簡易檢索 / 詳目顯示

研究生: 陳熒珊
Chen, Ying-Shan
論文名稱: 探討DNA複製重啟作用中大腸桿菌單股DNA結合蛋白及其交互作用蛋白之分子相互作用
Study on the molecular interaction between Escherichia coli single-stranded DNA binding protein and its partner protein in DNA replication restart
指導教授: 王淑鶯
Wang, Shu-Ying
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 77
中文關鍵詞: 單股DNA結合蛋白PriA解旋酶DNA複製重啟
外文關鍵詞: single-stranded DNA-binding protein, PriA helicase, DNA replication restart
相關次數: 點閱:145下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單股DNA結合蛋白(single-stranded DNA-binding proteins, SSBs)廣泛地存在於所有的生物體當中,SSBs在細胞DNA複製、修復和重組過程中會保護暫時裸露的單股DNA並召集合適的DNA代謝蛋白以協調基因體的功能與維護,因此對於基因體穩定性的維持至關重要。但目前還未能解釋,在這些基因體維護的過程中,SSB如何選擇性的與各種不同的SSB 相互作用蛋白(SSB interacting proteins, SIPs)進行交互作用。以往的研究認為大腸桿菌的SSB(EcSSB)會通過C端尾部的酸性尖端(TIP)與SIPs結合。然而,另外的假設模型則表示SSB中的內在無序連接器(IDL)亦可能參與調節EcSSB和SIPs的相互作用。因此,我的研究主題將利用DNA解旋酶PriA來研究 SSB/SIPs相互作用的機制。先前有研究表明,SSB會直接與PriA進行相互作用並促進分叉DNA受質上的PriA解旋酶活性。PriA解旋酶是大腸桿菌中用以重新啟動DNA複製的起始子,在細胞複製中,DNA損傷將導致複製複合體過早從DNA上脫離並造成DNA 的複製終止,從而導致基因體複製不完整或甚至是細胞死亡。因此,複製重啟是維持基因完整的必要反應。然而,尚不清楚SSB如何促進PriA所介導的DNA複製重啟的分子機制。因此,本研究旨在闡明SSB/PriA複合物的結構基礎,以期了解IDL在SSB/PriA相互作用中的角色以及SSB刺激PriA解旋酶的機制。在這項研究中,我們成功地在體外環境重建了SSB和PriA的複合物。令人驚訝地是,我們透過體外下拉測定法以及粒徑篩析層析法證實了在SSB/PriA的交互作用中不需要IDL的存在。除此之外,我們還獲得了SSB ΔIDL /PriA複合物的蛋白質晶體,未來的工作可以致力於解析晶體結構,並希望能提供第一個基於結構的證據,探討SSB如何在缺乏IDL的情況仍有功能的與PriA進行交互作用,並進一步了解SSB和SIP之間的交互機制。

    Single-stranded DNA-binding protein (SSBs) exists in all organisms and is essential
    for genome maintenance by protecting the transiently exposed single-stranded DNA (ssDNA) during DNA replication, repair, and recombination. In addition, SSBs bind to transiently open ssDNA intermediates and recruits appropriate DNA metabolic proteins to coordinate genome maintenance. However, it has not yet been able to explain how SSBs selectively interact with different SSB interacting proteins (SIPs) during genome maintenance. Previously, it was indicated that Escherichia coli SSB (EcSSB) binds to SIPs through the C-terminal acidic tip (TIP). Recently, several hypothetic models suggested that the intrinsically disordered linker (IDL) in SSB is required to regulate the interaction of SSB and SIPs. The profound evidence of how SSB interacts with SIPs is lacking. In this project, we utilized the DNA helicase PriA to investigate the mechanism of SSB/SIPs interaction. Previous studies showed that SSB directly interacts with PriA, one of the SIPs, and stimulates PriA helicase activity on the branched DNA substrate. PriA helicase is an initiator to restart DNA replication in E. coli. In cell replication, DNA damage causes the replication complexes prematurely detach and DNA replication termination, which leads to incomplete genome replication and cell death. Therefore, replication restart is an essential reaction to maintain genome integrity. However, the molecular mechanism of how SSB promotes PriA-mediated DNA replication restart is still unknown. Hence, we aim to solve the structure of the SSB/PriA complex to understand the role of IDL in SSB/PriA interaction, and the mechanism by which SSB stimulates PriA helicase activity. In this study, we successfully reconstituted the in vitro complex formation of SSB and PriA. Interestingly, the biochemical analysis showed that IDL is not required for SSB/PriA interaction. The purified SSB ΔIDL /PriA complex has been successfully crystallized. In the future, structural determination of SSB ΔIDL /PriA complex can provide the structure-based evidence to explore the molecular mechanism by which SSB functionally interacts with PriA in the absence of IDL for understanding the interacting mechanism of SSB-SIP complex.

