| 研究生: |
劉育芳 Liou, Yu-Fang |
|---|---|
| 論文名稱: |
單構太陽能驅動雙氧水燃料電池併同有機廢水處理 Simultaneously solar-driven H2O-to-H2O2 and treatments of organic wastewater in a single-compartment fuel cell |
| 指導教授: |
王鴻博
Wang, H. Paul |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 水分解 、雙氧水 、四環素 、雙氧水燃料電池 、三電極模組 、光燃料電池 、鉍碘氧化物 、銅鉍氧化物 |
| 外文關鍵詞: | H2O splitting, tetracycline, antibiotic contaminate water, H2O2 fuel cell, triple-photoelectrode, PFC, BiOI, Bismuth copper oxide |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在化石能源枯竭及極端氣候之壓力下,綠色能源的發展成為重要議題。太陽能可產生電力與動力屬再生能源,不僅含無盡能量,亦能降低地理條件的限制,有高度適應性,此種綠色能源具廣泛商業應用潛力。利用仿光合作用之光電催化(photoelectrocatalysis)技術,可將太陽能轉換成化學能與電力,尤其,工業快速發展,導致水污染日趨嚴重,有機廢水大多採生物處理與高級氧化處理程序(AOP),若能以太陽能驅動還原H2O生成H2O2應用於AOP,則可大幅降低二次污染,以取代傳統蒽醌法生產H2O2,伴隨之工業安全及二次污染的問題。因此,本研究之重點是開發光驅動雙氧水燃料電池,將有機廢水視為化學燃料,透過雙PEC降解有機物質併同產電,關鍵技術含:(1)合成磷化鎳或磷化鈷參雜異質結構(NiP or CoP on g-C3N4/BiOI composites)光驅動分解H2O生成H2O2;(2)合成平面硫化鉬及銅鉍氧化物(MoS2/CuBi2O4)應用於可見光分解新興汙染物四環素(不適生物處理,易成抗藥性基因傳播與轉移的溫床);及(3)技術整合,開發單構光驅動燃料電池,應用雙光電極同時氧化有機污染物(四環素)及產電。
合成磷化鎳及磷化鈷參雜的異質結構(NiP或CoP on g-C3N4/BiOI composites)能提升約八倍的光驅動分解H2O生成H2O2效率,藉由調控異質結構的能隙及參雜磷化鎳及磷化鈷以增加電子-電洞對的利用,屬可逆反應,生成及分解動力參數分析結果指出NiP/g-C3N4/BiOI具相對較佳之反應速率。另外,為處理新興有機污染物例如:四環素,合成平面硫化鉬及銅鉍氧化物(MoS2/CuBi2O4)應用於可見光分解四環素,藉超氧自由基及電洞的氧化作用,使四環素分解為其他低碳的羥基醛類衍生物,可在 2 h 內達到 85% 之去除效率。再者,透過技術整合設計之三電極雙氧水燃料電池模組,利用光驅動水分解生產H2O2作為燃料,經由雙光電極產電,可有效產生1300 A光電流,且在 1 h 的可見光驅動下,可去除80%的四環素(10 ppm),併產出700 A光電流。此新開發之單構光驅動燃料電池組,具有可攜性及簡易安裝的特性,期能提供一種兼具能源自主之新穎廢水處理方法與設備,以供產業提升技術參考。
Under the burden of the extreme weather and fossil energy exhaustion, green energy technology development has attracted a great attention. Solar energy, being a renewable energy, poses an endless energy and high adaptability which is not limited by geographical restrictions. The new photoelectrochemical methods which can convert solar energy to chemical energy have promising applications and commercialization. Particularly, due to the rapid globalization and industrialization, water contamination becomes severe. Organic wastewaters are commonly treated by biological and advanced oxidation processes (AOPs). H2O2, being a green oxidant, can be used for treatments of organic wastewater by AOPs. However, H2O2 relies on the anthraquinone process that suffers from high safety risk and pollution problems. Therefore, a solar-driven H2O-to-H2O2 for fuel cell integrated with a double-photoelectrode PEC in a single-compartment fuel cell for simultaneous electricity generation and organic wastewater treatments would be of great importance and interest. The major objectives of this research include: (1) Synthesis of NiP or CoP promoter on g-C3N4/BiOI composites for photocatalytic splitting of H2O to H2O2; (2) Visible-light driven MoS2/CuBi2O4 heterojunctions for degrading emerging contaminants of tetracycline (TC) which has metabolism resistance; and (3) Simultaneous solar-driven H2O-to-H2O2 and treatments of organic wastewater in a single-compartment fuel cell.
The new promoter NiP or CoP dispersed on g-C3N4/BiOI heterojunction were prepared for photocatalytic H2O-to-H2O2. The reaction potential for the two-electron reduction of O2 to H2O2 (0.30 eV @ pH 7) is within the band gap region. In addition, the H2O2 yields by the NiP and CoP promoted composites are increased by 3.0-8.4 times. Furthermore, under the visible-light (>400 nm) irradiation for 2 h, 50-85% of tetracycline was degraded photocatalytically by the pristine CuBi2O4 and MoS2/CuBi2O4 heterojunctions through hydroxylation, dealkylation and ring cleavage reactions. Through the integration of double-photoelectrode PEC with the H2O2 fuel cell, a triple-photoelectrode PFC compartment was designed and assembled. The NiP/g-C3N4/BiOI composites also played the role in the photogeneration of H2O2 from H2O (H2O-to-H2O2), and the dual-photoelectrode (photoanode: NiP/g-C3N4/BiOI; photocathode: 5%MoS2/CuBi2O4) are worked for H2O2 fuel cell. Note that under visible light irradiation for 1 h, the novel triple-photoelectrode PFC that comprises a H2O2 fuel cell generated a stable photocurrent of 1300 A and 700 A with the TC feed at the concentration of 10 ppm. Subsequently, a portable triple-photoelectrode PFC device was designed and assembled for generation electricity with additional functions of providing safer drinking water. It is expected to provide a new method for water treatment with self-supporting energy for scale-up and commercialization.
Alkauskas, A., Dreyer, C. E., Lyons, J. L., & Van de Walle, C. G. (2016). Role of excited states in Shockley-Read-Hall recombination in wide-band-gap semiconductors. Physical Review B, 93(20), 201304. doi:10.1103/PhysRevB.93.201304
Alkilani, F., & Kanyarusoke, K. (2019). Solar Water Purification at Night: design of a suitable heat pump. Paper presented at the IOP Conference Series: Earth and Environmental Science.
