P(VDF-TrFE) ultrasound focusing transducer, Dispersion curve sensitivity analysis, Partial way theory, Simplex optimization algorithm, Nano-indentor
相關次數: 點閱:160下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以寬頻超音波的量測決定薄膜鍍層材料之彈性係數。首先,以改良式之旋轉塗佈/熱結晶法製作高頻且寬頻之Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)]無鏡頭式聚焦換能器,於加工成曲面之鋁金屬背層材料上,直接旋鍍與極化此一P(VDF-TrFE)高分子薄膜,使之具有壓電性質;其次,搭配V(z)與V(f,z)二種散焦量測系統與波形分析法,測量鍍層材料表面聲波與板波之頻散曲線;最後,再以改良之數值反算方式萃取鍍層材料之機械性質。
    本論文使用數個無鏡頭式P(VDF-TrFE)聚焦換能器,可精準量測寬頻範圍內之頻散曲線,操作頻率可達5~120 MHz,中心頻率則介於5~60 MHz 之間。本研究準備兩種不同的鍍層試片:(1)於半無限域之等向性玻璃或銅基材上電鍍之鎳薄膜;(2)於非等向性之(100)矽晶片上電鍍鎳薄膜。鎳鍍層厚度介於為15~65 μm。此外,為了研究電鍍速率對鎳鍍層材料機械性質的影響,同時驗證反算鍍層機械性質的分辨能力,本研究亦以不同的電鍍速率製作鍍層試片進行測試。
    為了建立更合理與正確的反算方法,本研究執行鍍層試片之頻散曲線敏感度分析,並利用頻散曲線的敏感度特性建立一套新的材料性質反算方法。結果顯示:高、低頻段頻散資料之權重調配將是反算方法的關鍵,因此在反算過程中必須被考慮進去,以期準確地得到鍍層材料的彈性係數。為了驗證反算的結果,奈米壓痕試驗機(Nano-indentation system)亦用於量測鎳鍍層材料的楊氏係數,結果顯示反算結果具有相當的準確性,因此更驗證了頻散曲線敏感度分析的重要性。

    This dissertation investigates the non-destructive determination of elastic constants of coating layers using measured dispersion relation of acoustic waves. Wideband lens-less acoustic microscopy measurement systems are developed based on several high-frequency Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] focusing transducers, which are fabricated by a fast and combined spin-coating and thermal-crystallization method. The wave measurement is based on transducer defocusing measurement methods and V(f, z) or V(z) waveform processing analysis. P(VDF-TrFE) focusing transducers with central frequency from several few MHz to higher frequency (~56 MHz) and an aperture angle ranging from 30 to 95 degrees are successfully fabricated in laboratory and the wave measurements can cover a wide frequency range of 4~120 MHz with great measurement accuracy.
    In experiment, samples with two different configurations are considered and investigated: (1) layered half-space sample, nickel layer is electroplated on thick isotropic glass and brass substrates, and (2) composite plate, nickel film is deposited on (100) silicon wafer. Nickel films with thickness ranging from 15 to 65 μm are prepared and tested. Additional samples of type (1) are also prepared with different coating rate for investigating the influence of coating rate on the elastic constants of coating materials.
    Theoretical analysis on the sensitivity of dispersion curves is also carried out in this dissertation for discovering a better algorithm for inversely determining elastic constants of a coating layer from measured dispersion data. As a result of the analysis, a new inverse process having different weightings on different range of frequency or different modes of dispersion curves is proposed. Based on this method, elastic constants of few coating layers are determined from their measured wideband dispersion curves. The results show good agreement with the measured data from a nano-indentation system and its destructive measurement method. Measurement accuracy and potential applications for other types of nondestructive evaluation of the focusing transducers and measurement system are addressed.