    中文摘要 I Abstract II Acknowledgment IV Contents V List of Tables VIII List of Figures IX Abbreviation X Chapter 1 Introduction 1 1.1 Single-stranded DNA binding protein (SSBs) 1 1.1.1 The physiological function of SSBs 1 1.1.2 Structural dissimilarity of SSBs among different species 1 1.1.3 Three functional regions of E.coli SSB 2 1.2 The interaction of SSB and SSB interacting proteins 4 1.3 Primosomal protein N’ (PriA) 4 1.3.1 The physiological function of Primosomal protein N’ (PriA) 4 1.3.2 The interaction of SSB and PriA 5 1.4 Antibiotic drug development based on SSB-SIPs interaction 5 1.5 Rationale and specific aims 7 Chapter 2 Materials and Methods 8 2.1 Materials 8 2.1.1 Bacterial strains 8 2.1.2 Plasmids 9 2.1.3 Primers 10 2.1.4 Chemicals and other materials 11 2.2 Methods 15 2.2.1 Construction of E. coli SSB and PriA overexpression plasmid 15 2.2.2 Protein overexpression and purification 15 2.2.2.1 Overexpression of SSB, SSB ΔIDL , SSB ΔTIP , and PriA 15 2.2.2.2 Purification of SSB, SSB ΔIDL , SSB ΔTIP , and PriA 16 2.2.3. In vitro pull-down assay 16 2.2.4 Gel filtration chromatography 17 2.2.5 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 17 2.2.6 Liquid chromatography-mass spectrometry (LC-Mass) 17 2.2.7 Protein cross-linking 18 2.2.8 Crystallization of SSB wt /PriA and SSB ΔIDL /PriA complexes 18 2.2.8.1 Crystallization sample preparing 18 2.2.8.2 Crystallization condition screening 18 2.2.9 X-ray data collection 19 Chapter 3 Results 20 3.1 Overexpression and purification of recombinant 6xHis-tagged SSB and 6xHis-tagged PriA 20 3.1.1 Overexpression and purification of 6xHis-tagged SSB 20 3.1.2 Overexpression and purification of 6xHis-tagged PriA 20 3.2 SSB directly interacts with PriA analyzed by in vitro pull-down assay 21 3.2.1 Overexpression of tag-free SSB and tag-free PriA 21 3.2.2 Complex formation of SSB and PriA 22 3.3 IDL is not essential for complex formation of SSB/PriA complex 22 3.3.1 Overexpression and purification of 6xHis-tagged SSB ΔIDL 22 3.3.2 Complex formation of SSB ΔIDL and PriA 23 3.4 Crystals of 6xHis-SSB ΔIDL /PriA and 6xHis-SSB wt /PriA complexes 24 3.4.1 Sample preparation of 6xHis-SSB ΔIDL /PriA and 6xHis-SSB wt /PriA complexes 24 3.4.2 The crystallization conditions of 6xHis-SSB wt /PriA and 6xHis-SSB ΔIDL /PriA complexes 24 3.5 X-ray diffraction data collection 25 Chapter 4 Conclusion and Future prospective work 27 Chapter 5 Discussion 30 SSB may use different regions to interact with different SIPs to achieve selectivity 30 IDL region may affect the ability of SSB to promote SIPs activity 31 The number of SSB C-terminal tails may affect the interaction between SSB-SIP 33 The concentration of salt may affect the stability of SSB/PriA complex 34 Antibacterial drug development based on SSB-SIPs interaction 35 References 36 Tables 46 Figures 47 Appendix 64

    1 Van Dyck, E., Foury, F., Stillman, B. & Brill, S. A single‐stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. The EMBO Journal 11, 3421-3430 (1992).
