| 研究生: |
駱建宏 Luo, Jian-Hong |
|---|---|
| 論文名稱: |
金屬液體流動影響網狀晶微結構之數值分析 Numerical Analysis of the Effect of Fluid Flow on Solidification Microstructures |
| 指導教授: |
趙隆山
Chaon, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 網狀晶 、有限元素 、凝固 |
| 外文關鍵詞: | finite element, cell, solidification |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在材料凝固的過程之中,經由不同的流場、溫度場與濃度場的交互作用下,將產生不同的顯微結構與材料性質。相較於在材料凝固之後採用機械加工或再結晶與其他方式以改變材料性質,數值模擬將有助於瞭解材料於凝固的過程中,流場、溫度場與濃度場對於材料顯微結構的影響,以節省研發成本並求得更高品質的材料。
本研究採用的數值方法為有限元素法,測試材料為錫鉛二元合金。先以Gambit建立網狀晶幾何模型與網格,搭配天空線存取模式配合LU分解法進行求解。並模擬網狀晶加入流場效應之後,考慮周圍的溫度與濃度的分佈以計算網狀晶偏移的角度。
本研究在不同的控制參數(溫度梯度、成長速率、金屬液體的初始濃度及剪力流的大小)下,分析流場對於(網狀晶之)溫度場與濃度場的影響,用以反推網狀晶偏移的角度,並探討控制參數對網狀晶偏移角度之影響。由於電腦儲存空間的限制,本研究亦改善原天空線的存取模式,節省電腦的儲存空間,並以二維溫度場與流場驗證了其可行性。
ABSTRACT
Numerical simulation of the solidification processes could be utilized to analyze the effect of the velocity, temperature and concentration fields to understand more about the microstructures and to enhance the quality of material during fabrication.
In this paper, combining the forward diffusion Schiel equation to constrain the geometrical shape of a cell, Gambit was used to build the three-dimensional mesh model of a cellular growth. The numerical method was finite element method, in which the skyline storage mode and the LU decomposition method were used to solve the matrix equation. A simple shear flow was given on the top of calculating domain and the temperature and concentration distributions around the tip of cell were observed. By the influence of the flow, a deflective angle could be calculated.
With the control of different parameters, including the temperature gradient, growth rate, concentration of initial metallic liquid and shear rate, the temperature and concentration distributions were analyzed and their corresponding deflective angles are calculated. Utilizing different parameters would magnify or reduce the effect of fluid field around the tip of cell and therefore the concentration distribution was changed and deflective angle became different. The skyline storage mode was also improved to save space of computational memory and its feasibility was verified by the examples of temperature and concentration fields being compared with analytical solutions.
參考文獻
1.Li,Ming., Mori,Takasuke., Iwassaki,Hajime., "Effect of solute convection on the primary arm spacings of Pb-Sn binary alloys during upward directional solidification", Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, Vol. A265,pp.217-223,1998
2.Flemings, M.C., Solidification Processing, McGraw-Hill Book Company,New York,USA,1974
3.Kurz, W., and D.J, Fisher, Fundamentals of Solidification, 4thed., Trans Tech Publication, Aedermannsdrof, Switzerl and, 1998
4.Ungar, Lyle H., and Brown, Robert A., "Cellular interface morphologies in directional solidification IV.The formation of deep cells", The American Physical Society, Vol. 31,pp.5931-5939,1985
5.Gandin, Ch.-A., Desbioles, J.-L., Rappaz, M., and Thevoz, Ph., "A Three-Dimensional Cellular Automation-Finite Element Model for Prediction of Solidification Grain Structures", Metallurgical and Matericals Transaction , Vol. 30A, pp. 3153-3165 ,1999
6.Nigro, N., Huespe, A., Fachinotti, V., "Phasewise numerical integrational of finite elementmethod applied to solidification processes", International Journal of Heat and Mass Transfer, Vol. 43,pp. 1053-1066,2000
7.Felicelli,S.D., Heinrich,J.C ., Poirier,D.R., "Three-dimensional simulations of freckles in binary alloys", Jounal of Crystal Growth, Vol. 191,pp.879-888,1998
8.Bergeon,N., Trivedi,R., Billia,B., Echebarria,B., Karma,A., Liu,S., Weiss,C., Mangelinck,N., "Necessityof investigating microstructure formation during directional solidification of transparentalloys in 3D", Adances in space Research, Vol. 36,pp.80-85,2005
9.Brown,S.G.R., "Simulation of diffusional composite growth using the cellular automaton finite difference(CAFD) method", Journal of Materials Science, Vol 33,pp.4769-4773,1998
10.Takaki,Tomohiro., Fukuoka,Toshimichi., Tomita,Yoshihiro "Phase-field simulation during directionalsolidification of a binary alloy using adaptive finite element method", Journal of Crystal Growth,Vol 283,pp.263-278,2005
11.謝定華,網狀晶之穩態成長模式分析,碩士論文,成功大學工程研究所(2000)
12.Bower, T.F., H.D. Brody, and M.C. Fleming, MET. Trans., p.624, Vol.236,1966
13.吳瑞芳,網狀晶穩態成長之有限元素分析,碩士論文,成功大學工程研究所(2003)
14.蔡政翰,金屬液體流動對凝固微結構之影響分析,成功大學工程研究所
15.Hasbani Yitzhak and Engelman Michael, "Out-of-core Solution of linear Equations With Non-symmetric Coefficient Matrix", Computers and Fluids, Vol. 7,pp.13-31,1979.
16.Richard L. Burden, J. Douglas Faires, Numerical Analysis, BROOKS/COLE CA,USA,2001
17.Engelman, M., GAMBIT 2.2 Getting started, Fluid Dynamics International,Inc., Evanston,Illinois,USA,September 2004
18.Engelman, M., FIDAP Theorical Manual, Fluid Dynamics International,Inc., Evanston,Illinois,USA,December 1998