簡易檢索 / 詳目顯示

研究生: 李維仁
Lee, Wei-Zen
論文名稱: 有限寬頸軸承在紊流形態熱液動力 領域之性能參數研究
A Parametric Study for Finite-Width Journal Bearings Operating in the Turbulent Thermohydrodynamic Regime
指導教授: 謝勝己
Hsieh, Sheng-Jii
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 104
中文關鍵詞: 性能參數熱液動力性能參數計算公式孔蝕頸軸承
外文關鍵詞: Journal Bearings, Thermohydrodynamic, Performance Parameters, Cavitation
相關次數: 點閱:158下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在軸承系統的設計與分析中,精確估算負載量、摩擦力、偏心角及側向流率等參數是相當重要的。由文獻中發現,在等溫層流、等溫紊流與熱液動力層流領域,已有充分的軸承參數研究,惟熱液動力紊流領域尚未有完整的參數研究。本研究即是以一廣義的熱液動力潤滑分析模式為工具,針對有限寬頸軸承進行參數研究,並找出性能參數的計算公式。研究的領域包含等溫紊流與熱液動力紊流領域。

      本研究使用的分析模式結合Legendre collocation方法、容積流模式及孔蝕演算法,並考慮紊流、熱液動力及孔蝕效應。由分析成果顯示,當幾何參數偏心率增加,負載量、側向流率隨之增加,偏心角則減少。當寬度 增加,負載量則隨之增加,但側向流率隨之減少。當紊流強度參數 增加,負載量和摩擦力隨之增加,但對偏心角則微量增加。當熱液動力效應參數無因次溫度-黏度參數增加,流體黏度降低,負載量隨之減少,對偏心角則增加。本研究應用Least squares方法建立紊流形態熱液動力有限寬頸軸承性能參數之計算公式。設計者只要使用工程計算機輸入相關參數,即可算出軸承之性能參數。

      For the design of bearing system, it is important to have an accurate estimation of the load capacity, friction force, eccentricity angle, and side leakage. It is found from the literature that the parametric studies of hydrodynamic journal bearings have been made in laminar isothermal, laminar thermohydrodynamic (THD), and turbulent isothermal regimes. For turbulent THD bearings, the parameter studies have not been in a completed status. The objectives of this study are to use a general fluid-film lubrication model to analyze finite-width journal bearings operating in turbulent isothermal and turbulent THD regimes, and to establish the formulations for the performance parameters.

      The analysis model used in this study combines the Legendre collocation method, bulk-flow model, and Elrod’s cavitation model. This model considers turbulence, THD, and cavitation effects. The results show that the load capacity and the side leakage increases with the eccentricity ratio, but the eccentricity angle decreases as the eccentricity ratio increases. When bearing width increases, the load capacity will increase but the side leakage will decrease. When the mean Reynolds number increases, the load capacity and friction force will increase significantly, but the eccentricity angle increases slightly. The THD effects significantly decrease the load capacity and friction force, yet increase the eccentricity angle. The formulations for the performance parameters were found using the least-squares method. With the equations provided, designers can quickly calculate the parameter using a calculator.

    摘要……………………………………………i 英文摘要………………………………………ii 誌謝……………………………………………iii 目錄.…………………………………………iv 表目錄………………………………………vi 圖目錄………………………………………vii 符號表………………………………………x 第一章 緒論………………………………1 1-1液動力潤滑之物理機制………………1 1-2研究目的………………………………3 1-3 分析方法之選用……………………4 1-4 論文結構………………………………8 第二章 頸軸承……………………………9 2-1 幾何外形…………………………9 2-2 統御方程式…………………………10 2-3 邊界條件……………………………14 第三章 Legendre Collocation……………18 第四章 容積流方程式之數值方法………………………23 4-1 孔蝕演算法(Cavitation Algorithm)…………23 4-2 SIMPLE演算法……………………………………28 4-3 SIMPLER演算法……………………………………32 4-4容積流模式(Bulk-Flow Model)……………34 4-5數值計算流程…………………………………………40 第五章 重要參數………………………………………42 第六章 結果與討論……………………………………46 6-1 物理機制……………………………………46 6-2 負載量之計算公式……………………………49 6-3 摩擦力之計算公式………………………………55 6-4 軸承偏心角之計算公式………………………59 6-5 側向流之計算公式…………………………62 第七章 結論與建議………………………………………65 7-1 結論……………………………………………………65 7-2 未來研究方向之建議…………………………………67 參考文獻……………………………………………68

    1.Szeri, A. Z., (1987), “Some Extensions of the Lubrication Theory of Osborne Reynolds,” ASME Journal of Tribology, Vol. 109, pp. 21-36.