Andrade, T. S., Sá, B. A. C., Sena, I. C., Neto, A. R. S., Nogueira, F. G. E., Lianos, P., & Pereira, M. C. (2021). A photoassisted hydrogen peroxide fuel cell using dual photoelectrodes under tandem illumination for electricity generation. Journal of Electroanalytical Chemistry, 881, 114948. doi:https://doi.org/10.1016/j.jelechem.2020.114948
Antolini, E. (2019). Photoelectrocatalytic fuel cells and photoelectrode microbial fuel cells for wastewater treatment and power generation. Journal of Environmental Chemical Engineering, 7(4), 103241.
Bai, S., Li, X., Kong, Q., Long, R., Wang, C., Jiang, J., & Xiong, Y. (2015). Toward Enhanced Photocatalytic Oxygen Evolution: Synergetic Utilization of Plasmonic Effect and Schottky Junction via Interfacing Facet Selection. Advanced Materials, 27(22), 3444-3452. doi:https://doi.org/10.1002/adma.201501200
Baran, T., Wojtyła, S., Minguzzi, A., Rondinini, S., & Vertova, A. (2019). Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2. Applied Catalysis B: Environmental, 244, 303-312.
Betsch, R. J., & White, W. B. (1978). Vibrational spectra of bismuth oxide and the sillenite-structure bismuth oxide derivatives. Spectrochimica Acta Part A: Molecular Spectroscopy, 34(5), 505-514. doi:https://doi.org/10.1016/0584-8539(78)80047-6
Campos‐Martin, J. M., Blanco‐Brieva, G., & Fierro, J. L. (2006). Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angewandte Chemie International Edition, 45(42), 6962-6984.
Cao, Q. W., Cui, X., Zheng, Y. F., & Song, X. C. (2016). A novel CdWO4/BiOBr p–n heterojunction as visible light photocatalyst. Journal of Alloys and Compounds, 670, 12-17. doi:https://doi.org/10.1016/j.jallcom.2016.02.061
Chen, S., Takata, T., & Domen, K. (2017). Particulate photocatalysts for overall water splitting. Nature Reviews Materials, 2(10), 1-17.
Chen, Y.-Y., Ma, Y.-L., Yang, J., Wang, L.-Q., Lv, J.-M., & Ren, C.-J. (2017). Aqueous tetracycline degradation by H2O2 alone: Removal and transformation pathway. Chemical Engineering Journal, 307, 15-23. doi:https://doi.org/10.1016/j.cej.2016.08.046
Cheng, H., Huang, B., Wang, P., Wang, Z., Lou, Z., Wang, J., . . . Dai, Y. (2011). In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chemical Communications, 47(25), 7054-7056. doi:10.1039/C1CC11525A
Cho, K., Qu, Y., Kwon, D., Zhang, H., Cid, C. A., Aryanfar, A., & Hoffmann, M. R. (2014). Effects of Anodic Potential and Chloride Ion on Overall Reactivity in Electrochemical Reactors Designed for Solar-Powered Wastewater Treatment. Environmental Science & Technology, 48(4), 2377-2384. doi:10.1021/es404137u
Christersson, L. A., Norderyd, O. M., & Puchalsky, C. S. (1993). Topical application of tetracycline‐HCl in human periodontitis. Journal of clinical periodontology, 20(2), 88-95.
Christoff, P. (2016). The promissory note: COP 21 and the Paris Climate Agreement. Environmental Politics, 25(5), 765-787.
Cid, C. A., Qu, Y., & Hoffmann, M. R. (2018). Design and preliminary implementation of onsite electrochemical wastewater treatment and recycling toilets for the developing world. Environmental Science: Water Research & Technology, 4(10), 1439-1450. doi:10.1039/C8EW00209F
Costogue, E. N., & Yasui, R. K. (1977). Performance data for a terrestrial solar photovoltaicwater electrolysis experiment. Solar Energy, 19(2), 205-210. doi:https://doi.org/10.1016/0038-092X(77)90060-3
Daghrir, R., & Drogui, P. (2013). Tetracycline antibiotics in the environment: a review. Environmental Chemistry Letters, 11(3), 209-227. doi:10.1007/s10311-013-0404-8
Dai, Y., Liu, M., Li, J., Yang, S., Sun, Y., Sun, Q., . . . Liu, Z. (2020). A review on pollution situation and treatment methods of tetracycline in groundwater. Separation Science and Technology, 55(5), 1005-1021. doi:10.1080/01496395.2019.1577445
Darkwah, W. K., & Ao, Y. (2018). Mini Review on the Structure and Properties (Photocatalysis), and Preparation Techniques of Graphitic Carbon Nitride Nano-Based Particle, and Its Applications. Nanoscale Research Letters, 13(1), 388. doi:10.1186/s11671-018-2702-3
Deguchi, T., & Iwamoto, M. (2013). Catalytic properties of surface sites on Pd clusters for direct H2O2 synthesis from H2 and O2: a DFT study. The Journal of Physical Chemistry C, 117(36), 18540-18548.
Demirci, U. B. (2009). How green are the chemicals used as liquid fuels in direct liquid-feed fuel cells? Environment International, 35(3), 626-631. doi:https://doi.org/10.1016/j.envint.2008.09.007
Desai, S. B., Madhvapathy, S. R., Sachid, A. B., Llinas, J. P., Wang, Q., Ahn, G. H., . . . Hu, C. (2016). MoS2 transistors with 1-nanometer gate lengths. Science, 354(6308), 99-102.
Di, J., Xia, J., Li, H., Guo, S., & Dai, S. (2017). Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy, 41, 172-192. doi:https://doi.org/10.1016/j.nanoen.2017.09.008
Edwards, P., Kuznetsov, V., & David, W. (2007). Hydrogen energy. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1853), 1043-1056.
