| 研究生: |
李霽 Li, Ji |
|---|---|
| 論文名稱: |
鋼構架外覆混凝土空心磚牆之面內側推試驗 In-plane Load Tests for Hollow Concrete Brick Panels Attached to Steel Frames |
| 指導教授: |
杜怡萱
Tu, Yi-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 416 |
| 中文關鍵詞: | 空心磚牆 、鋼骨構架 、加筋 、開口 、面內 |
| 外文關鍵詞: | Steel frame, Concrete brick panel, Reinforced, Opening, In-plane |
| 相關次數: | 點閱:151 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於傳統住屋蓄熱、耗能等缺點,國內「美莊股份有限公司」利用空心磚隔熱、隔音等多項優勢,開發出一種新式結構系統,採鋼骨構架搭配部分填漿之加筋混凝土空心磚牆。由於此種結構系統在國內尚無先例,因此有必要進行結構試驗,以了解其承受水平載重之受力行為,同時探討開口對混凝土空心磚牆及構架受力行為之影響。
本研究採用美莊公司外牆工法,將混凝土空心磚牆包覆於鋼骨構架外,並以磚牆有無開口為變因,設計足尺單層單跨無開口及開窗試體各一座,進行位移控制之面內往復側推試驗。側推過程中施加模擬靜載重之固定軸壓力,並控制頂梁維持水平以模擬剪力屋架行為。為瞭解材料力學特性,取樣磚牆及鋼構架等主要材料進行試驗,包含空心磚塊、磚墩、砂漿之抗壓試驗與灰縫抗剪試驗,以及鋼筋及鋼材抗拉試驗。
試驗結果顯示,磚牆於變位角極小時即受力貢獻側向強度,但出現正反向對角裂縫後隨即嚴重破壞,使磚牆出現橫貫全牆長之水平剝落帶,並因磚塊持續掉落而形成帶狀空洞。鋼構架則因柱牆接合介面破壞而與磚牆逐漸分離,雖使構架本身於試驗後期發揮原有之強度與韌性,但牆體剝落帶上下殘留牆段仍對構架變形造成若干束制,使鋼柱發生降伏及挫屈之臨界斷面位置由上下端往內移動至柱身。而開口的存在造成磚牆受力集中於開口兩側剩餘牆段,開窗試體之初期破壞由開口四角開始往周邊蔓延,牆體破壞時亦不像無開口試體在牆體上部出現橫貫的水平剝落帶,而是於開口兩側牆段破壞形成空洞後將磚牆切成約略對稱之上下兩半,開窗試體之整體不規則扭轉情況亦因開口之存在而較為顯著。
本文根據ASCE 41-13檢驗此結構系統之耐震性能,發現試體磚牆於小變位角時即達到極限破壞,並未符合非結構磚隔間牆於變位角0.5%時尚能維持日常機能之層間變位角基準,此乃構架與磚牆接合過於緊密所致。因此,建議將柱牆分離以延遲磚牆承受水平側力時機,同時確保鋼骨構架在充分發揮耐震性能前不受磚牆束制。
The objectives of this research are to understand the seismic performance of hollow concrete brick panels attached to steel frames and to review the current construction methods. To accomplish these, two specimens with and without a central opening were subjected to in-plane reversed cyclic displacements and constant vertical loading.
The results shown that the panel endured lateral forces at a small drift ratio, contributing strength to the specimen. After diagonal cracks were formed, brick spalling started to occur and the interfaces between columns and the panel completely cracked open. When the steel frame started to detach from the panel, it began to developed its strength and ductility. Moreover, the upper and lower halves of the cavity still caused the yielding place of the columns to transfer from ends to the body. Because of the close connection between the columns and the panel, both panels failed at a small drift ratio 0.2%, which does not meets the nonstructural performance criterion in ASCE 41-13.
1. Masonry Standards Joint Committee (MSJC), Building Code Requirements for Masonry Structures(TMS 402-13/ACI 530-13/ASCE 5-13), MSJC, USA, 2013.
2. Standards New Zealand (NZS), Design of Reinforced Concrete Masonry Structures (NZS 4230:2004), NZS, Wellington, New Zealand, 2004.
3. Bolhassani M., Hamid A., and Moon F., “Effect of Axial Load on the Behavior of Doubly Reinforced Partially Grouted Reinforced Masonry Shear Walls,” Proceedings of the 12th North American Masonry Conference, Denver, Colorado, May 17-20, 2015.
4. Bolhassani M., Hamid A., Johnson C., and Schultz A. E., “Shear Strength Expression for Partially Grouted Masonry Walls,” Engineering Structures, Vol. 127, pp. 475-494, 2016.
5. Ramírez P., Sandoval C., and Almazán J. L., “Experimental Study on In-Plane Cyclic Response of Partially Grouted Reinforced Concrete Masonry Shear Walls,” Engineering Structures, Vol. 126, pp. 598-617, 2016.
6. Ingham J., Davidson B., Brammer D., and Voon K., “Testing and Codification of Partially Grout-Filled Nominally-Reinforced Concrete Masonry Subjected to In-Plane Cyclic Loads,” The Masonry Society Journal, Vol. 19, pp. 83-96, 2001.