    Table of Contents Abstract................................................ i 中文摘要.................................................iii 致謝.................................................... iv Table of Contents....................................... vi List of Tables ......................................... ix Caption of Figures ..................................... x Nomenclatures .......................................... xv Chapter 1 General Introduction ......................... 1 1.1 Introduction ....................................... 1 1.2 Paper Survey ....................................... 9 1.3 Motivation ......................................... 13 Chapter 2 Sensitivity Analysis of the Dispersion Curves.................................................. 15 2.1 Nickel Coating on a Glass Half-space Substrate...... 17 2.2 Nickel Coating on a Brass Half-space Substrate...... 30 2.3 Nickel Coating on a (100) Silicon Plate............. 38 Chapter 3 Fabrication of Lens-less Poly(Vinylidene fluoride-trifluoroethylene)[P(VDF-TrFE)] Ultrasound Focusing Transducers ................................... 49 3.1 Design of P(VDF-TrFE) Ultrasound Focusing Transducer.............................................. 50 3.2 Fabrication of P(VDF-TrFE) Ultrasound Focusing Transducer.............................................. 54 3.2.1 P(VDF-TrFE) Solution Preparation ................. 54 3.2.2 Aluminum Backing ................................. 55 3.2.3 Spin Coating and Film Crystallization Procedures ............................................. 56 3.2.4 Ferroelectric Hysteresis Loop of P(VDF-TrFE) Copolymer Film.......................................... 58 3.2.5 Poling Process of the Copolymer Film ............. 62 3.3 Performance of P(VDF-TrFE) Ultrasound Focusing Transducer ............................................. 63 3.4 P(VDF-TrFE) Ultrasound Focusing Transducer for the Measurement of Longitudinal Wave Velocity of Thin Plate................................................... 73 Chapter 4 Broadband High-frequency P(VDF-TrFE) Lens-less Acoustic Microscopy Measurement Systems and Waveform Analysis Processing..................................... 77 4.1 Measurement systems ................................ 78 4.1.1 V(z) measurement system........................... 79 4.1.2 V(f,z) measurement system......................... 82 4.2 The measurement model of V(z) curves ............... 84 4.3 V(f,z) waveform processing for the measured time-domain waveforms................................... 87 4.4 Validation of the defocus measurement systems....... 90 4.4.1 Measurement of tungsten carbide sample using V(z) defocus measurement method ............................. 91 4.4.2 Measurement of stainless steel plate using V(f,z) defocus measurement method ............................. 95 4.4.3 Measurement of (100) Silicon wafer using V(f,z) defocus measurement method............................. 100 Chapter 5 Elastic Constants Determination of Coating Materials.............................................. 106 5.1 The Coating Samples................................ 106 5.2 Nickel Coating on an Isotropic Half-space Substrate ............................................. 109 5.2.1 Measurement of Dispersion Curves ................ 110 5.2.2 Determination of the Coating Elastic Constants ............................................. 118 5.3 Nickel Coating on an Anisotropic Plate............. 122 5.3.1 Measurement of Dispersion Curves ................ 123 5.3.2 Determination of the Coating Elastic Constants ............................................. 131 5.4 The Influence of Coating Rate ..................... 133 5.4.1 Nickel/glass Coating Sample ..................... 134 5.4.2 Nickel/brass Coating Sample ..................... 136 5.4.3 Determination of the Coating Elastic Constants ............................................. 139 Chapter 6 Conclusions ................................. 143 6.1 Conclusion......................................... 143 6.2 Suggestion and Discussion.......................... 144 References ............................................ 147 Appendix A............................................. 153 Appendix B............................................. 163 Appendix C ............................................ 164 Vita................................................... 165

    References
    [1] G. W. Farnell and E. L. Adler, Physical Acoustics: Principles and Methods Ⅸ,edited by W. P. Mason and R. N. Thurston, American, New York: Academic Press,pp. 35-126, 1972.
    [2] J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, M. Shinn, and S. A. Barnett, “Elastic constants of single-crystal transition-metal nitride films measured by line-focus
    acoustic microscopy,” J. Appl. Phys., vol. 72, pp. 1805-1811, 1992.
    [3] Y. C. Lee, J. O. Kim, and J. D. Achenbach, “Line-focus acoustic microscopy measurements of Nb2O5/MgO and BaTiO3/LaAlO3 thin-film/substrate configurations,” IEEE Trans. Ultrason., Ferroelect. Freq. Contr., vol. 42, pp.
    376-380, 1995.
    [4] W. Li and J. D. Achenbach, “Measuring Thin-film elastic constants by line-focus acoustic microscopy,” Proc. IEEE Ultrason. Symp., vol. 2, pp. 883-892, 1995.