    2.Schlichting, H., (1979), Boundary Layer Throry, 7th Ed., McGraw-Hill, New York (Translated by Kestin, J.)

    3.Pinkus, (1990), Thermal Aspects of Fluid Film Tribology, ASME. Press, New York.

    4.Shyu, S. H., (1998), Ranges of Validity for the Reynolds Equation and the Bulk-Flow Model for a Slider Bearing, Ph.D. Dissertation, The Pennsylvania State University, pp.
    3-4.

    5.Gross, W. A., Matsch, L. A., Castelli, V., Eshel, A., Vohr, J. H., and Wildmann, M., (1980), Fluid Film Lubrication, John Wiley & Sons, Inc., New York.

    6.Shyu, S. H., (1998), Ranges of Validity, pp. 31-34, pp. 38-40, Ph.D.

    7.Cole, J. A., and Hughes, C. J., (1956), “Oil Flow and Film Extent in Complete Journal Bearings,” Proc. Inst. Mech. Eng., Vol. 170, 499-510.

    8.King, K. F. and Taylor, C. M., (1977), “An Estimation of
    The Effect of Fluid Inertia on the Performance of the Plane Inclined Slider Thrust Bearing with Particular Regard to Turbulent Lubrication,” ASME Journal of Lubrication Technology, pp. 129-135.

    9.Launder, B. E. and Leschziner, M., (1978), “Flow in Finite-Width, Thrust Bearings Including Inertia Effects, I-Laminar Flow, II-Turbulent, ” ASME Journal of Lubrication Technology, Vol. 100, pp. 330-345.

    10.Fillon, M. and Khonsari, M., (1996), “Thermodynamic Design Charts for Tilting-Pad Journal Bearings,” ASME Journal of Tribology, Vol. 118, pp. 232-238.

    11.Jang, J. Y. and Khonsari, M. M., (1997), “Thermohydrodynamic Design Charts for Slider Bearings,” ASME Journal of Tribology, Vol. 119, pp.733-740

    12.Keogh, P. S., Gomiciaga, R., and Khonsari, M. M., (1997), “CFD Based Design Techniques for Thermal Prediction in a Generic Two Axial-Groove Hydrodynamic Journal Bearing,” ASME Journal of Tribology, Vol. 119, pp. 428-436.

    13.張啟城, (2002), 紊流形態熱液動力平板滑動軸承之性能參數研究, 國立中正大學.

    14.李富利, (2003), 紊流形態熱液動力頸軸承之性能參數研究,國立中正大學.

    15.Reynolds, O., (1886), “On the Theory of Lubrication and
    Its Application to Mr. Beauchamp Tower’s Experiments, Including an Experimental Determination of the Viscosity of Olive Oil,” Phil. Trans. Roy. Soc., Lond., Vol. 177, Part 1, pp. 157-234.

    16.Dowson, D. and Hudson, J. D., (1964), “Thermo-Hydrodynamic Analysis of the Infinite Slider Bearing: Part I, The Plane-Inclined Slider-Bearing. Part II, The Parallel-Surface Bearing,” Lubrication and Wear, May 23-25, 1963, Inst. of Mech. Engrs., London, pp. 34-51.

    17.Elrod, H. G., (1991), “Efficient Numerical Method of the Thermodynamics of Laminar Lubricating Films,” ASME Journal of Tribology, Vol. 113, pp. 507-511.

    18.Ezzat, H. A. and Rohde, S. M., (1973), “A Study of the Thermohydrodynamic Performance of Finite Slider Bearings,” ASME Journal of Lubrication Technology, Vol. 95, pp. 298-307.

    19.Ha, H. C., Kim, H. J., and Kim, K. W., (1995), “Inlet Pressure Effects on the Thermohydrodynamic Performance of a Large Tilting Pad Journal Bearing,” ASME Journal of Tribology, Vol. 117, pp.160-165.

    20.Hahn, E. J. and Kettleborough, C. F., (1967), “Solution for the Pressure and Temperature in an Infinite Slider Bearing of Arbitrary Profile,” ASME Journal of Lubrication Technology, pp. 445-452.