Evans, G. E., & Kordesch, K. V. (1967). Hydrazine-Air Fuel Cells. Science, 158(3805), 1148. doi:10.1126/science.158.3805.1148
Fattahimoghaddam, H., Mahvelati-Shamsabadi, T., & Lee, B.-K. (2021). Efficient Photodegradation of Rhodamine B and Tetracycline over Robust and Green g-C3N4 Nanostructures: Supramolecular Design. Journal of Hazardous Materials, 403, 123703. doi:https://doi.org/10.1016/j.jhazmat.2020.123703
Fujishima, A., & Honda, K. (1972). Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238(5358), 37-38. doi:10.1038/238037a0
Fujiwara, K., Akita, A., Kawano, S., Fujishima, M., & Tada, H. (2017). Hydrogen peroxide-photofuel cell using TiO2 photoanode. Electrochemistry Communications, 84, 71-74. doi:https://doi.org/10.1016/j.elecom.2017.10.008
Fuku, K., Miyase, Y., Miseki, Y., Funaki, T., Gunji, T., & Sayama, K. (2017). Photoelectrochemical hydrogen peroxide production from water on a WO3/BiVO4 photoanode and from O2 on an Au cathode without external bias. Chemistry–An Asian Journal, 12(10), 1111-1119.
Fukuzumi, S. (2017). Production of liquid solar fuels and their use in fuel cells. Joule, 1(4), 689-738.
Ganose, A. M., Cuff, M., Butler, K. T., Walsh, A., & Scanlon, D. O. (2016). Interplay of Orbital and Relativistic Effects in Bismuth Oxyhalides: BiOF, BiOCl, BiOBr, and BiOI. Chemistry of Materials, 28(7), 1980-1984. doi:10.1021/acs.chemmater.6b00349
Gao, C., Wei, T., Zhang, Y., Song, X., Huan, Y., Liu, H., . . . Chen, X. (2019). A Photoresponsive Rutile TiO2 Heterojunction with Enhanced Electron–Hole Separation for High-Performance Hydrogen Evolution. Advanced Materials, 31(8), 1806596. doi:10.1002/adma.201806596
Gao, P., Mao, D., Luo, Y., Wang, L., Xu, B., & Xu, L. (2012). Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Research, 46(7), 2355-2364.
Garg, S., Yadav, M., Chandra, A., & Hernadi, K. (2019). A review on BiOX (X= Cl, Br and I) nano-/microstructures for their photocatalytic applications. Journal of nanoscience and nanotechnology, 19(1), 280-294.
Gottesman, R., Song, A., Levine, I., Krause, M., Islam, A. T. M. N., Abou-Ras, D., . . . Chemseddine, A. (2020). Pure CuBi2O4 Photoelectrodes with Increased Stability by Rapid Thermal Processing of Bi2O3/CuO Grown by Pulsed Laser Deposition. Advanced Functional Materials, 30(21), 1910832. doi:https://doi.org/10.1002/adfm.201910832
Guo, C., Rao, K. T. V., Yuan, Z., He, S. Q., Rohani, S., & Xu, C. C. (2018). Hydrodeoxygenation of fast pyrolysis oil with novel activated carbon-supported NiP and CoP catalysts. Chemical Engineering Science, 178, 248-259.
He, W., Abbas, Q., Alharthi, M., Mohsin, M., Hanif, I., Vo, X. V., & Taghizadeh-Hesary, F. (2020). Integration of renewable hydrogen in light-duty vehicle: nexus between energy security and low carbon emission resources. International Journal of Hydrogen Energy, 45(51), 27958-27968.
Hou, J. H., Inganas, O., Friend, R. H., & Gao, F. (2018). Organic solar cells based on non-fullerene acceptors. Nature Materials, 17(2), 119-128. doi:10.1038/nmat5063
Hu, L., Liao, Y., Xia, D., Peng, F., Tan, L., Hu, S., . . . Shu, D. (2020). Engineered photocatalytic fuel cell with oxygen vacancies-rich rGO/BiO1− xI as photoanode and biomass-derived N-doped carbon as cathode: Promotion of reactive oxygen species production via Fe2+/Fe3+ redox. Chemical Engineering Journal, 385, 123824.
Hu, X., Hu, J., Peng, Q., Ma, X., Dong, S., & Wang, H. (2020). Construction of 2D all-solid-state Z-scheme g-C3N4/BiOI/RGO hybrid structure immobilized on Ni foam for CO2 reduction and pollutant degradation. Materials Research Bulletin, 122, 110682. doi:https://doi.org/10.1016/j.materresbull.2019.110682
Huang, S.-Y., & Yeh, C.-T. (2010). Promotion of the electrocatalytic activity of a bimetallic platinum–ruthenium catalyst by repetitive redox treatments for direct methanol fuel cell. Journal of Power Sources, 195(9), 2638-2643. doi:https://doi.org/10.1016/j.jpowsour.2009.11.049
Huang, S. Q., Xu, Y. G., Zhou, T., Xie, M., Ma, Y., Liu, Q. Q., . . . Li, H. M. (2018). Constructing magnetic catalysts with in-situ solid-liquid interfacial photo-Fenton-like reaction over Ag3PO4@NiFe2O4 composites. Applied Catalysis B-Environmental, 225, 40-50. doi:10.1016/j.apcatb.2017.11.045
Huang, X., Qu, Y., Cid, C. A., Finke, C., Hoffmann, M. R., Lim, K., & Jiang, S. C. (2016). Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell. Water Research, 92, 164-172. doi:https://doi.org/10.1016/j.watres.2016.01.040
Huo, X., & Huang, L.-F. (2020). Physical spread and technical upshift in the band gaps of visible-light photocatalytic bismuth oxyhalide solid solutions. Computational Materials Science, 184, 109870. doi:https://doi.org/10.1016/j.commatsci.2020.109870
Inoue, H., Shimada, T., Kou, Y., Nabetani, Y., Masui, D., Takagi, S., & Tachibana, H. (2011). The Water Oxidation Bottleneck in Artificial Photosynthesis: How Can We Get Through It? An Alternative Route Involving a Two‐Electron Process. ChemSusChem, 4(2), 173-179.
Jeon, T. H., Koo, M. S., Kim, H., & Choi, W. (2018). Dual-Functional Photocatalytic and Photoelectrocatalytic Systems for Energy- and Resource-Recovering Water Treatment. ACS Catalysis, 8(12), 11542-11563. doi:10.1021/acscatal.8b03521
Jia, J., Seitz, L. C., Benck, J. D., Huo, Y., Chen, Y., Ng, J. W. D., . . . Jaramillo, T. F. (2016). Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30%. Nature Communications, 7(1), 13237. doi:10.1038/ncomms13237
Jiang, C., Moniz, S. J., Wang, A., Zhang, T., & Tang, J. (2017). Photoelectrochemical devices for solar water splitting–materials and challenges. Chemical Society Reviews, 46(15), 4645-4660.