    2 Antony, E. & Lohman, T. M. in Semin. Cell Dev. Biol. 102-111 (Elsevier).
    3 Kenny, M. K., Schlegel, U., Furneaux, H. & Hurwitz, J. The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J. Biol. Chem. 265, 7693-7700 (1990).
    4 Shamoo, Y., Friedman, A. M., Parsons, M. R., Konigsberg, W. H. & Steitz, T. A. Crystal structure of a replication fork single-stranded DNA binding protein (T4 gp32) complexed to DNA. Nature 376, 362-366 (1995).
    5 Iftode, C., Daniely, Y. & Borowiec, J. A. Replication protein A (RPA): the eukaryotic SSB. Crit. Rev. Biochem. Mol. Biol. 34, 141-180 (1999).
    6 Marceau, A. H. in Single-Stranded DNA Binding Proteins: Methods and Protocols (ed James L. Keck) 1-21 (Humana Press, 2012).
    7 Ashton, N. W., Bolderson, E., Cubeddu, L., O’Byrne, K. J. & Richard, D. J. Human single-stranded DNA binding proteins are essential for maintaining genomic stability. BMC Mol. Biol. 14, 1-20 (2013).
    8 Richard, D. J., Bolderson, E. & Khanna, K. K. Multiple human single-stranded DNA binding proteins function in genome maintenance: structural, biochemical and functional analysis. Crit. Rev. Biochem. Mol. Biol. 44, 98-116 (2009).
    9 Meyer, R. R. & Laine, P. S. The single-stranded DNA-binding protein of Escherichia coli. Microbiol. Mol. Biol. Rev. 54, 342-380 (1990).
    10 Lohman, T. M. & Ferrari, M. E. Escherichia coli single-stranded DNA-binding protein: multiple DNA-binding modes and cooperativities. Annu. Rev. Biochem. 63, 527 (1994).
    11 Shereda, R. D., Kozlov, A. G., Lohman, T. M., Cox, M. M. & Keck, J. L. SSB as an organizer/mobilizer of genome maintenance complexes. Crit. Rev. Biochem. Mol. Biol. 43, 289-318 (2008).
    12 Waters, R. (John Wiley & Sons, Ltd Chichester, UK, 2006).
    13 Flynn, R. L. & Zou, L. Oligonucleotide/oligosaccharide-binding fold proteins: a growing family of genome guardians. Crit. Rev. Biochem. Mol. Biol. 45, 266-275 (2010).
    14 Horvath, M. P. Structural anatomy of telomere OB proteins. Crit. Rev. Biochem. Mol. Biol. 46, 409-435 (2011).
    15 Kozlov, A. G. et al. Intrinsically disordered C-terminal tails of E. coli single-stranded DNA binding protein regulate cooperative binding to single-stranded DNA. J. Mol. Biol. 427, 763-774 (2015).
    16 Green, M., Hatter, L., Brookes, E., Soultanas, P. & Scott, D. J. Defining the intrinsically disordered C-terminal domain of SSB reveals DNA-mediated compaction. J. Mol. Biol. 428, 357-364 (2016).
    17 Wu, Y., Lu, J. & Kang, T. Human single-stranded DNA binding proteins: guardians of genome stability. Acta biochimica et biophysica Sinica 48, 671-677 (2016).
    18 Yang, C., Curth, U., Urbanke, C. & Kang, C. Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution. Nat. Struct. Biol. 4, 153-157 (1997).
    19 Richard, D. J. et al. Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature 453, 677-681 (2008).
    20 Li, Y. et al. HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response. J. Biol. Chem. 284, 23525-23531 (2009).
    21 Chen, R. & Wold, M. S. Replication protein A: single‐stranded DNA's first responder: dynamic DNA‐interactions allow replication protein A to direct single‐strand DNA intermediates into different pathways for synthesis or repair. Bioessays 36, 1156-1161 (2014).
    22 Zou, Y., Liu, Y., Wu, X. & Shell, S. M. Functions of human replication protein A (RPA): from DNA replication to DNA damage and stress responses. Journal of cellular physiology 208, 267-273 (2006).
    23 Fedorov, R., Witte, G., Urbanke, C., Manstein, D. J. & Curth, U. 3D structure of Thermus aquaticus single-stranded DNA–binding protein gives insight into the functioning of SSB proteins. Nucleic Acids Res. 34, 6708-6717 (2006).