    21.Hunter, W. B. and Zienkiewicz, O.C., (1960), “Effects of Temperature Variations Across The Lubricant Films in The Theory of Hydrodynamic Lubrication,” Journal of Mechanical Engineering Science, Vol. 2, No. 1, pp. 52-58.

    22.Khonsari, M. M., Jang, J. Y., and Fillon, M., (1996), “On the Generalization of Thermohydrodynamic Analyses for Journal Bearings,” ASME Journal of Tribology, Vol. 118, pp. 571-579.

    23.Safar, Z. and Szeri, A. Z., (1974), “Thermohydrodynamic Lubrication in Laminar and Turbulent Regimes,” ASME Journal of Lubrication Technology, Vol. 96, pp. 48-57.

    24.Suganami, T. and Szeri, A. Z., (1979), “A Thermohydrodynamic Analysis of Journal Bearing,” ASME Journal of Lubrication Technology, Vol. 101, pp. 21-27.

    25.Elrod, H. G. and Ng, C. W., (1967), “A Theory for Turbulent Fluid Films and Its Application to Bearings,” ASME Journal of Lubrication Technology, pp. 347-362.

    26.Childs, D., (1993), Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis, John Wiley & Sons, Inc., New York, pp.229-233.

    27.Yang, Z., San Andres, L., and Childs, D. W. (1993), “Thermal Effects in Cryogenic Liquid Annular Seals -- Part I: Theory and Approximate Solution,” ASME Journal of Tribology, Vol. 115, pp. 267-276.

    28.Yang, Z., San Andres, L., and Childs, D. W., (1993), “Importance of Heat Transfer from Fluid Film to Stator in Turbulent Flow Annular Seals,” Wear, Vol. 160, pp. 269-277.

    29.San Andres, L., Yang, Z., and Childs, D. W., (1993), “Thermal Effects in Cryogenic Liquid Annular Seals- Part II: Numerical Solution and Results,” ASME Journal of Tribology, Vol. 115, pp. 277-284.

    30.Constantinescu, V. N. and Galetuse, S., (1974), “On the Possibilities of Improving the Accuracy of the Evaluation of Inertia Forces in Laminar and Turbulent Films,” ASME Journal of Lubrication Technology, pp. 69-79.

    31.Shyu, S. H., Talmage, G., and Carpino, M., (2000), “Comparison of Lubrication Models for Plane Slider Bearings,” STLE Tribology Transactions, Vol. 43, No. 1, pp. 74-81.

    32.Shyu, S. H., (1998), Ranges of Validity, pp. 90-107.

    33.Shyu, S. H., (1998), Ranges of Validity, pp. 129-131.

    34.Talmage, G. and Carpino. M., (1997), “A Pseudospectral-Finite Difference Analysis of an Infinitely Wide Slider Bearing with Thermal and Inertial Effects,” Tribology Transactions, Vol. 40, No.2, pp. 251-258.

    35.Shyu, S. H., (1998), Ranges of Validity, pp. 53-75.

    36.Yakhot, V., Orszag, S. A., and Yakhot, A., (1987), “Heat Transfer in turbulent Fluids-- I. Pipe Flow”, International Journal of Heat and Mass Transfer, Vol. 30, No. 1, pp. 15-22.

    37.Bouard, L., Fillon, M., and Frene, J., (1996), “Thermohydrodynamic Analysis of Tilting-Pad Journal Bearings Operating in Turbulent Flow Regime,” ASME Journal of Tribology, Vol. 118, pp. 225-231.

    38.Shyu, S. H., and Jeng, Y. R., (2002), “An Efficient
    General Fluid-Film Lubrication Model for Plane Slider Bearings,” STLE Tribology Transactions, Vol. 45, No. 2, pp. 161-168.

    39.Elrod, H. G., (1981), “A Cavitation Algorithm,” Transactions of the ASME, Vol. 130, pp. 350-354.

    40.Patankar, S.V., (1980), “Numerical Heat Transfer and Fluid Flow,” Hemisphere Publishing Corporation, pp.126-130.

    41.Patankar, S.V., (1980), “Numerical Heat Transfer and Fluid Flow,” pp. 131-134.

    42.Constantinescu, V. N. (1959), “On Turbulent Lubrication,” Proc. Inst. Mech. Eng., Vol. 173, No. 38, pp. 881-896.

    下載圖示 校內:立即公開
    校外:2004-08-25公開
    QR CODE