Jiang, L., Yuan, X., Pan, Y., Liang, J., Zeng, G., Wu, Z., & Wang, H. (2017). Doping of graphitic carbon nitride for photocatalysis: A reveiw. Applied Catalysis B: Environmental, 217, 388-406. doi:10.1016/j.apcatb.2017.06.003
Jiang, Y., Ni, P., Chen, C., Lu, Y., Yang, P., Kong, B., . . . Wang, X. (2018). Selective Electrochemical H2O2 Production through Two-Electron Oxygen Electrochemistry. Advanced Energy Materials, 8(31), 1801909. doi:https://doi.org/10.1002/aenm.201801909
Kabir, E., Kumar, P., Kumar, S., Adelodun, A. A., Kim, K.-H. J. R., & Reviews, S. E. (2018). Solar energy: Potential and future prospects. 82, 894-900.
Karlberg, G. S., Rossmeisl, J., & Nørskov, J. K. (2007). Estimations of electric field effects on the oxygen reduction reaction based on the density functional theory. Physical Chemistry Chemical Physics, 9(37), 5158-5161. doi:10.1039/B705938H
Ke, J., He, F., Wu, H., Lyu, S., Liu, J., Yang, B., . . . Ostrikov, K. (2020). Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting. Nano-Micro Letters, 13(1), 24. doi:10.1007/s40820-020-00545-8
Kim, H.-i., Kwon, O. S., Kim, S., Choi, W., & Kim, J.-H. (2016). Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts. Energy & Environmental Science, 9(3), 1063-1073. doi:10.1039/C5EE03115J
Kosaka, K., Yamada, H., Matsui, S., Echigo, S., & Shishida, K. (1998). Comparison among the methods for hydrogen peroxide measurements to evaluate advanced oxidation processes: application of a spectrophotometric method using copper (II) ion and 2, 9-dimethyl-1, 10-phenanthroline. Environmental Science & Technology, 32(23), 3821-3824.
Kuttassery, F., Mathew, S., Remello, S. N., Thomas, A., Sano, K., Ohsaki, Y., . . . Inoue, H. (2018). Alternative route to bypass the bottle-neck of water oxidation: Two-electron oxidation of water catalyzed by earth-abundant metalloporphyrins. Coordination Chemistry Reviews, 377, 64-72.
Le Duigou, A., & Smatti, A. (2014). On the comparison and the complementarity of batteries and fuel cells for electric driving. International Journal of Hydrogen Energy, 39(31), 17873-17883. doi:https://doi.org/10.1016/j.ijhydene.2014.08.077
Lee, G.-J., Zheng, Y.-C., & Wu, J. J. (2018). Fabrication of hierarchical bismuth oxyhalides (BiOX, X=Cl, Br, I) materials and application of photocatalytic hydrogen production from water splitting. Catalysis Today, 307, 197-204. doi:https://doi.org/10.1016/j.cattod.2017.04.044
Lee, S.-M., Kuan, Y.-D., & Sung, M.-F. (2013). Diaphragm air–liquid micro pump applicable to the direct methanol fuel cell. Journal of Power Sources, 238, 290-295. doi:https://doi.org/10.1016/j.jpowsour.2013.03.098
Lewis, N. S., Crabtree, G., Nozik, A. J., Wasielewski, M. R., Alivisatos, P., Kung, H., . . . Nault, R. M. (2005). Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005. Retrieved from https://www.osti.gov/servlets/purl/899136
Li, C., He, J., Xiao, Y., Li, Y., & Delaunay, J.-J. (2020). Earth-abundant Cu-based metal oxide photocathodes for photoelectrochemical water splitting. Energy & Environmental Science, 13(10), 3269-3306.
Li, J., Li, H., Zhan, G., & Zhang, L. (2017). Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides. Accounts of Chemical Research, 50(1), 112-121. doi:10.1021/acs.accounts.6b00523
Li, J., Yu, Y., & Zhang, L. (2014). Bismuth oxyhalide nanomaterials: layered structures meet photocatalysis. Nanoscale, 6(15), 8473-8488.
Li, K., Peng, B., & Peng, T. (2016). Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catalysis, 6(11), 7485-7527. doi:10.1021/acscatal.6b02089
Li, M., Liu, Y., Dong, L., Shen, C., Li, F., Huang, M., . . . Sand, W. (2019). Recent advances on photocatalytic fuel cell for environmental applications—The marriage of photocatalysis and fuel cells. Science of The Total Environment, 668, 966-978. doi:https://doi.org/10.1016/j.scitotenv.2019.03.071
Li, S., Dong, G., Hailili, R., Yang, L., Li, Y., Wang, F., . . . Wang, C. (2016). Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Applied Catalysis B: Environmental, 190, 26-35. doi:https://doi.org/10.1016/j.apcatb.2016.03.004
Li, Z., Wang, W., Ding, C., Wang, Z., Liao, S., & Li, C. (2017). Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. Energy & Environmental Science, 10(3), 765-771.
Lin, H., Deng, W., Zhou, T., Ning, S., Long, J., & Wang, X. (2015). Iodine-modified nanocrystalline titania for photo-catalytic antibacterial application under visible light illumination. Applied Catalysis B: Environmental, 176, 36-43.
Lin, H., Huang, W., Zhao, K., Lian, C., Duan, W., Chen, X., & Ji, S.-H. (2018). Growth of atomically thick transition metal sulfide filmson graphene/6H-SiC (0001) by molecular beam epitaxy. Nano Research, 11(9), 4722-4727.
Lin, W.-M., Chang, K.-C., & Chung, K.-M. (2016). Economic aspects for solar thermal application in Taiwan. Sustainable Cities and Society, 26, 354-363. doi:https://doi.org/10.1016/j.scs.2016.07.008
Liras, M., Barawi, M., & de la Peña O’Shea, V. A. (2019). Hybrid materials based on conjugated polymers and inorganic semiconductors as photocatalysts: from environmental to energy applications. Chemical Society Reviews, 48(22), 5454-5487. doi:10.1039/C9CS00377K
Liu, B., Li, C., Chen, G., Liu, B., Deng, X., Wei, Y., . . . Lin, J. (2017). Synthesis and optimization of MoS2@ Fe3O4‐ICG/Pt (IV) nanoflowers for MR/IR/PA bioimaging and combined PTT/PDT/chemotherapy triggered by 808 nm laser. Advanced Science, 4(8), 1600540.
