| 研究生: |
謝玟茜 Hsieh, Wen-Chien |
|---|---|
| 論文名稱: |
陽極沉積錳-鈷氧化物之材料特性與擬電容行為研究 Material characteristics and pseudo-capacitive properties of manganese-cobalt oxides prepared by anodic deposition |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 擬電容 、錳-鈷氧化物 、循環伏安法 |
| 外文關鍵詞: | manganese-cobalt oxide, pseudo-capacitor, cyclic voltammetry method |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究中利用陽極沉積法於醋酸錳與不同濃度醋酸鈷之混合鍍液中,製備出具有擬電容特性的錳-鈷二元氧化物電極材料。製程中選用陽極化電位0.8VSCE沉積1.5庫侖(C)於石墨基材表面,並且對錳-鈷二元氧化物電極之材料特性及電化學行為進行探討。
EDS及EPMA結果顯示,氧化物鍍層中有錳、鈷、氧之存在,且均勻分佈在鍍層中。SEM表面形貌觀察發現,氧化錳表面有均勻奈米纖維生成,當醋酸鈷濃度添加至0.2 M,所製備之錳-鈷氧化物中均勻奈米纖維消失。利用X光繞射儀進行分析發現,除了在37.1°附近發現一寬廣繞射峰之外,其他繞射峰為石墨基材所貢獻,顯示錳-鈷二元氧化物電極之結晶性不佳。將錳氧化物及錳-鈷二元氧化物進行XPS分析,Mn 2p3/2顯示利用陽極沉積法所製備之錳氧化物乃由三價及四價錳混合組成。醋酸錳鍍液中添加醋酸鈷(0.15 M以上)所製備之氧化物主要由四價錳所構成。從Co 2p3/2可以知道醋酸錳鍍液中低濃度醋酸鈷(0.05~0.1 M)的添加,氧化物中由二價及三價鈷及鈷之氫氧化物所組成;高濃度醋酸鈷(0.15 M、0.2 M)添加時,其陽極沉積物則以鈷之氫氧化物存在於沉積氧化物中。O 1s分析結果可以知道陽極沉積物中有氧化物及氫氧化物,隨著醋酸鈷的添加,氧化物束縛能峰向高能階氧化態及氫氧化態偏移。
於添加0~0.25 M醋酸鈷的0.25 M醋酸錳混合溶液中進行陽極沉積製備之氧化物電極在2 M KCl水溶液中以不同掃瞄速率進行測試發現,不同鍍液濃度所製備之氧化物在低掃描速率下(5 mV/sec)皆有理想的擬電容行為,錳氧化物電極有最高的比電容值210 F/g,鍍液中隨著醋酸鈷濃度的添加,氧化物電極之比電容有下降的趨勢。將陽極沉積之氧化物電極於25 ℃、50 mV/sec、掃瞄範圍為0~ 1 VSCE下進行電化學穩定性測試後可以知道,500 cycles循環伏安掃瞄後,氧化物比電容值的衰退率約為20%。與XPS結果比較,推測高價數的錳氧化物不利於比電容值的提升。
將0.25 M醋酸錳與0.1 M 醋酸鈷所製備之錳-鈷氧化物電極於2M KOH、2M Na2SO4、2M KCl三種不同電解質中進行循環伏安測試結果顯示,於KOH水溶液中錳-鈷氧化物電極不具有擬電容特性;而於KCl及Na2SO4水溶液中之循環伏安曲線,具有較為對稱的氧化及還原面積,表示在此二種電解質溶液中錳-鈷氧化物電極可以表現出優異的擬電容特性。
Manganese-cobalt binary oxides were prepared by anodic deposition at deposited potential of 0.8 VSCE on graphite substrates. The deposition solution was the mixture of manganese acetate and cobalt acetate aqueous electrolytes. The material characteristics and electrochemical behaviors were investigated.
The chemical composition of the oxides prepared by anodic deposition was examined by EDS and EPMA. EDS and EPMA results show that the manganese and cobalt were distributed evenly in the plating layer. The surface morphology of manganese-cobalt oxides was observed by SEM. X-ray diffraction patterns of manganese-cobalt oxide indicated that the as-deposited oxides exists poor crystallinity. XPS were carried out to examine the chemical state of the deposited oxides. Analytical results displayed that the oxide was composed of both trivalent and tetravalent manganese. However, the tetravalent manganese oxide became the dominant species in the deposited film with increasing the concentration of cobalt acetate in the plating solution. The Co2p3/2 results show that the oxides were made up of divalent and trivalent cobalt. Nevertheless, the hydroxide of cobalt became the main variety in the deposited oxide with increasing the concentration of cobalt acetate in the plating solution. The O 1s spectra of deposited oxide could be deconvoluted into varied constituents.
