| 研究生: |
徐芳真 Hsu, Fang-Chen |
|---|---|
| 論文名稱: |
基於消費者分群和資訊融合建立產品外型設計之情感反應模型 Modeling affective responses for product form design based on consumer segmentation and information fusion |
| 指導教授: |
謝孟達
Shieh, Meng-Dar |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
規劃與設計學院 - 工業設計學系 Department of Industrial Design |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 感性工學 、消費者分群 、情感反應 、預測模型 、資訊融合 |
| 外文關鍵詞: | Kansei engineering, consumer segmentation, affective response, prediction model, information fusion |
| 相關次數: | 點閱:120 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在產品設計領域裡,了解消費者於產品造型特徵的情感反應對於發展成功的產品非常有助益。然而,消費者需求通常都不盡相同而且相異,多數的研究都忽略了消費者偏好模式皆相異的性質,以致於建構出來的預測模型在實際生活中的應用價值並不高。本研究提出一感性工學架構,藉由消費者分群和資訊融合的概念,統整消費者對於產品的情感反應模型。首先,以模糊聚類分群(Fuzzy c-means,FCM)的技術分割消費者,利用消費者的偏好模式將同質性的消費者集結成一個群組。在每一個消費者的群組裡,可以根據模糊聚類分群的結果,獲得每位消費者的相對重要性和成對消費者之間的互動關係。接著使用「支援向量回歸(Support Vector Regression,SVR)」建構每位消費者的個人化感性預測模型(individual affective response prediction model,IARPM),經由支援向量回歸本身優越的歸納能力,消費者的個人化感性預測模型都有很好的表現。最後使用一個模糊積分運算子,稱為二次累加choquet 積分(2-additive Choquet integral),考慮了消費者在群組中的相對重要性以及消費者之間互動關係的情況下,整合所有消費者的個人化感性預測模型成為一個一致性感性預測模型(consensus affective response prediction model,CARPM)。透過這個感性工學架構可以準確的預測消費者情感反應,並且以視覺化的方法觀察分群情形再適當的將消費者分群,此外,以資訊融合技術更合理的整合目標族群的消費者情感反應。本研究以手機為案例展示所提出的感性工學架構,結果顯示以資訊融合概念的混合式專家架構對於處理消費者情感反應是一種很有潛力的方法。
Within the industrial design field, prediction models, which can analyze the relationship between consumers’ affective responses (CARs) and product form features (PFFs), have been studied extensively since CARs toward the product represents a mode of human-product interaction. However, despite a vast amount of literatures available on the subject, the heterogeneous nature of consumer preference patterns is often neglected so that the resulting prediction model is of less value for the real-word applications. This paper proposes a Kansei engineering framework for constructing the unified consensus affective response prediction model (CARPM) for CARs based on the concepts of consumer segmentation and information fusion. First, a fuzzy c-means (FCM) clustering is applied to separate the consumers with heterogeneous preference patterns into homogenous groups. In the target group, the relative importance of each consumer and the interaction between pairs of consumers can be determined according to the results of FCM clustering. Then, a state-of-the-art machine learning approach known as “support vector regression (SVR)” is used to construct the individual affective response prediction model (IARPM) for each consumer. These IARPMs have outperforming predictive ability of the affective responses due to the good generalization performance of the SVR algorithm. Finally, a fuzzy integral aggregation operator, namely the 2-additive Choquet integral, is employed to conjoint the IARPMs in each group by considering the relative importance and interactions of consumers in the target group to build the CARPM. According to the proposed framework, CARs toward PFFs can be predicted precisely by IAPRMs, and consumer groups can be clustered meaningfully by visualized way. Furthermore, CARs of the target groups could be gathered by considering the inherent interaction among the consumers. A case study of mobile phone is used to demonstrate the proposed approach. The results show that the proposed methodology is, an information fusion concept for handling the consumers’ evaluations of the target group, providing that mixture of experts is an alternative for dealing with CARs for product differentiation.
Anderson, E.W. & Mittal, V. (2000). Strengthening the satisfaction-profit chain. Journal of Service Research, 3 (2): 107-120.
Angilella, S.,Greco, S.,Lamantia, F. & Matarazzo, B. (2004). Assessing non-additive utility for multicriteria decision aid. European Journal of Operational Research, 158 (3): 734-744.
Bezdek, J. (1981). Pattern recognition with fuzzy objective function algorithm. Plenum, New York, USA.
Blackler, A.,Popovic, V. & Mahar, D. (2010). Investigating users' intuitive interaction with complex arefacts. Applied Ergonomics, 41 (1): 72-92.
Bloom, J. (2004). Tourist market segmentation with linear and non-linear techniques. Tourism Management, 25 (6): 723-733.
Bock, T. & Uncles, M. (2002). A taxonomy of differences between consumers for market segmentation. International Journal of Research in Marketing, 19 (3): 215-224.