Liu, Q., Zhou, L., Liu, L., Li, J., Wang, S., Znad, H., & Liu, S. (2020). Magnetic ZnO@ Fe3O4 composite for self-generated H2O2 toward photo-Fenton-like oxidation of nitrophenol. Composites Part B: Engineering, 200, 108345.
Liu, X., Ma, R., Zhuang, L., Hu, B., Chen, J., Liu, X., & Wang, X. (2020). Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Critical Reviews in Environmental Science and Technology, 1-40.
Liu, Y. Y., Jin, W., Zhao, Y. P., Zhang, G. S., & Zhang, W. (2017). Enhanced catalytic degradation of methylene blue by alpha-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Applied Catalysis B-Environmental, 206, 642-652. doi:10.1016/j.apcatb.2017.01.075
Low, J., Cheng, B., Yu, J., & Jaroniec, M. (2016). Carbon-based two-dimensional layered materials for photocatalytic CO2 reduction to solar fuels. Energy Storage Materials, 3, 24-35.
Luceño-Sánchez, J. A., Díez-Pascual, A. M., & Peña Capilla, R. (2019). Materials for photovoltaics: State of art and recent developments. International journal of molecular sciences, 20(4), 976.
Lui, G., Jiang, G., Fowler, M., Yu, A., & Chen, Z. (2019). A high performance wastewater-fed flow-photocatalytic fuel cell. Journal of Power Sources, 425, 69-75. doi:https://doi.org/10.1016/j.jpowsour.2019.03.091
Ma, C., Shen, D., Ng, T. W., Lo, M. F., & Lee, C. S. (2018). 2D Perovskites with Short Interlayer Distance for High‐Performance Solar Cell Application. Advanced Materials, 30(22), 1800710.
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V., & Kis, A. (2017). 2D transition metal dichalcogenides. Nature Reviews Materials, 2(8), 17033.
McDonnell-Worth, C. J., & MacFarlane, D. R. (2018). Progress towards direct hydrogen peroxide fuel cells (DHPFCS) as an energy storage concept. Australian Journal of Chemistry, 71(10), 781-788.
Mei, X., Bai, J., Chen, S., Zhou, M., Jiang, P., Zhou, C., . . . Zhou, B. (2020). Efficient SO2 Removal and Highly Synergistic H2O2 Production Based on a Novel Dual-Function Photoelectrocatalytic System. Environmental Science & Technology, 54(18), 11515-11525. doi:10.1021/acs.est.0c00886
Midilli, A., Dincer, I., & Ay, M. (2006). Green energy strategies for sustainable development. Energy Policy, 34(18), 3623-3633. doi:https://doi.org/10.1016/j.enpol.2005.08.003
Moon, G.-h., Kim, W., Bokare, A. D., Sung, N.-e., & Choi, W. (2014). Solar production of H2O2 on reduced graphene oxide–TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy & Environmental Science, 7(12), 4023-4028. doi:10.1039/C4EE02757D
Nakamura, A., Ota, Y., Koike, K., Hidaka, Y., Nishioka, K., Sugiyama, M., & Fujii, K. (2015). A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Applied Physics Express, 8(10), 107101.
Ng, B. J., Putri, L. K., Kong, X. Y., Teh, Y. W., Pasbakhsh, P., & Chai, S. P. (2020). Z‐Scheme Photocatalytic Systems for Solar Water Splitting. Advanced Science, 1903171.
Ong, B. C., Kamarudin, S. K., & Basri, S. (2017). Direct liquid fuel cells: A review. International Journal of Hydrogen Energy, 42(15), 10142-10157. doi:https://doi.org/10.1016/j.ijhydene.2017.01.117
Ong, W.-J., Tan, L.-L., Ng, Y. H., Yong, S.-T., & Chai, S.-P. (2016). Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chemical Reviews, 116(12), 7159-7329. doi:10.1021/acs.chemrev.6b00075
Onishi, T., Fujishima, M., & Tada, H. (2018). Solar-Driven One-Compartment Hydrogen Peroxide-Photofuel Cell Using Bismuth Vanadate Photoanode. ACS Omega, 3(9), 12099-12105. doi:10.1021/acsomega.8b01333
Pan, L., Sun, S., Chen, Y., Wang, P., Wang, J., Zhang, X., . . . Wang, Z. L. (2020). Advances in Piezo‐Phototronic Effect Enhanced Photocatalysis and Photoelectrocatalysis. Advanced Energy Materials, 2000214.
Pandey, P., Shinde, V. N., Deopurkar, R. L., Kale, S. P., Patil, S. A., & Pant, D. (2016). Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 168, 706-723. doi:https://doi.org/10.1016/j.apenergy.2016.01.056
Panwar, N. L., Kaushik, S. C., & Kothari, S. (2011). Role of renewable energy sources in environmental protection: A review. Renewable & Sustainable Energy Reviews, 15(3), 1513-1524. doi:10.1016/j.rser.2010.11.037
Papagiannis, I., Doukas, E., Kalarakis, A., Avgouropoulos, G., & Lianos, P. (2019). Photoelectrocatalytic H2 and H2O2 production using visible-light-absorbing photoanodes. Catalysts, 9(3), 243.
Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., & Thimsen, E. (2011). Highly active oxide photocathode for photoelectrochemical water reduction. Nature Materials, 10(6), 456-461. doi:10.1038/nmat3017
Paracchino, A., Mathews, N., Hisatomi, T., Stefik, M., Tilley, S. D., & Grätzel, M. (2012). Ultrathin films on copper(i) oxide water splitting photocathodes: a study on performance and stability. Energy & Environmental Science, 5(9), 8673-8681. doi:10.1039/C2EE22063F
Park, H., Kim, H.-i., Moon, G.-h., & Choi, W. (2016). Photoinduced charge transfer processes in solar photocatalysis based on modified TiO2. Energy & Environmental Science, 9(2), 411-433. doi:10.1039/C5EE02575C
Parra-Puerto, A., Ng, K. L., Fahy, K., Goode, A. E., Ryan, M. P., & Kucernak, A. (2019). Supported Transition Metal Phosphides: Activity Survey for HER, ORR, OER, and Corrosion Resistance in Acid and Alkaline Electrolytes. ACS Catalysis, 9(12), 11515-11529. doi:10.1021/acscatal.9b03359
Patel, M., Ali, M., Ahmad, J., Dar, M., Majid, K., Lone, S., . . . Wahid, M. (2020). Aligned NiP2/CoP2 nanoneedle arrays obtained over carbon fiber paper by selective temperature control for efficient HER electrocatalysis. Materials Letters, 278, 128456. doi:https://doi.org/10.1016/j.matlet.2020.128456
Philip, J. M., Aravind, U. K., & Aravindakumar, C. T. (2018). Emerging contaminants in Indian environmental matrices–A review. Chemosphere, 190, 307-326.
Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., & Kis, A. (2011). Single-layer MoS2 transistors. Nature Nanotechnology, 6(3), 147-150. doi:10.1038/nnano.2010.279
Rani, B. J., Anusiya, A., Ravi, G., & Yuvakkumar, R. (2019). Multi-phase CuBi2O4@ CuO@ α-Bi2O3 nanocomposite electrocatalyst for electrochemical water splitting application. Paper presented at the AIP Conference Proceedings.
Ren, X., Gao, M., Zhang, Y., Zhang, Z., Cao, X., Wang, B., & Wang, X. (2020). Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism. Applied Catalysis B: Environmental, 119063.
Sanlı, A. E. (2013). A possible future fuel cell: the peroxide/peroxide fuel cell. International journal of energy research, 37(12), 1488-1497.
Santasalo-Aarnio, A., Borghei, M., Anoshkin, I. V., Nasibulin, A. G., Kauppinen, E. I., Ruiz, V., & Kallio, T. (2012). Durability of different carbon nanomaterial supports with PtRu catalyst in a direct methanol fuel cell. International Journal of Hydrogen Energy, 37(4), 3415-3424. doi:https://doi.org/10.1016/j.ijhydene.2011.11.009
Septina, W., Prabhakar, R. R., Wick, R., Moehl, T., & Tilley, S. D. (2017). Stabilized Solar Hydrogen Production with CuO/CdS Heterojunction Thin Film Photocathodes. Chemistry of Materials, 29(4), 1735-1743. doi:10.1021/acs.chemmater.6b05248
Shaegh, S. A. M., Nguyen, N.-T., Ehteshami, S. M. M., & Chan, S. H. (2012). A membraneless hydrogen peroxide fuel cell using Prussian Blue as cathode material. Energy & Environmental Science, 5(8), 8225-8228.
Shah, A. K., Sahu, T. K., Banik, A., Gogoi, D., Peela, N. R., & Qureshi, M. (2019). Reduced graphene oxide modified CuBi2O4 as an efficient and noble metal free photocathode for superior photoelectrochemical hydrogen production. Sustainable Energy & Fuels, 3(6), 1554-1561. doi:10.1039/C9SE00129H
Shao, N., Hou, Z., Zhu, H., Wang, J., & François-Xavier, C. P. (2018). Novel 3D core-shell structured CQDs/Ag3PO4@Benzoxazine tetrapods for enhancement of visible-light photocatalytic activity and anti-photocorrosion. Applied Catalysis B: Environmental, 232, 574-586. doi:https://doi.org/10.1016/j.apcatb.2018.03.085
Sharma, G., Zhao, Z., Sarker, P., Nail, B. A., Wang, J., Huda, M. N., & Osterloh, F. E. (2016). Electronic structure, photovoltage, and photocatalytic hydrogen evolution with p-CuBi2O4 nanocrystals. Journal of Materials Chemistry A, 4(8), 2936-2942. doi:10.1039/C5TA07040F
Sharma, K., Dutta, V., Sharma, S., Raizada, P., Hosseini-Bandegharaei, A., Thakur, P., & Singh, P. (2019). Recent advances in enhanced photocatalytic activity of bismuth oxyhalides for efficient photocatalysis of organic pollutants in water: a review. Journal of Industrial and Engineering Chemistry, 78, 1-20.
Shi, X. (2020). Electrochemical Two-Electron Water Oxidation Toward Hydrogen Peroxide Evolution. Stanford University.
Shockley, W., & Read Jr, W. (1952). Statistics of the recombinations of holes and electrons. Physical review, 87(5), 835.
Siahrostami, S., Li, G. L., Viswanathan, V., & Norskov, J. K. (2017). One- or Two-Electron Water Oxidation, Hydroxyl Radical, or H2O2 Evolution. J Phys Chem Lett, 8(6), 1157-1160. doi:10.1021/acs.jpclett.6b02924
Siahrostami, S., Verdaguer-Casadevall, A., Karamad, M., Deiana, D., Malacrida, P., Wickman, B., . . . Hansen, T. W. (2013). Enabling direct H 2 O 2 production through rational electrocatalyst design. Nature Materials, 12(12), 1137-1143.
Siddiqui, O., & Dincer, I. (2018). A review and comparative assessment of direct ammonia fuel cells. Thermal Science and Engineering Progress, 5, 568-578. doi:https://doi.org/10.1016/j.tsep.2018.02.011
Soloveichik, G. L. (2014). Liquid fuel cells. Beilstein Journal of Nanotechnology, 5, 1399-1418. doi:10.3762/bjnano.5.153
Suzuki, H., Kunioku, H., Higashi, M., Tomita, O., Kato, D., Kageyama, H., & Abe, R. (2018). Lead Bismuth Oxyhalides PbBiO2X (X = Cl, Br) as Visible-Light-Responsive Photocatalysts for Water Oxidation: Role of Lone-Pair Electrons in Valence Band Engineering. Chemistry of Materials, 30(17), 5862-5869. doi:10.1021/acs.chemmater.8b01385
Swain, G., Sultana, S., & Parida, K. (2020). Constructing a Novel Surfactant-free MoS2 Nanosheet Modified MgIn2S4 Marigold Microflower: An Efficient Visible-Light Driven 2D-2D p-n Heterojunction Photocatalyst toward HER and pH Regulated NRR. ACS Sustainable Chemistry & Engineering, 8(12), 4848-4862. doi:10.1021/acssuschemeng.9b07821
Tachibana, Y., Vayssieres, L., & Durrant, J. R. (2012). Artificial photosynthesis for solar water-splitting. Nature Photonics, 6(8), 511.