    24 Bernstein, D. A. et al. Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc. Natl. Acad. Sci. U.S.A 101, 8575-8580 (2004).
    25 Hollis, T., Stattel, J. M., Walther, D. S., Richardson, C. C. & Ellenberger, T. Structure of the gene 2.5 protein, a single-stranded DNA binding protein encoded by bacteriophage T7. Proc. Natl. Acad. Sci. U.S.A 98, 9557-9562 (2001).
    26 Raghunathan, S., Ricard, C. S., Lohman, T. M. & Waksman, G. Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-Å resolution. Proc. Natl. Acad. Sci. U.S.A 94, 6652-6657 (1997).
    27 Bochkarev, A. & Bochkareva, E. From RPA to BRCA2: lessons from single-stranded DNA binding by the OB-fold. Curr. Opin. Struct. Biol. 14, 36-42 (2004).
    28 Lohman, T. M. & Overman, L. B. Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration. J. Biol. Chem. 260, 3594-3603 (1985).
    29 Raghunathan, S., Kozlov, A. G., Lohman, T. M. & Waksman, G. Structure of the DNA binding domain of E. coli SSB bound to ssDNA. Nat. Struct. Biol. 7, 648-652 (2000).
    30 Wessel, S. R. et al. PriC-mediated DNA replication restart requires PriC complex formation with the single-stranded DNA-binding protein. J. Biol. Chem. 288, 17569-17578 (2013).
    31 Bhattacharyya, B. et al. Structural mechanisms of PriA-mediated DNA replication restart. Proc. Natl. Acad. Sci. U.S.A 111, 1373-1378 (2014).
    32 Mills, M. et al. RecQ helicase triggers a binding mode change in the SSB–DNA complex to efficiently initiate DNA unwinding. Nucleic Acids Res. 45, 11878-11890 (2017).
    33 Cadman, C. J. & McGlynn, P. PriA helicase and SSB interact physically and functionally. Nucleic Acids Res. 32, 6378-6387 (2004).
    34 Shereda, R. D., Bernstein, D. A. & Keck, J. L. A central role for SSB in Escherichia coli RecQ DNA helicase function. J. Biol. Chem. 282, 19247-19258 (2007).
    35 Lu, D. & Keck, J. L. Structural basis of Escherichia coli single-stranded DNA-binding protein stimulation of exonuclease I. Proc. Natl. Acad. Sci. U.S.A 105, 9169-9174 (2008).
    36 Shereda, R. D., Reiter, N. J., Butcher, S. E. & Keck, J. L. Identification of the SSB binding site on E. coli RecQ reveals a conserved surface for binding SSB's C terminus. J. Mol. Biol. 386, 612-625 (2009).
    37 Curth, U., Genschel, J., Urbanke, C. & Greipel, J. In vitro and in vivo function of the C-terminus of Escherichia coli single-stranded DNA binding protein. Nucleic Acids Res. 24, 2706-2711 (1996).
    38 Ding, W. et al. The mechanism of Single strand binding protein–RecG binding: Implications for SSB interactome function. Protein Sci. 29, 1211-1227 (2020).
    39 Bianco, P. R. DNA Helicase-SSB Interactions Critical to the Regression and Restart of Stalled DNA Replication forks in Escherichia coli. Genes 11, 471 (2020).
    40 Bianco, P. R. et al. T he IDL of E. coli SSB links ssDNA and protein binding by mediating protein–protein interactions. Protein Sci. 26, 227-241 (2017).
    41 Shinn, M. K., Kozlov, A. G., Nguyen, B., Bujalowski, W. M. & Lohman, T. M. Are the intrinsically disordered linkers involved in SSB binding to accessory proteins? Nucleic Acids Res. 47, 8581-8594 (2019).
    42 Buss, J. A., Kimura, Y. & Bianco, P. R. RecG interacts directly with SSB: implications for stalled replication fork regression. Nucleic Acids Res. 36, 7029-7042 (2008).
    43 Ryzhikov, M., Koroleva, O., Postnov, D., Tran, A. & Korolev, S. Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res. 39, 6305-6314 (2011).
    44 Tan, H. Y. et al. The intrinsically disordered linker of E. coli SSB is critical for the release from single‐stranded DNA. Protein Sci. 26, 700-717 (2017).
