簡易檢索 / 詳目顯示

研究生: 駱建宏
Luo, Jian-Hong
論文名稱: 金屬液體流動影響網狀晶微結構之數值分析
Numerical Analysis of the Effect of Fluid Flow on Solidification Microstructures
指導教授: 趙隆山
Chaon, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 92
中文關鍵詞: 網狀晶有限元素凝固
外文關鍵詞: finite element, cell, solidification
相關次數: 點閱:78下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在材料凝固的過程之中,經由不同的流場、溫度場與濃度場的交互作用下,將產生不同的顯微結構與材料性質。相較於在材料凝固之後採用機械加工或再結晶與其他方式以改變材料性質,數值模擬將有助於瞭解材料於凝固的過程中,流場、溫度場與濃度場對於材料顯微結構的影響,以節省研發成本並求得更高品質的材料。
    本研究採用的數值方法為有限元素法,測試材料為錫鉛二元合金。先以Gambit建立網狀晶幾何模型與網格,搭配天空線存取模式配合LU分解法進行求解。並模擬網狀晶加入流場效應之後,考慮周圍的溫度與濃度的分佈以計算網狀晶偏移的角度。
    本研究在不同的控制參數(溫度梯度、成長速率、金屬液體的初始濃度及剪力流的大小)下,分析流場對於(網狀晶之)溫度場與濃度場的影響,用以反推網狀晶偏移的角度,並探討控制參數對網狀晶偏移角度之影響。由於電腦儲存空間的限制,本研究亦改善原天空線的存取模式,節省電腦的儲存空間,並以二維溫度場與流場驗證了其可行性。

    ABSTRACT

    Numerical simulation of the solidification processes could be utilized to analyze the effect of the velocity, temperature and concentration fields to understand more about the microstructures and to enhance the quality of material during fabrication.
    In this paper, combining the forward diffusion Schiel equation to constrain the geometrical shape of a cell, Gambit was used to build the three-dimensional mesh model of a cellular growth. The numerical method was finite element method, in which the skyline storage mode and the LU decomposition method were used to solve the matrix equation. A simple shear flow was given on the top of calculating domain and the temperature and concentration distributions around the tip of cell were observed. By the influence of the flow, a deflective angle could be calculated.
    With the control of different parameters, including the temperature gradient, growth rate, concentration of initial metallic liquid and shear rate, the temperature and concentration distributions were analyzed and their corresponding deflective angles are calculated. Utilizing different parameters would magnify or reduce the effect of fluid field around the tip of cell and therefore the concentration distribution was changed and deflective angle became different. The skyline storage mode was also improved to save space of computational memory and its feasibility was verified by the examples of temperature and concentration fields being compared with analytical solutions.

    目錄 摘要 I ABSTRACT II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 X 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 3 1-3 研究方法與目的 5 第二章 理論分析 7 2-1 物理模型 7 2-2 基本假設 7 2-3 統御方程式 11 2-4 邊界條件 13 第三章 數值方法 18 3-1 建立網格 18 3-2 有限元素法 19 3-2-1 網格的形狀與內插函數 20 3-2-2 區域座標與廣域座標之座標轉換 21 3-2-3 加勒金法(Galerkin method) 23 3-2-4 數值積分 24 3-3 溫度場之元素方程式的推導 25 3-4 流場之元素方程式的推導 27 3-4-1 處罰函數法(Penalty Formulation Method) 27 3-4-2 流場之元素方程式的推導 27 3-4 濃度場之元素方程式 32 3-5 液固界面上的濃度梯度積分 34 3-7 求解流程 35 第四章 結果與討論 37 4-1 不同網格密度之比較 38 4-2 溫度場與濃度場受流場影響之比較 39 4-3 結合改良後天空線之二維溫度場與流場數值測試 39 4-4 不同剪力率之影響 40 4-5 相同剪力率下,不同高度之濃度分佈與First angle的變化 41 4-6 在不同剪力率、溫度梯度、成長速率、初始濃度下偏移角度之比較 42 第五章 結論 45 參考文獻 48 附錄A 向前擴散謝荷之方程式之推導 69 附錄B 液固介面濃度梯度之推導 76 附錄C天空線存取模式與LU分解法 79 附錄D 天空線存取模式的改良 85 自述 92 表目錄 表4-1 錫鉛合金的材料性質 50 表4-2 不等間距網格之點數與網格數以及網格分佈情形 50 表4-3 剪力率為10之First angle 51 表4-4 剪力率為5之First angle 52 表4-5 剪力率為2.5之First angle 53 表4-6 剪力率為10之 Second angle 54 圖目錄 圖2-1 物理模型示意圖 55 圖2-2 網狀晶成長示意圖 55 圖2-3 液相線與固相線為線性之相圖 56 圖2-4 網狀晶成長之計算模式示意圖 56 圖2-5 網狀晶成長模型之計算範圍與邊界條件示意圖 57 圖3-1 三維元素區域座標系統 58 圖3-2 求解流程圖 58 圖4-1 網狀晶觀察示意圖 59 圖4-2 網狀晶前端引導面後端蔓生面示意圖 59 圖4-3 不等距網格Mesh1 60 圖4-4 不等距網格Mesh2 60 圖4-5 不等距網格Mesh3 61 圖4-6 不加入流場效應之溫度分佈 61 圖4-7 加入流場效應之溫度分佈 62 圖4-8 改良後天空線解二维平板溫度分佈圖 63 圖4-9 改良後天空線解二维平板溫度場之數值與正解比較圖 63 圖4-10 改良後天空線解二维平板流場分佈圖 64 圖4-11 改良前後天空線解二维平板流場數值解與正解比較圖 64 圖4-12 A-B線段x方向流場分佈圖 65 圖4-13 邊界x方向流場分佈圖 65 圖4-14 網狀晶頂部下方 濃度分佈圖 66 圖4-15 網狀晶頂部下方 濃度分佈圖 66 圖4-16 網狀晶頂部下方 濃度分佈圖 67 圖4-17 不同初始濃度下,fs與高度之關係示意圖 67 圖4-18 不同溫度梯度下,fs與高度之關係示意圖 68