Thurston, T. R., & Wilcoxon, J. P. (1999). Photooxidation of Organic Chemicals Catalyzed by Nanoscale MoS2. The Journal of Physical Chemistry B, 103(1), 11-17. doi:10.1021/jp982337h
Tie, W., Du, Z., Yue, H., Bhattacharyya, S. S., Zheng, Z., He, W., & Lee, S. H. (2020). Self-assembly of carbon nanotube/graphitic-like flake/BiOBr nanocomposite with 1D/2D/3D heterojunctions for enhanced photocatalytic activity. Journal of Colloid and Interface Science, 579, 862-871.
Tsai, C., Li, H., Park, S., Park, J., Han, H. S., Nørskov, J. K., . . . Abild-Pedersen, F. (2017). Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nature Communications, 8(1), 15113. doi:10.1038/ncomms15113
Vasseghian, Y., Khataee, A., Dragoi, E.-N., Moradi, M., Nabavifard, S., Oliveri Conti, G., & Mousavi Khaneghah, A. (2020). Pollutants degradation and power generation by photocatalytic fuel cells: A comprehensive review. Arabian Journal of Chemistry, 13(11), 8458-8480. doi:https://doi.org/10.1016/j.arabjc.2020.07.016
W. Eul, A. M., N. Steiner. (2001). Hydrogen Peroxide Kirk‐Othmer Encyclopedia of Chemical Technology.
Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar water splitting cells. Chemical Reviews, 110(11), 6446-6473.
Wang, F., Septina, W., Chemseddine, A., Abdi, F. F., Friedrich, D., Bogdanoff, P., . . . Berglund, S. P. (2017). Gradient Self-Doped CuBi2O4 with Highly Improved Charge Separation Efficiency. Journal of the American Chemical Society, 139(42), 15094-15103. doi:10.1021/jacs.7b07847
Wang, G., Ling, Y., & Li, Y. (2012). Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale, 4(21), 6682-6691. doi:10.1039/C2NR32222F
Wang, H., Zhang, B., Tang, Y., Wang, C., Zhao, F., & Zeng, B. (2020). Recent advances in bismuth oxyhalide-based functional materials for photoelectrochemical sensing. TrAC Trends in Analytical Chemistry, 131, 116020. doi:https://doi.org/10.1016/j.trac.2020.116020
Wang, J., Zhi, D., Zhou, H., He, X., & Zhang, D. (2018). Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode. Water Research, 137, 324-334. doi:https://doi.org/10.1016/j.watres.2018.03.030
Wang, Q., & Domen, K. (2019). Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chemical Reviews.
Wang, Q., Hisatomi, T., Jia, Q., Tokudome, H., Zhong, M., Wang, C., . . . Domen, K. (2016). Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%. Nature Materials, 15(6), 611-615. doi:10.1038/nmat4589
Wang, T.-W., Wang, T.-L., Chou, W.-J., Wu, L.-F., & Lin, S.-H. (2021). First-principles investigation of the hydrogen evolution reaction of transition metal phosphides CrP, MnP, FeP, CoP, and NiP. Physical Chemistry Chemical Physics, 23(3), 2305-2312. doi:10.1039/D0CP04789A
Wang, T., Chen, S., Pang, H., Xue, H., & Yu, Y. (2017). MoS2-Based Nanocomposites for Electrochemical Energy Storage. Advanced Science, 4(2), 1600289. doi:https://doi.org/10.1002/advs.201600289
Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J. M., . . . Antonietti, M. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1), 76-80.
Wang, Y., Wang, H., Woldu, A. R., Zhang, X., & He, T. (2019). Optimization of charge behavior in nanoporous CuBi2O4 photocathode for photoelectrochemical reduction of CO2. Catalysis Today, 335, 388-394. doi:https://doi.org/10.1016/j.cattod.2018.12.047
Wang, Y., Wang, Y., Song, X.-m., Zhang, Y., & Ma, T. (2020). BiOCl-based photocathode for photocatalytic fuel cell. Applied Surface Science, 506, 144949.
Wen, J., Xie, J., Chen, X., & Li, X. (2017). A review on g-C3N4-based photocatalysts. Applied Surface Science, 391, 72-123.
Wu, Y., Li, C., Liu, W., Li, H., Gong, Y., Niu, L., . . . Xu, S. (2019). Unexpected monoatomic catalytic-host synergetic OER/ORR by graphitic carbon nitride: density functional theory. Nanoscale, 11(11), 5064-5071.
Xu, M., Liang, T., Shi, M., & Chen, H. (2013). Graphene-like two-dimensional materials. Chemical Reviews, 113(5), 3766-3798.
Yamazaki, S.-i., Siroma, Z., Senoh, H., Ioroi, T., Fujiwara, N., & Yasuda, K. (2008). A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel. Journal of Power Sources, 178(1), 20-25. doi:https://doi.org/10.1016/j.jpowsour.2007.12.013
Yang, F., Cheng, K., Mo, Y., Yu, L., Yin, J., Wang, G., & Cao, D. (2012). Direct peroxide–peroxide fuel cell – Part 1: The anode and cathode catalyst of carbon fiber cloth supported dendritic Pd. Journal of Power Sources, 217, 562-568. doi:https://doi.org/10.1016/j.jpowsour.2012.07.019
Yang, J., Li, W., Li, J., Sun, D., & Chen, Q. (2012). Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates. Journal of Materials Chemistry, 22(34), 17744-17752. doi:10.1039/C2JM33199C
Yang, W., Prabhakar, R. R., Tan, J., Tilley, S. D., & Moon, J. (2019). Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chemical Society Reviews, 48(19), 4979-5015.