    [5] J. O. Kim and J. D. Achenbach, “Effective elastic constants and acoustic properties of single-crystal TiN/NbN superlattices,” J. Mater. Res., vol. 7, pp. 2248-2256,1992.
    [6] B. Cros, E. Gat, and J. Saurel, “Characterization of the elastic properties of amorphous silicon carbide thin film by acoustic microscopy,” J Non-Cryst Solids, vol. 209, pp. 273–282, 1997.
    [7] J. Kushibiki and N. Chubachi, “Material characterization by line-focus beam acoustic microscopy,” IEEE Trans. Sonics Ultrason., vol. 32, pp. 189-212, 1985.
    [8] J. Kushibiki, T. Ishikawa, and N. Chubachi, “Cut-off characterization of leaky Sezawa and pseudo-Sezawa wave modes for thin-film characterization,” Appl. Phys. Lett., vol. 57, pp 1967-1969, 1990.
    [9] Y. C. Lee, “Line-focus acoustic microscopy for material evaluation,” Ph.D. Dissertation of the Technological Institute, Northwestern University, USA, 1994.
    [10] H. Cho, H. Sato, M. Takemoto, A. Sato, and K. Yamanaka, ”Surface acoustic wave velocity and attenuation dispersion measurement by phase velocity scanning of
    laser interference fringes,” Jpn. J. Appl. Phys., vol. 35, pp. 3062-3065, 1996.
    [11] H. Cho, H. Sato, H. Nishino, Y. Tsukahara, M. Inaba, A. Sato, M. Takemoto, S. Nakano, and K. Yamanaka, “Nondestructive evaluation of elastic properties inporous silicon film on Si(100) by the phase velocity scanning of laser interference fringes,” Proc. IEEE Ultrason. Symp., vol. 1, pp. 757-760, 1995.
    [12] A. Neubrand and P. Hess, “Laser generation and detection of surface acoustic waves: Elastic properties of surface layers,” J. Appl. Phys., vol. 71, pp. 227-238,
    1992.
    [13] P. Hess, “Laser diagnostics of mechanical and elastic properties of silicon and carbon films,” Appl. Surf. Sci., vol. 106, pp. 429-437, 1996.
    [14] N. Nakamura, H. Ogi and M. Hirao, “Resonance ultrasound spectroscopy for measuring elastic constants of thin films,“ Jpn. J. Appl. Phys., vol. 43, pp.
    3115-3118, 2004.
    [15] I. Ihara, T. Sawa and K. Tanaka, “Elastic constant determination of SiC/NiP composite coating by surface acoustic wave and nano-indentation,” Jpn. J. Appl.
    Phys., vol. 40, pp. 3442-3447, 2001.
    [16] S. H. Hong, K. S. Kim, Y. M. Kim, J. H. Hahn, C. S. Lee, and J. H. Park,“Characterization of elastic moduli of Cu thin films using nanoindentation technique,” Compos. Sci. Technol., vol. 65, pp. 1401-1408, 2005.
    [17] D. Xiang, N. N. Hsu, and G. V. Blessing, “The design, construction and application of a large aperture lens-less line-focus PVDF transducer,” Ultrasonics, vol. 34, pp.
    641-647, 1996.
    [18] D. Xiang, N. N. Hsu, and G. V. Blessing, “Material characterization by a time-resolved and polarization-sensitive ultrasonic technique,” Review of the
    Progress in Quantitative Non-destructive Evaluation, vol. 15, pp. 1431-1438, 1996.
    [19] N. N. Hsu, D. Xiang, S. E. Fick, and G. V. Blessing, “Time and polarization resolved ultrasonic measurements using a lensless line-focus transducer,“ Proc.
    IEEE Ultrason. Symp., pp. 867-871, 1995.
    [20] D. Xiang, N. N. Hsu, and G. V. Blessing, “Ultrasonic leaky wave measurements for materials evaluation,” Nondestructive characterization of materials Ⅷ, edited
    by R. E. Green, American, New York: Plenum Press, pp. 775-780, 1997.
    [21] D. Xiang, N. N. Hsu, and G. V. Blessing, “Time domain waveforms of a line-focus transducer probing anisotropic solids,” Nondestructive Characterization of Materials Ⅷ, edited by R. E. Green, American, New York: Plenum Press, pp. 799-804, 1997.