    參考文獻

    1.Li,Ming., Mori,Takasuke., Iwassaki,Hajime., "Effect of solute convection on the primary arm spacings of Pb-Sn binary alloys during upward directional solidification", Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, Vol. A265,pp.217-223,1998
    2.Flemings, M.C., Solidification Processing, McGraw-Hill Book Company,New York,USA,1974
    3.Kurz, W., and D.J, Fisher, Fundamentals of Solidification, 4thed., Trans Tech Publication, Aedermannsdrof, Switzerl and, 1998
    4.Ungar, Lyle H., and Brown, Robert A., "Cellular interface morphologies in directional solidification IV.The formation of deep cells", The American Physical Society, Vol. 31,pp.5931-5939,1985
    5.Gandin, Ch.-A., Desbioles, J.-L., Rappaz, M., and Thevoz, Ph., "A Three-Dimensional Cellular Automation-Finite Element Model for Prediction of Solidification Grain Structures", Metallurgical and Matericals Transaction , Vol. 30A, pp. 3153-3165 ,1999
    6.Nigro, N., Huespe, A., Fachinotti, V., "Phasewise numerical integrational of finite elementmethod applied to solidification processes", International Journal of Heat and Mass Transfer, Vol. 43,pp. 1053-1066,2000
    7.Felicelli,S.D., Heinrich,J.C ., Poirier,D.R., "Three-dimensional simulations of freckles in binary alloys", Jounal of Crystal Growth, Vol. 191,pp.879-888,1998
    8.Bergeon,N., Trivedi,R., Billia,B., Echebarria,B., Karma,A., Liu,S., Weiss,C., Mangelinck,N., "Necessityof investigating microstructure formation during directional solidification of transparentalloys in 3D", Adances in space Research, Vol. 36,pp.80-85,2005
    9.Brown,S.G.R., "Simulation of diffusional composite growth using the cellular automaton finite difference(CAFD) method", Journal of Materials Science, Vol 33,pp.4769-4773,1998
    10.Takaki,Tomohiro., Fukuoka,Toshimichi., Tomita,Yoshihiro "Phase-field simulation during directionalsolidification of a binary alloy using adaptive finite element method", Journal of Crystal Growth,Vol 283,pp.263-278,2005
    11.謝定華,網狀晶之穩態成長模式分析,碩士論文,成功大學工程研究所(2000)
    12.Bower, T.F., H.D. Brody, and M.C. Fleming, MET. Trans., p.624, Vol.236,1966
    13.吳瑞芳,網狀晶穩態成長之有限元素分析,碩士論文,成功大學工程研究所(2003)
    14.蔡政翰,金屬液體流動對凝固微結構之影響分析,成功大學工程研究所
    15.Hasbani Yitzhak and Engelman Michael, "Out-of-core Solution of linear Equations With Non-symmetric Coefficient Matrix", Computers and Fluids, Vol. 7,pp.13-31,1979.
    16.Richard L. Burden, J. Douglas Faires, Numerical Analysis, BROOKS/COLE CA,USA,2001
    17.Engelman, M., GAMBIT 2.2 Getting started, Fluid Dynamics International,Inc., Evanston,Illinois,USA,September 2004
    18.Engelman, M., FIDAP Theorical Manual, Fluid Dynamics International,Inc., Evanston,Illinois,USA,December 1998

    下載圖示 校內:2008-09-01公開
    校外:2008-09-01公開
    QR CODE