7. American Society of Civil Engineers (ASCE), Seismic Evaluation and Retrofit of Existing Buildings (ASCE/SEI 41-13), ASCE, Reston, VA, USA, 2013.
8. Tasnimi A. and Mohebkhah A., “Investigation on the Behavior of Brick-Infilled Steel Frames with Openings, Experimental and Analytical Approaches,” Engineering Structures, Vol. 33, pp. 968-980, 2011.
9. Liu Y. and Soon S., “Experimental Study of Concrete Masonry Infills Bounded by Steel Frames,” Canadian Journal of Civil Engineering, Vol. 39, pp. 180-190, 2012.
10. Chen X. and Liu Y., “A Finite Element Study of the Effect of Vertical Loading on the In-Plane Behavior of Concrete Masonry Infills Bounded by Steel Frames,” Engineering Structures, Vol. 117, pp. 118-129, 2016.
11. Chen X. and Liu Y., “Finite Element Study of the Effect of Interfacial Gaps on the In-Plane Behavior of Masonry Infills Bounded by Steel Frames,” Structures, Vol. 10, pp. 1-12, 2017.
12. Voon K. and Ingham J., “Experimental In-Plane Shear Strength Investigation of Reinforced Concrete Masonry Walls,” Journal of Structural Engineering, Vol. 132, pp. 400-408, 2006.
13. Voon K. and Ingham J. M., “Experimental In-Plane Strength Investigation of Reinforced Concrete Masonry Walls with Openings,” Journal of Structural Engineering, Vol. 134, pp. 758-768, 2008.
14. Minaie E., Moon F., and Hamid A., “In-Plane Shear Resistance of Partially Grouted Reinforced Concrete Masonry Shear Walls,” Proceedings of the 11th Canadian Masonry Symposium, Toronto, Canada, May 31- June 3, 2009.
15. Minaie E., Mota M., Moon F., and Hamid A., “In-Plane Behavior of Partially Grouted Reinforced Concrete Masonry Shear Walls,” Journal of Structural Engineering, Vol. 136, pp. 1089-1097, 2010.
16. Nolph S. M. and Elgawady M. A., “Static Cyclic Response of Partially Grouted Masonry Shear Walls,” Journal of Structural Engineering, Vol. 138, pp. 864-879, 2011.
17. Bolhassani M., Hamid A., and Moon F., “Enhancement of Lateral In-Plane Capacity of Partially Grouted Concrete Masonry Shear Walls,” Engineering Structures, Vol. 108, pp. 59-76, 2016.
18. Aguilar G., Meli R., Diaz R., and Vázquez-del-Mercado R., “Influence of Horizontal Reinforcement on the Behavior of Confined Masonry Walls,” Proceedings of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico, Paper No. 1380, June 23-28 , 1996.
19. Sandoval C., Calderón S., and Almazán J. L., “Experimental Cyclic Response Assessment of Partially Grouted Reinforced Clay Brick Masonry Walls,” Bulletin of Earthquake Engineering, Vol. 16, pp. 3127-3152, 2018.
20. Hamid A., Bolhassani M., Turner A., Minaei E., and Moon F., “Mechanical Properties of Ungrouted and Grouted Concrete Masonry Assemblages,” Proceedings of the 12th Canadian Masonry Symposium, Vancouver, British Columbia, June2-5, 2013.
21. Bolhassani M., Hamid A. A., Lau A. C., and Moon F., “Simplified Micro Modeling of Partially Grouted Masonry Assemblages,” Construction and Building Materials, Vol. 83, pp. 159-173, 2015.
22. 董宜婷,「RC構架內含偏心開口填入式磚牆面內側推試驗與補強之驗證」,碩士論文,國立成功大學建築系,台南,2017。
23. Federal Emergency Management Agency (FEMA), Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components (FEMA 461), FEMA, Washington, D.C., June, 2007.
24. Drysdale R. G., Hamid A. A., and Baker L. R., “ Masonry Structures: Behavior and Design,” Prentice Hall College Div., New Jersey, 1994.
25. CNS 8905, “建築用混凝土空心磚” 中華民國國家標準, 2018.
26. ASTM C1314-14, “Standard Test Method for Compressive Strength of Masonry Prisms,” ASTM International, West Conshohocken, PA, 2014.
27. CNS 1010, “水硬性水泥墁料抗壓強度檢驗法” 中華民國國家標準, 2011.
28. CNS 1232, “混凝土圓柱試體抗壓強度檢驗法” 中華民國國家標準, 2014.
29. CNS 560, “鋼筋混凝土用鋼筋” 中華民國國家標準, 2018.
30. CNS 2111, “金屬材料拉伸試驗法” 中華民國國家標準, 2019.
31. 李宏仁、陳正誠、朱瑞祥、歐俊佑,「鋼骨構架含非結構RC牆之耐震性能研究」,中華民國內政部建築研究所,ISBN:987-986-02-1645-5,2009。