    [22] C. H. Yang, “Characterization of piezoelectrics using line-focus transducer,” in Proceedings of 15th Conference of Chinese Society of Mechanical Engineering, pp.
    780-790, 1998.
    [23] Y. C. Lee, “Measurements of dispersion curves of leaky lamb waves using a lens-less line-focus transducer,” Ultrasonics, vol. 39, 297-306, 2001.
    [24] Y. C. Lee and S. W. Cheng, ”Measuring lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating,” IEEE
    Trans. Ultrason. Ferroelec. Freq. Contr., vol. 48, pp. 830-837, 2001.
    [25] Y. C. Lee, “Measurements of multimode leaky lamb waves propagating in metal sheets,” Jpn. J. Appl. Phys., vol. 40, pp. 359-363, 2001.
    [26] Y. C. Lee and C. C. Chu, “A double-layered line-focusing PVDF transducer and V(z) measurement of surface acoustic wave,” Jpn. J. Appl. Phys., vol. 44, pp.
    1462-1467, 2005.
    [27] Y. C. Lee and S. P. Ko, “Measuring dispersion curves of acoustic waves using PVDF line-focus transducers,” NDT&E int., vol. 34, pp. 191-197, 2001.
    [28] Y. C. Lee, Y. F. Tein, and Y. Y. Chao, “A Point-focus transducer for lamb wave measurements,” The Chinese Journal of Mechanics-series A, vol.18, pp. 29-33,
    2002.
    [29] C. H. Chung and Y. C. Lee, “Nondestructive determination of elastic constants of thin isotropic plates based on poly(vinylidene fluoride–trifluoroethylene)
    copolymer ultrasound focusing transducers and lamb wave measurements ,” Jpn. J. Appl. Phys., vol. 48, pp. 046506 1-7, 2009.
    [30] C. H. Chung and Y. C. Lee, “Broadband poly(vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers for determining elastic constants of coating
    materials,” J. Nondestruct. Eval., vol 28, pp. 101-110, 2009.
    [31] C. H. Chung and Y. C. Lee, ”Fabrication of poly(Vinylidene fluoride-trifluoroethylene) ultrasound focusing transducers and measurements of elastic constants of thin plates,” NDT&E int., vol. 34, pp. 96-105, 2010.
    [32] M. Robert, G. Molingou, K. Snook, J. Cannata, and K. K. Shung, ”Fabrication of focused poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) copolymer 40–50 MHz ultrasound transducers on curved surfaces,” J. Appl. Phys., vol. 96, pp. 252-256, 2004.
    [33] K. Kimura and H. Ohigashi, “Generation of very high-frequency ultrasonic waves using thin films of vinylidene fluoride-trifluoroethylene copolymer,” J. Appl. Phys.,
    vol. 61, pp. 4749-4754, 1987.
    [34] A. H. Nayfeh, Wave Propagation in Layered Anisotropic Media: with Application to Composites, Nertherlands, Amsterdam: Elsevier Science, 1995.
    [35] A. Briggs, Advances in Acoustic Microscopy, American, New York: Plenum Press,1995.
    [36] H. R. Gallantree, “Review of transducer applications of polyvinylidene fluoride,”IEE Proc., vol. 130, pp. 219-224, 1983.
    [37] A. Ambrosy and K. Holdik, ”Piezoelectric PVDF films as ultrasonic transducers,”J. Phys. E : Sci. Instrum, vol. 17, pp. 856-859, 1984.
    [38] M. Platte, ”PVDF ultrasonic transducers,” Ferroelectrics, vol. 75, pp.327-373,1987.
    [39] M. D. Sherar and F. S. Foster, “The design and fabrication of high frequency Poly(vinylidene fluoride) transducers,” Ultrason. Imag., vol. 11, pp. 75-94, 1989.
    [40] G. R. Lockwood, D. H. Turnbull, D. A. Christopher, and F. S. Foster, “Beyond 30 MHz: Applications of high frequency imaging,” IEEE Eng. Med. Biol., pp. 60-71,
    1996.
    [41] S. Smolorz and W. Grill, “Focusing PVDF transducers for acoustic microscopy,”Res. Nondestr. Eval., vol. 7, pp. 195-201, 1996.