Chen, C.-H.,Khoo, L.P. & Yan, W. (2003). Evaluation of multicultural factors from elicited customer requirements for new product development. Research in Engineering Design, 14 (3): 119-130.
Chen, K.-Y. (2007). Forecasting systems reliability based on support vector regression with genetic algorithms. Reliability Engineering & System Safety, 92 (4): 423-432.
Cheung, K.-W.,Kwok, J.T.,Law, M.H. & Tsui, K.-C. (2003). Mining customer product ratings for personalized marketing. Decision Support Systems, 35 (2): 231-243.
Cliville, V.,Berrah, L. & Mauris, G. (2007). Quantitative expression and aggregation of performance measurements based on the MACBETH multi-criteria method. Int. J. Production Economics, 105 (1): 171-189.
Demirbilek, O. & Sener, B. (2003). Product design, semantics and emotional response. Ergonomics, 46 (13-14): 1346-1360.
Dubois, D. & Prade, H. (2004). On the use of aggregation operations in information fusion processes. Fuzzy Sets and Systems, 142 (1): 143-161.
Dunn, J.C. (1974). A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Journal of Cybernetics, 3 (3): 32-57.
Feil, B.,Balasko, B. & Abonyi, J. (2007). Visualization of fuzzy clusters by fuzzy Sammon mapping projection: application to the analysis of phase space trajectories. Soft Computing, 11 (5): 479-488.
Grabisch, M. (1995). Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems, 69 (3): 279-298.
Grabisch, M. & Labreuche, C. (2001). A multicriteria decision making framework in ordinal context based on Sugeno integral. In Joint 9th IFSA World Congress and 20th NAFIPS International Conference, 2: 986-991.
Grabisch, M. & Labreuche, C. (2002). The symmetric and asymmetric Choquet integrals on finite spaces for decision making. Statistical Papers, 43 (1): 37-52.
Grabisch, M. & Labreuche, C. (2005). Bi-capacities II: The Choquet integral. Fuzzy Sets and Systems, 151 (2): 237-259.
Han, S.H. & Hong, S.W. (2003). A systematic approach for coupling user satisfaction with product design. Ergonomics, 46 (13-14): 1441-1461.
Han, S.H.,Kim, K.J.,Yun, M.H. & Kim, S.W.H.J. (2004). Identifying mobile phone design features critical to user satisfaction. Human Factors and Ergonomics in Manufacturing, 14 (1): 15-29.
Han, S.H.,Yun, M.H.,Kim, K.-J. & Kwahk, J. (2000). Evaluation of product usability: Development and validation of usability dimensions and design elements based on empirical models. International Journal of Industrial Ergonomics, 26 (4): 477-488.
Hanesch, M.,Scholger, R. & Dekkers, M.J. (2001). The application of fuzzy c-means cluster analysis and non-linear mapping to a soil data set for the detection of polluted sites. Physics and Chemistry of Earth, Part A: Solid Earth and Geodesy, 26 (11): 885-891.
Hong, S.W.,Han, S.H. & Kim, K.-J. (2008). Optimal balancing of multiple affective satisfaction dimensions: A case study on mobile phones. International Journal of Industrial Ergonomics, 38 (3-4): 272-279.
Hsiao, S.-W.,Chiu, F.-Y. & Lu, S.-H. (2010). Product-form design model based on genetic algorithms. International Journal of Industrial Ergonomics, 40 (3): 237-246.
Hsiao, S.-W.,Hsu, C.-F. & Lee, Y.-T. (2012). An online affordance evaluation model for product design. Design Studies, 33 (2): 126-159.
Hsiao, S.-W. & Tsai, H.-C. (2005). Applying a hybrid approach based on fuzzy neural network and genetic algorithm to product form design. International Journal of Industrial Ergonomics, 35 (5): 411-428.
Hsu, C.-W.,Chang, C.-C. & Lin, C.-J. (2003). A practical guide to support vector classification. Technical Report, Department of Computer Science & Information Engineering, National Taiwan University, Taiwan.
Hsu, H.-M. & Chen, C.-T. (1996). Aggregation of fuzzy opinions under group decision making. Fuzzy Sets and Systems, 79 (3): 279-285.
Hsu, S.H.,Chuang, M.C. & Chang, C.C. (2000). A semantic differential study of designers' and users' product form perception. International Journal of Industrial Ergonomics, 25 (4): 375-391.
Huang, J.-J.,Tzeng, G.-H. & Ong, C.-S. (2007). Marketing segmentation using support vector clustering. Expert Systems with Applications, 32 (2): 313-317.
Huang, Y.,Chen, C.-H. & Khoo, L.P. (2012). Kansei clustering for emotional design using a combined design structure matrix. International Journal of Industrial Ergonomics, 42 (5): 416-627.