Yang, Y., Zeng, G., Huang, D., Zhang, C., He, D., Zhou, C., . . . Zhou, Y. (2020). Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production. Applied Catalysis B: Environmental, 272, 118970. doi:https://doi.org/10.1016/j.apcatb.2020.118970
Ye, L., Liu, J., Jiang, Z., Peng, T., & Zan, L. (2013). Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Applied Catalysis B: Environmental, 142-143, 1-7. doi:https://doi.org/10.1016/j.apcatb.2013.04.058
Yu, W., Zhan, S., Shen, Z., Zhou, Q., & Yang, D. (2017). Efficient removal mechanism for antibiotic resistance genes from aquatic environments by graphene oxide nanosheet. Chemical Engineering Journal, 313, 836-846. doi:https://doi.org/10.1016/j.cej.2016.10.107
Zhang, B., He, L., Yao, T., Fan, W., Zhang, X., Wen, S., . . . Li, C. (2019). Simultaneous Photoelectrocatalytic Water Oxidation and Oxygen Reduction for Solar Electricity Production in Alkaline Solution. ChemSusChem, 12(5), 1026-1032. doi:https://doi.org/10.1002/cssc.201802849
Zhang, H., & Cheng, C. (2017). Three-Dimensional FTO/TiO2/BiVO4 Composite Inverse Opals Photoanode with Excellent Photoelectrochemical Performance. ACS Energy Letters, 2(4), 813-821. doi:10.1021/acsenergylett.7b00060
Zhang, J., Ma, H., & Liu, Z. (2017). Highly efficient photocatalyst based on all oxides WO3/Cu2O heterojunction for photoelectrochemical water splitting. Applied Catalysis B: Environmental, 201, 84-91. doi:https://doi.org/10.1016/j.apcatb.2016.08.025
Zhang, J., Zheng, L., Wang, F., Chen, C., Wu, H., Leghari, S. A. K., & Long, M. (2020). The critical role of furfural alcohol in photocatalytic H2O2 production on TiO2. Applied Catalysis B: Environmental, 269, 118770. doi:https://doi.org/10.1016/j.apcatb.2020.118770
Zhang, L., Chu, W., Zheng, Q., Benderskii, A. V., Prezhdo, O. V., & Zhao, J. (2019). Suppression of Electron–Hole Recombination by Intrinsic Defects in 2D Monoelemental Material. The journal of physical chemistry letters, 10(20), 6151-6158. doi:10.1021/acs.jpclett.9b02620
Zhang, L., Ran, J., Qiao, S.-Z., & Jaroniec, M. (2019). Characterization of semiconductor photocatalysts. Chemical Society Reviews, 48(20), 5184-5206. doi:10.1039/C9CS00172G
Zhang, X., Yang, H., Zhang, B., Shen, Y., & Wang, M. (2016). BiOI–TiO2 Nanocomposites for Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 3(1), 1500273. doi:https://doi.org/10.1002/admi.201500273
Zhang, Y., Xie, Y., Li, J., Bai, T., & Wang, J. (2014). Photocatalytic activity and adsorption performance of p-CuBi 2 O 4/n-TiO 2 p–n heterojunction composites prepared by in situ sol–gel coating method. Journal of sol-gel science and technology, 71(1), 38-42.
Zhang, Z., Xin, L., Qi, J., Chadderdon, D. J., & Li, W. (2013). Supported Pt, Pd and Au nanoparticle anode catalysts for anion-exchange membrane fuel cells with glycerol and crude glycerol fuels. Applied Catalysis B: Environmental, 136-137, 29-39. doi:https://doi.org/10.1016/j.apcatb.2013.01.045
Zhao, C., Liang, Y., Li, W., Tian, Y., Chen, X., Yin, D., & Zhang, Q. (2017). BiOBr/BiOCl/carbon quantum dot microspheres with superior visible light-driven photocatalysis. RSC advances, 7(83), 52614-52620.
Zhao, Y., Jia, X., Waterhouse, G. I. N., Wu, L.-Z., Tung, C.-H., O'Hare, D., & Zhang, T. (2016). Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production. Advanced Energy Materials, 6(6), 1501974. doi:https://doi.org/10.1002/aenm.201501974
Zhou, J., Hou, C., & Liu, L. (2019). Persulfate enhanced pollutants oxidation efficiency and power generation in photocatalytic fuel cell with anodic BiOCl/BiOI and cathodic copper cobalt oxide. Journal of the Taiwan Institute of Chemical Engineers, 101, 31-40. doi:https://doi.org/10.1016/j.jtice.2019.04.032
Zhou, T., Xu, Y., Wang, X., Huang, S., Xie, M., Xia, J., . . . Li, H. (2018). Construction of solid–liquid interfacial Fenton-like reaction under visible light irradiation over etched Co x Fe y O 4–BiOBr photocatalysts. Catalysis Science & Technology, 8(2), 551-561.
Zhou, W. J., Zhou, B., Li, W. Z., Zhou, Z. H., Song, S. Q., Sun, G. Q., . . . Tsiakaras, P. (2004). Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. Journal of Power Sources, 126(1), 16-22. doi:https://doi.org/10.1016/j.jpowsour.2003.08.009
Zhou, X., Shao, C., Yang, S., Li, X., Guo, X., Wang, X., . . . Liu, Y. (2018). Heterojunction of g-C3N4/BiOI Immobilized on Flexible Electrospun Polyacrylonitrile Nanofibers: Facile Preparation and Enhanced Visible Photocatalytic Activity for Floating Photocatalysis. ACS Sustainable Chemistry & Engineering, 6(2), 2316-2323. doi:10.1021/acssuschemeng.7b03760
Zhou, Y., Fan, X., Zhang, G., & Dong, W. (2019). Fabricating MoS2 nanoflakes photoanode with unprecedented high photoelectrochemical performance and multi-pollutants degradation test for water treatment. Chemical Engineering Journal, 356, 1003-1013. doi:https://doi.org/10.1016/j.cej.2018.09.097
Zhu, C., Zhu, M., Sun, Y., Zhou, Y., Gao, J., Huang, H., . . . Kang, Z. (2019). Carbon-supported oxygen vacancy-rich Co3O4 for robust photocatalytic H2O2 production via coupled water oxidation and oxygen reduction reaction. ACS Applied Energy Materials, 2(12), 8737-8746.
Zhu, X.-D., Wang, Y.-J., Sun, R.-J., & Zhou, D.-M. (2013). Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere, 92(8), 925-932. doi:https://doi.org/10.1016/j.chemosphere.2013.02.066
Zuo, G., Liu, S., Wang, L., Song, H., Zong, P., Hou, W., . . . Roy, V. A. L. (2019). Finely dispersed Au nanoparticles on graphitic carbon nitride as highly active photocatalyst for hydrogen peroxide production. Catalysis Communications, 123, 69-72. doi:10.1016/j.catcom.2019.02.011