    [42] C. Guittet, F. Ossant, L. Vaillant, and M. Berson, “In vivo high-frequency ultrasonic characterization of human dermis,” IEEE Trans. Biomed. Eng., vol. 46, pp. 740-746, 1999.
    [43] W. Zou, S. Holland, K. Y. Kim, and W. Sachse, “Wideband high-frequency line-focus PVDF transducer for materials characterization,” Ultrasonics, vol. 41, pp. 157-161, 2003.
    [44] J. A. Ketterling, “Design and fabrication of a 40-MHz annular array transducer,”IEEE Trans. Ultrason., Ferroelect. Freq. Contr., vol. 52, pp. 672-681, 2005.
    [45] L. F. Brown, R. L. Carlson, and J. M. Sempsrott, “Spin-cast P(VDF-TrFE) films for high performance medical ultrasound transducers,” Proc. IEEE Ultrason. Symp.,vol. 2, pp. 1725-1727, 1997.
    [46] M. Z. Sleva, R. D. Briggs, and W. D. Hunt, “A micromachined poly(Vinylidenefluoride-trifluoroethylene) transducer for pulse-echo ultrasound applications,”
    IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 43, 257-262, 1996.
    [47] M. R. Karim, A. K. Mal and Y. B. Cohen, “Inversion of leaky Lamb wave data by simplex algorithm,” J. Acoust. Soc. Am., vol. 88, pp. 482-491, 1990.
    [48] M. Lematre, Y. Benmehrez, G. Bourse, J. W. Xu, and M. Ourak, “Acoustic microscopy measurement of elastic constants by using an optimization method on measured and calculated SAW velocities: effect of initial cij values on the calculation convergence and influence of the LFI transducer parameters on the determination of the SAW velocity,” NDT&E int., vol. 35, pp. 279-286, 2002.
    [49] M. Lematre, Y. Benmehrez, G. Bourse, J. W. Xu, and M. Ourak, “Determination of elastic parameters in isotropic plates by using acoustic microscopy measurements and an optimization method,” NDT&E Int., vol. 35, pp. 493-502, 2002.
    [50] H. P. William, P. F. Brian, T. A. Saul, and V. T. William, Numerical Recipes: The Art of Scientific Computing, American, New York: Cambridge University Press,
    1986.
    [51] J. D. Achenbach, Wave Propagation in Elastic Solids, American, New York: Elsevier Science, 1973.
    [52] L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of Acoustics, American, New York: Wiley, 1982.
    [53] B. A. Auld, Acoustic Fields and Waves in Solids, 2nd Ed., vol.Ⅰ, Malabar, FL: Krieger, 1990.
    [54] I. A. Victorov, Rayleigh and Lamb waves: Physical Theory and Applications, American, New York: Plenum Press, 1967.
    [55] L. F. Brown, “Design considerations for piezoelectric polymer ultrasound transducers,” IEEE Trans. Ultrason. Ferroelec. Freq. Contr., vol. 47, pp. 1377-1396, 2000.
    [56] H. Ohigashi and K. Koga, “Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor,” Jpn. J. Appl.
    Phys., vol. 21, pp. L455-L457, 1982.
    [57] T. Furukawa, M. Date, E. Fukada, Y. Tajitsu, and A. Chiba, “Ferroelectric behavior in the copolymer of vinylidenefluoride and trifluoroethylene,” Jpn. J. Appl. Phys.,vol. 19, pp. L109-L112, 1980.
    [58] K. Koga, N. Nakano, T. Hattori, and H. Ohigashi, “Crystallization, field-induced phase transformation, thermally induced phase transition, and piezoelectric activity in P(vinylidene fluoride-TrFE) copolymers with high molar content of vinylidene
    fluoride,” J. Appl. Phys., vol. 67, pp. 965-974, 1990.
    [59] J. K. Dennis and T. E. Such, Nickel and Chromium Plating, 3rd Ed., England, Cambridge: Woodhead, 1993.
    [60] S. H. Kuo, “The characteristics of leaky lamb wave subjected to fluid loadings: analysis and experiment,” Ph.D. Dissertation of the Mechanical Engineering
    Department, National Cheng Kung University, Taiwan, 2006.

    下載圖示 校內:2010-12-31公開
    校外:2010-12-31公開
    QR CODE