Ishihara, S.,Ishihara, K.,Nagamachi, M. & Matsubara, Y. (1995). An automatic builder for a Kansei Engineering expert system using self-organizing neural networks. International Journal of Industrial Ergonomics, 15 (1): 13-24.
Jacobs, R.A.,Jordan, M.I.,Nowlan, S.J. & Hinton, G.E. (1991). Adaptive mixtures of local experts. Neural Computation, 3 (1): 79-87.
Jae-On Kim & Mueller, C.W. (1978). Factor Analysis: Statistical Methods and Practical Issues. Sage Publications, California, USA.
Jang, S.C.,Morrison, A.M. & O'Leary, J.T. (2002). Benefit segmentation of Japanese pleasure travelers to the USA and Canada: selecting target markets based on the profitability and risk of individual market segments. Tourism Management, 23 (4): 367-378.
Jindo, T.,Hirasago, K. & Nagamachi, M. (1995). Development of a design support system for office chairs using 3-D graphics. International Journal of Industrial Ergonomics, 15 (1): 49-62.
Jones, J.C. (1992). Design Methods. Van Nostrand Reinhold, New York, USA.
Jum C. Nunnally & Bernstein, I.H. (1994). Psychometric Theory. McGraw-Hill Humanities, Michigan, USA.
Klir, G.J.,Wang, Z. & Harmanec, D. (1997). Constructing fuzzy measures in expert systems. Fuzzy Sets and Systems, 92 (2): 251-264.
Kwahk, J. & Han, S.H. (2002). A methodology for evaluating the usability of audiovisual consumer electronic products. Applied Ergonomics, 33 (5): 419-431.
Labreuche, C. & Grabisch, M. (2003). The Choquet integral for the aggregation of interval scales in multicriteria decision making. Fuzzy Sets and Systems, 137 (1): 11-26.
Lee, M.D. & Pope, K.J. (2003). Avoiding the dangers of averaging across subjects when using multidimensional scaling. Journal of Mathematical Psychology, 47 (1): 32-46.
MacKay, D. (2006). Chemometrics, econometrics, psychometrics—How best to handle hedonics? Food Quality and Preference, 17 (7-8): 529-535.
Makropoulos, C.K. & Butler, D. (2006). Spatial ordered weighted averaging: incorporating spatially variable attitude towards risk in spatial multi-criteria decision-making. Environmental Modelling & Software, 21 (1): 69-84.
Matsubara, T.,Ishihara, S.,Nagamachi, M. & Matsubara, Y. (2011). Kansei analysis of the Japanese residential garden and development of a low-cost virtual reality kansei engineering system for gardens. Advances in Human-Computer Interaction, 2011, Article ID 295074: 1-12.
Matsubara, Y. & Nagamachi, M. (1997). Hybrid Kansei engineering system and design support. International Journal of Industrial Ergonomics, 19 (2): 81-92.
Matzler, K.,Bailom, F.,Hinterhuber, H.H.,Renzl, B. & Pichler, J. (2004). The asymmetric relationship between attribute-level performance and overall customer satisfaction: A reconsideration of the importance-performance analysis. Industrial Marketing Management, 33 (4): 271-277.
Mingoti, S.A. & Lima, J.O. (2006). Comparing SOM neural network with fuzzy c-means, k-means and traditional hierarchical clustering algorithms. European Journal of Operational Research, 174 (3): 1742-1759.
Nagamachi, M. (1995). Kansei engineering: a new ergonomic consumer-oriented technology for product development. International Journal of Industrial Ergonomics, 15 (1): 3-11.
Nagamachi, M. (2002). Kansei engineering as a powerful consumer-oriented technology for product development. Applied Ergonomics, 33 (3): 289-194.
Nagamachi, M. (2008). Perspectives and the new trend of Kansei/affective engineering. The TQM Journal, 20 (4): 290-298.
Neal, R. (1996). Bayesian Learning for Neural Networks. Springer-Verlag, New York, USA.
Osgood, C.E.,Suci, G.J. & Tannenbaum, P. (1957). The Measurement of Meaning. University of Illinois Press, Illinois, USA.
Pal, S.K. & Mitra, P. (2003). Rough-fuzzy MLP: modular evolution, rule generation, and evaluation. IEEE Transactions on Knowledge and Data Engineering, 15 (1): 14-25.
Park, J. & Han, S.H. (2004). A fuzzy rule-based approach to modeling affective user satisfaction towards office chair design. International Journal of Industrial Ergonomics, 34 (1): 31-47.
Perrone, M.P. & Cooper, L.N. (1993). When networks disagree: Ensemble methods for neural networks for speech and image processing. Chapman and Hall, London, England.
Sadig, R. & Tesfamariam, S. (2007). Probability density functions based weights for ordered weighted averaging (OWA) operators: an example of water quality indices. European Journal of Operational Research, 182 (3): 1350-1368.