The oxide by anodic deposition exhibited the ideal pseudo-capacitor behavior at low scan rate. The specific capacitance of the oxide decreased with increasing the concentration of cobalt acetate in the plating solution. After 500 cycles CV test, the specific capacitance remained 80%. Finally, the manganese-cobalt oxide electrode exhibited excellent pseudo-capacitive performance in the KCl and Na2SO4 electrolyte, not in KOH solution.
參考文獻
[1] M. Carlen and R. Kotz, “Principles and applications of electrochemical capacitors”, Electrochim. Acta, 45 (2000) 2483.
[2] B.E. Conway, “Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage”, J. Electrochem. Soc., 138 (1991) 1539.
[3] J. P. Zheng, J. Huang, and T.R. Jow, “The limitation of energy density for electrochemical capacitors”, J. Electrochem. Soc., 144 (1997) 2026.
[4] B. Pillay and J. Newman, “The influence of side reaction on the performance of electrochemical double-layer capacitors”, J. Electrochem. Soc., 143 (1996) 1806.
[5] J. P. Zheng, and T. R. Jow, “High energy and high power density electrochemical capacitors”, J. Power Sourses, 62 (1996) 155.
[6] H. K.,and K.B. Kim, “Ruthenium Oxide Thin Film Electrodes for Supercapacitors”, Electrochem. Solid-State Lett., 4 (2001) A62.
[7] Ravinder N. Reddy, Ramana G. Reddy, “Sol–gel MnO2 as an electrode material for electrochemical capacitors”, J. Power Sources, 124 (2003) 330.
[8] J.P. Zheng, and T.R. Jow, “A new charge storage mechanism for electrochemical capacitors”, J. Electrochem. Soc., 142 (1995) L6.
[9] W. C. Chena, C. C. Hu, C. C. Wang, C. K. Min, “Electrochemical characterization of activated carbon–ruthenium oxide nanoparticles composites for supercapacitors”, J. Power Sources, 125 (2004) 292.
[10] S. C. Pang, and M. A. Anderson, “Novel electrode materials for thin-film ultracapacitors: comparison of electrochemical properties of sol-gel-derived and electrodeposited manganese dioxide”, J. Electrochem. Soc., 147 (2000) 444.
[11] J. Jiang, and A. Kucernak, “Electrochemical supercapacitor material based on manganese oxide: preparation and characterization”, Electrochim. Acta, 47 (2002) 2381.
[12] C. C. Hu, and T. W. Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition”, Electrochem. Comm., 4 (2002) 105.
[13] J. K. Chang and W. T. Tsai, “Material Characterization and Electrochemical Performance of Hydrous Manganese Oxide Electrodes for Use in Electrochemical Pseudocapacitors”, J. Electrochem. Soc., 150 (2003) A1333.
[14] B. Djurfors, J.N. Broughton, M.J. Brett, and D.G. Ivey “Electrochemical oxidation of Mn/MnO films: formation of an electrochemical capacitor”, Acta Mater., 53 (2005) 957.
[15] Deborah J. Jones, Etienne Wortham, Jacques Rozie`re, Fre´de´ric Favier, Jean-Louis Pascal, and Laure Monconduit, ”Manganese oxide nanocomposites: preparation and some electrochemical properties”, J. Phys. Chem. Solids, 65 (2004) 235.
[16] M. Wohlfahrt-Mehrens, J. Schenk, P.M. Wilde, E. Abdelmula, P. Axmann, and J. Garche, “New materials for supercapacitors”, J. Power Sources, 105 (2002) 182.
[17] R. J. Brodd, K. R. Bullock, R. A. Leising, R. L. Middaugh, J. R. Miller, and E. Takeuchi., “Batteries, 1977 to 2002”, J. Electrochem. Soc., 151 (2004) K1.
[18] D. Qu, H. Shi, “Studies of activated carbons used in double-layer capacitors”, J. Power Sources, 74 (1998) 99.
[19] M. Nakamura, M. Nakanishi, and K. Yamamoto, “Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors”, J. Power Sources, 60 (1996) 255.
[20] P. Y. Chuang, and C. C. Hu, “The electrochemical characteristics of binary manganese-cobalt oxides prepared by anodic deposition”, Mater. Chem. Phys., 92 (2005) 138.
[21] Venkat Srinivasan, and John W. Weidner, “Capacitance studies of cobalt oxide films formed via electrochemical precipitation”,J. Power Sources, 108 (2002) 15.
[22] B.E. Conway, “Electrochemical Supercapacitors”, Kluwer Academic Publishers, New York, 1999.
[23] H. K. Kim, T. Y. Seong, J. H. Lim, W. I. Cho, and Y. S. Yoon, “Electrochemical and structure properties of radio frequency sputtered cobalt oxide electrodes for thin-film supercapacitors”, J. Power Sources, 102 (2001) 167.