    45 Lu, D., Myers, A. R., George, N. P. & Keck, J. L. Mechanism of Exonuclease I stimulation by the single-stranded DNA-binding protein. Nucleic Acids Res. 39, 6536-6545, doi:10.1093/nar/gkr315 (2011).
    46 Cadman, C. J. & McGlynn, P. PriA helicase and SSB interact physically and functionally. Nucleic Acids Res. 32, 6378-6387, doi:10.1093/nar/gkh980 (2004).
    47 Buss, J. A., Kimura, Y. & Bianco, P. R. RecG interacts directly with SSB: implications for stalled replication fork regression. Nucleic Acids Res. 36, 7029-7042, doi:10.1093/nar/gkn795 (2008).
    48 Ryzhikov, M., Koroleva, O., Postnov, D., Tran, A. & Korolev, S. Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res. 39, 6305-6314, doi:10.1093/nar/gkr199 (2011).
    49 Mills, M. et al. RecQ helicase triggers a binding mode change in the SSB-DNA complex to efficiently initiate DNA unwinding. Nucleic Acids Res. 45, 11878-11890, doi:10.1093/nar/gkx939 (2017).
    50 Lohman, T. M., Tomko, E. J. & Wu, C. G. Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nature Reviews Molecular Cell Biology 9, 391-401 (2008).
    51 Rangarajan, S., Woodgate, R. & Goodman, M. F. Replication restart in UV‐irradiated Escherichia coli involving pols II, III, V, PriA, RecA and RecFOR proteins. Mol. Microbiol. 43, 617-628 (2002).
    52 Lopper, M., Boonsombat, R., Sandler, S. J. & Keck, J. L. A hand-off mechanism for primosome assembly in replication restart. Mol. Cell 26, 781-793 (2007).
    53 Windgassen, T. A., Wessel, S. R., Bhattacharyya, B. & Keck, J. L. Mechanisms of bacterial DNA replication restart. Nucleic Acids Res. 46, 504-519 (2018).
    54 Windgassen, T. A., Leroux, M., Satyshur, K. A., Sandler, S. J. & Keck, J. L. Structure-specific DNA replication-fork recognition directs helicase and replication restart activities of the PriA helicase. Proc. Natl. Acad. Sci. U.S.A 115, E9075-E9084 (2018).
    55 Allen Jr, G. C. & Kornberg, A. Assembly of the primosome of DNA replication in Escherichia coli. J. Biol. Chem. 268, 19204-19209 (1993).
    56 Sun, Z., Wang, Y., Bianco, P. R. & Lyubchenko, Y. L. Dynamics of the PriA Helicase at Stalled DNA Replication Forks. The Journal of Physical Chemistry B (2021).
    57 Huang, Y.-H. & Huang, C.-Y. Structural insight into the DNA-binding mode of the primosomal proteins PriA, PriB, and DnaT. BioMed research international 2014 (2014).
    58 Windgassen, T. A., Wessel, S. R., Bhattacharyya, B. & Keck, J. L. Mechanisms of bacterial DNA replication restart. Nucleic Acids Res. 46, 504-519, doi:10.1093/nar/gkx1203 (2017).
    59 Jones, J. M. & Nakai, H. Escherichia coli PriA helicase: fork binding orients the helicase to unwind the lagging strand side of arrested replication forks. J. Mol. Biol. 312, 935-947 (2001).
    60 Boucher, H. W. Bad bugs, no drugs 2002–2020: progress, challenges, and call to action. Transactions of the American Clinical and Climatological Association 131, 65 (2020).
    61 Boucher, H. W. et al. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48, 1-12, doi:10.1086/595011 (2009).
    62 Marceau, A. H. et al. Protein interactions in genome maintenance as novel antibacterial targets. PloS one 8, e58765 (2013).
    63 Wells, J. A. & McClendon, C. L. Reaching for high-hanging fruit in drug discovery at protein–protein interfaces. Nature 450, 1001-1009 (2007).
    64 Voter, A. F. et al. A high-throughput screening strategy to identify inhibitors of ssb protein–protein interactions in an academic screening facility. SLAS Discovery: Advancing Life Sciences R&D 23, 94-101 (2018).
    65 Klimova, A. N. & Sandler, S. J. Mutational analysis of residues in PriA and PriC affecting their ability to interact with SSB in Escherichia coli K-12. J. Bacteriol. 202, e00404-00420 (2020).