Sauerwei, E. & Matzler, K. (2002). The factor structure of customer satisfaction: An empirical test of the importance grid and the penalty-reward-contrast analysis. International Journal of Service Industry Management, 13 (4): 314-332.
Shieh, M.-D. & Yang, C.-C. (2008). Multiclass SVM-RFE for product form feature selection. Expert Systems with Applications, 35 (1-2): 531-541.
Shimizu, Y. & Jindo, T. (1995). A fuzzy logic analysis method for evaluating human sensitivities. International Journal of Industrial Ergonomics, 15 (1): 39-47.
Shin, H.W. & Sohn, S.Y. (2004). Segmentation of stock trading customers according to potential value. Expert Systems with Applications, 27 (1): 27-33.
Smith, W. (1956). Product differentiation and market segmentation as an alternative marketing strategy. Journal of Marketing, 21 (1): 3-8.
Tang, C.,Heymann, H. & Hsieh, F.-H. (2000). Alternatives to data averaging of consumer preference data. Food Quality and Preference, 11 (1-2): 99-104.
Tipping, M.E. & Bishop, C.M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 61 (3): 611-622.
Torra, V. (2005). Aggregation operators and models. Fuzzy Sets and Systems, 156 (3): 407-410.
Toygar, O. & Acan, A. (2004). Multiple classifier implementation of a divide-and-conquer approach using appearance-based statistical methods for face recognition. Pattern Recognition Letters, 25 (12): 1421-1430.
Tsai, H.-C.,Hsiao, S.-W. & Hung, F.-K. (2006). An image evaluation approach for parameter-based product form and color design. Computer-Aided Design, 38 (2): 157-171.
Tsuchiya, T.,Maeda, T.,Matsubara, Y. & Nagamachi, M. (1996). A fuzzy rule induction method using genetic algorithm. International Journal of Industrial Ergonomics, 18 (2-3): 135-145.
Vapnik, V.N. (1995). The nature of statistical learning theory. Springer, New York, USA.
Wallace, D.R. & Jakiela, M.J. (1993). Automated product concept design: unifying aesthetics and engineering. IEEE Computer Graphics and Applications, 13 (4): 66-75.
Wang, W. & Wu, Y. (2012). Research on a divide-and-conquer algorithm for constructing concept lattice. International Journal of Advancements in Computing Technology (IJACT), 4 (11): 96-105.
Wang, W.,Xu, Z. & Lu, W. (2003). Determination of the spread parameter in the Gaussian kernel for classification and regression. Neurocomputing, 55 (3-4): 643-663.
Westad, F.,Hersleth, M. & Lea, P. (2004). Strategies for consumer segmentation with applications on preference data. Food Quality and Preference, 15 (7-8): 681-687.
Witell, L. & Löfgren, M. (2007). Classification of quality attributes. Managing Service Quality, 17 (1): 54-73.
Xie, X. & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13 (8): 841-847.
Xu, Z.S. & Da, Q.L. (2002). An overview of operators for aggregating information. International Journal of Intelligent Systems, 18 (9): 953-969.
Yamamoto, K.,Yoshikawa, T. & Furuhashi, T. (2005). Division method of subjects by individuality for stratified analysis of SD evaluation data. In IEEE International Symposium on Micro-NanoMechatronics and Human Science, 29-34.
Yan, W.,Chen, C.-H.,Chang, D. & Chong, Y.T. (2009). A stakeholder-oriented innovative product conceptualization strategy based on fuzzy integrals. Advanced Engineering Informatics, 23 (2): 201-209.
Yan, W.,Chen, C.-H. & Khoo, L.P. (2001). A radial basis function nerual network multicultural factors evaluation engine for product concept development. Expert Systems, 18 (5): 219-232.
Yan, W.,Chen, C.-H. & Shieh, M.-D. (2006). Product concept generation and selection using sorting technique and fuzzy c-means algorithm. Computers & Industrial Engineering, 50 (3): 273-285.
Yang, C.-C. (2011b). Constructing a hybrid Kansei engineering system based on multiple affective responses: Application to product form design. Computers & Industrial Engineering, 60 (4): 760-768.
Yang, C.-C. & Chang, H.-C. (2012). Selecting representative affective dimensions using procrustes analysis: An application to mobile phone design. Applied Ergonomics, 43 (6): 1072-1080.
Yang, C.-C. & Shieh, M.-D. (2010). A support vector regression based prediction model of affective responses for product form design. Computers & Industrial Engineering, 59 (4): 682-689.
Zhu, Y.M.,Bentabet, L.,Dupuis, O.,Kaftandjian, V.,Babot, D., et al. (2002). Automatic determination of mass functions in Dempster-Shafer theory using fuzzy c-means and spatial neighborhood information for image segmentation. Optical Engineering, 41 (4): 760-770.