[24] Marta Maria Natile, and Antonella Glisenti, “Study of Surface Reactivity of Cobalt Oxides: Interaction with Methanol ”, Chem. Mater., 14 (2002) 3090.
[25] S. Sarangapani, B. V. Tilak, and C. P. Chen, “Materials for electrochemical capacitors”, J. Electrochem., Soc., 143 (1996) 3791.
[26] J.H. Park, and O Ok Park, “Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes”, J. Power Sourses, 111 (2002) 185.
[27] J. P. Zheng, T. R. Jow, “Effect of salt concentration in electrolytes on the maximum energy storage for double layer capacitors”, J.Electrochem. Soc., 144 (1997) 2417.
[28] 蔡文達,張仍奎,金屬氧化物系列超高電容器簡介,材料會訊,8[3] (2001) 35.
[29] H.Y. Lee, J.B. Goodenough, and V. Manivannan, “Electrochemical capacitors with KCl electrolyte”, Comptes Rendus Chimie, 2 (1999) 565.
[30] A. J. Bard and L. R. Faulkner, “Electrochemical Methods, Fundamentals and Applications”, John Wiley & Sons, Singapore, 1980.
[31] C. C. Hu, and T. W. Tsou, “Capacitive and textural characteristics of hydrous manganese oxide prepared by anodic deposition”, Electrochim. Acta, 47 (2002) 3523.
[32] Mengqiang Wu, Graeme A. Snook, George Z. Chen, and Derek J. Fray, “Redox deposition of manganese oxide on graphite for supercapacitors”, Electrochem. Commun., 6 (2004) 499.
[33] J.N. Broughton , and M.J. Brett, ”Variations in MnO2 electrodeposition for electrochemical capacitors”, Electrochim. Acta, 50 (2005) 4814.
[34] J. K. Chang, C. T. Lin, and W. T. Tsai, “Manganese oxide/carbon composite electrodes for electrochemical capacitors”, Electrochem. Commun., 6 (2004) 666.
[35] Radojka P. Simpraga, “Reversibility and irreversibility in the formation and reduction of oxide film states on Co at ambient and low temperatures”, J. Electroanal. Chem., 355 (1993) 79.
[36] T. C. Liu, W.G. Pell, and B.E. Conway, “Stages in the development of thick cobalt oxide films exhibiting reversible redox behavior and pseudocapacitance”, Electrochim. Acta, 44 (1999) 2829.
[37] L. Cao, M. Lu, and H. L. Li, “Preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance”, J. Electrochem. Soc., 152,5 (2005) A871.
[38] Y. U. Jeong, A. Manthiram, “Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes”,J. Electrochem. Soc., 149 (2002) A1419
[39] M. Chigane, and M. Ishikawa, “Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism”, J. Electrochem. Soc., 147 (2000) 2246.
[40] M. Chigane, M. Ishikawa, and Masanobu Izaki, “Preparation of Manganese Oxide Thin Films by Electrolysis /Chemical Deposition and Electrochromism ”, J. Electrochem. Soc., 148, (2001) D96.
[41] D. Briggs, J. C. Riviere, in Partical Surface Analysis, p.128, Vol. 2, 2nd ed.,edited by D. briggs, M. P. Seah, John Wiley & Sons, Chichester (1990).
[42] Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D., “Handbook of X-ray Photoelectron Spectroscopy”, Chastain, J., King, R. C., Jr., Ed., Physical Electronics, Inc., Minnesota, 1995.
[43] J. C. Caver, G. K. Schweitzer, T. A. Carlson, “Use of X-ray Photoelectron Spectroscopy to Study Bonding in Cr, Mn, Fe, and Co Compounds”, J. Chem. Phys., 57 (1972) 973.
[44] M. Oku, K. Hirokawa, S. Ikeda, “X-ray photoelectron spectroscopy of manganese—oxygen systems”, J. Electron Spectrosc. Relat. Phenom., 7 (1975) 465.
[45] Qinghu Tang, Qinghong Zhang, Ping Wang, Ye Wang, and Huilin Wan, “Characterizations of Cobalt Oxide Nanoparticles within Faujasite Zeolites and the Formation of Metallic Cobalt”, Chem. Mater. 16 (2004) 1967.
[46] B.F. Dzhurinsk, D. Gzti, N. P. Sergushin, V. I. Nefedov, YA. V. Salyn, “An X-ray photoelectron spectroscopic study of certain oxides”, Russian Journal of Inorganic Chemistry, 20 (1965) 2307.
[47] John Willey, Sons, “Practical surface analysis” Vol. 1, second edition 1993.
[48] T.L. Barr, “An ESCA Study of Termination of the Passivation of Elemental Metals”, 82 (1978) 1801.