    66 Savvides, S. N. et al. The C‐terminal domain of full‐length E. coli SSB is disordered even when bound to DNA. Protein Sci. 13, 1942-1947 (2004).
    67 Yu, C. et al. SSB binds to the RecG and PriA helicases in vivo in the absence of DNA. Genes Cells 21, 163-184, doi:10.1111/gtc.12334 (2016).
    68 Lu, D., Windsor, M. A., Gellman, S. H. & Keck, J. L. Peptide inhibitors identify roles for SSB C-terminal residues in SSB/exonuclease I complex formation. Biochemistry 48, 6764-6771 (2009).
    69 Marceau, A. H. et al. Structure of the SSB–DNA polymerase III interface and its role in DNA replication. The EMBO journal 30, 4236-4247 (2011).
    70 Nooren, I. M. & Thornton, J. M. Diversity of protein–protein interactions. The EMBO journal 22, 3486-3492 (2003).
    71 Wang, Y., Sun, Z., Bianco, P. R. & Lyubchenko, Y. L. Atomic force microscopy–based characterization of the interaction of PriA helicase with stalled DNA replication forks. J. Biol. Chem. 295, 6043-6052 (2020).
    72 Tanaka, T., Taniyama, C., Arai, K. I. & Masai, H. ATPase/helicase motif mutants of Escherichia coli PriA protein essential for recombination‐dependent DNA replication. Genes Cells 8, 251-261 (2003).
    73 Nurse, P., Liu, J. & Marians, K. J. Two modes of PriA binding to DNA. J. Biol. Chem. 274, 25026-25032 (1999).
    74 Tan, H. Y. & Bianco, P. R. SSB Facilitates Fork-Substrate Discrimination by the PriA DNA Helicase. ACS Omega (2021).
    75 Antony, E. et al. Multiple C-terminal tails within a single E. coli SSB homotetramer coordinate DNA replication and repair. J. Mol. Biol. 425, 4802-4819 (2013).
    76 Liu, J., Nurse, P. & Marians, K. J. The Ordered Assembly of the φX174-type Primosome: III. PriB FACILITATES COMPLEX FORMATION BETWEEN PriA AND DnaT. J. Biol. Chem. 271, 15656-15661 (1996).
    77 Bujalowski, W. & Lohman, T. M. Negative co-operativity in Escherichia coli single strand binding protein-oligonucleotide interactions: I. Evidence and a quantitative model. J. Mol. Biol. 207, 249-268 (1989).
    78 Lohman, T. M. & Bujalowski, W. Effects of base composition on the negative cooperativity and binding mode transitions of Escherichia coli SSB-single-stranded DNA complexes. Biochemistry 33, 6167-6176 (1994).
    79 Bujalowski, W. & Lohman, T. M. Negative co-operativity in Escherichia coli single strand binding protein-oligonucleotide interactions: II. Salt, temperature and oligonucleotide length effects. J. Mol. Biol. 207, 269-288 (1989).
    80 Roy, R., Kozlov, A. G., Lohman, T. M. & Ha, T. Dynamic structural rearrangements between DNA binding modes of E. coli SSB protein. J. Mol. Biol. 369, 1244-1257 (2007).
    81 Kozlov, A. G., Cox, M. M. & Lohman, T. M. Regulation of single-stranded DNA binding by the C termini of Escherichia coli single-stranded DNA-binding (SSB) protein. J. Biol. Chem. 285, 17246-17252 (2010).
    82 Su, X.-C. et al. Bound or free: interaction of the C-terminal domain of Escherichia coli single-stranded DNA-binding protein (SSB) with the tetrameric core of SSB. Biochemistry 53, 1925-1934 (2014).
    83 Kozlov, A. G., Jezewska, M. J., Bujalowski, W. & Lohman, T. M. Binding specificity of Escherichia coli single-stranded DNA binding protein for the χ subunit of DNA pol III holoenzyme and PriA helicase. Biochemistry 49, 3555-3566 (2010).
    84 Fanning, E., Klimovich, V. & Nager, A. R. A dynamic model for replication protein A (RPA) function in DNA processing pathways. Nucleic Acids Res. 34, 4126-4137 (2006).

    無法下載圖示 校內:2026-08-10公開
    校外:2026-08-10公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE