簡易檢索 / 詳目顯示

研究生: 鄭雅云
Cheng, Ya-Yun
論文名稱: 非介入式同步診測碳氫火焰局部當量比與火焰溫度之自然螢光量測系統
Simultaneous Measurements of Local Equivalence Ratio and Temperature in Hydrocarbon Flames Using Chemiluminescence Diagnostic System
指導教授: 趙怡欽
Chao, Yei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 56
中文關鍵詞: 光學感測器火焰溫度當量比自然螢光
外文關鍵詞: Optical sensor, Flame temperature, Equivalence ratio, Chemiluminescence emission
相關次數: 點閱:126下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    題目:非介入式同步診測碳氫火焰局部當量比與火焰溫度之自然螢光量測系統
    研究生:鄭雅云
    指導教授:趙怡欽 博士
    關鍵字詞:光學感測器、自然螢光、當量比、火焰溫度
    本研究之目的乃利用火焰自然螢光發展低成本、無雷射之點量測光學感測系統,可同時量測紊流預混甲烷火焰當量比及溫度,以了解火焰內部化學交互作用與各成分濃度與參數之影響,將來亦可發展為大型燃燒器對於污染物生成之即時監控系統。
    本實驗設計之卡塞格倫( Cassegrain )反射鏡之焦點解析度可達 40μm × 600μm(徑向×軸向)微米級之精度,並與光纖連結傳輸火焰自然螢光,再利用單光儀結合液態氮冷卻之CCD照相機進行火焰自然螢光量測,診測層流預混甲烷空氣火焰於當量比0.85至1.5間,火焰中電子能階達激發態之OH*、CH*以及C2*成份粒子產生的自然螢光強度分布。
    在文獻中顯示,PMT光學量測系統雖然具有快速的數據存取速率,但無法濾除因CO2*螢光造成之訊號干擾,而單光儀搭配液態氮冷卻之CCD照相機雖然數據存取速率較慢,但可同時量測波長從208 nm到835 nm之完整OH*、CH*、C2*(1,0)、C2*(0, 0)、C2*(0, 1)及CO2*螢光光譜,所以能在後續數據處理中去除CO2*螢光所造成之訊號干擾。從實驗中發現,在Φ<1.35時,所量測到的C2*/CH*、C2*/OH*及CH*/OH*螢光比值皆隨著當量比呈線性關係,除此之外,本實驗同時能以C2*(1, 0)及C2*(0, 0)螢光比值作為火焰溫度之量測。
    由上面實驗所得結果,本研究將層流預混甲烷空氣火焰所得之C2*/CH*、C2*/OH*及CH*/OH*螢光比值與當量比關係式及溫度校正常數C3應用於紊流預混甲烷空氣火焰,以驗證本研究所研發之光學量測系統可同時量測紊流預混甲烷火焰局部當量比及火焰溫度,而本研究之最終目標則是發展無雷射之點量測光學感測系統作為工業燃燒爐及焚化爐等之即時主動監控感測器。

    Abstract
    Subject: Simultaneous Measurements of Local Equivalence Ratio and Temperature in hydrocarbon Flames Using Chemiluminescence Diagnostic System.
    Student: Ya-Yun Cheng
    Adviser: Dr. Yei-Chin Chao
    Keyword: Optical sensor, Chemiluminescence emission, Equivalence ratio, Flame temperature
    The objective of this research is to develop a low cost, non-laser based diagnostic system and to apply this system for simultaneous measurements of local equivalence ratio and temperature in turbulent premixed hydrocarbon flames. In addition, the developed optical system can be applied to monitor combustion process and pollutant formation in industrial furnaces and burner.
    The system uses Cassegrain optics to eliminate chromatic aberrations and to improve the spatial resolution for light collection. Its spatial resolution is 40μm in diameter and 600μm in length. In our study, Cassegrain optics is coupled with an optics fiber and connected to the monochromator with a liquid-nitrogen-cooled CCD (LN-CCD) camera. The system is performed to study the flame structure and characteristics of the laminar premixed methane/air jet flame operated over equivalence ratio 0.85 to 1.5.
    Although the PMT array provides fast data acquisition rate for chemiluminescence emission measurements, but it gives no information on the broadband CO2* emissions and is difficult to eliminate the signal contamination from CO2 emissions. On the other hand, the LN-CCD camera measures the entire spectral range of OH*, CH*, C2*(1, 0), C2*(0, 0), C2*(0, 1) emissions as well as the broadband CO2* emissions though it gives slow data acquisition rate. We can eliminate the broadband noise by subtracting the curve-fitted values from the emission spectrum. In the experimental results, whenΦ<1.35, C2*/CH*, C2*/OH*, and CH*/OH* intensity ratios are found to be linearly related with the equivalence ratio. In addition, we can use the intensity ratio of C2*(1, 0)/C2*(0, 0) for flame temperature measurements.
    Therefore, the linear relationship between the intensity ratio of C2*/CH*, C2*/OH*, and CH*/OH* and the equivalence ratio as well as the calibrated instrument constant C3 are used for simultaneous measurements of the local equivalence ratio and flame temperature in turbulent premixed CH4-air flames. These results further demonstrate the capability of the developed optical system for flame chemiluminescence measurements. The developed inexpensive, non-laser-based chemiluminescence optical system will be applied for real-time monitoring and active control for industrial burners and hazardous waste incinerators.

    目錄 摘要..............................................I Abstract..........................................III 致謝..............................................V 目錄..............................................VI 表目錄............................................IX 圖目錄............................................X 符號..............................................XIII 第一章 緒論.......................................1 1-1 研究背景......................................1 1-2 研究動機......................................2 1-3 文獻回顧......................................4 1-4 研究目的......................................7 第二章 實驗設備..................................8 2-1 實驗設備與條件 ................................8 2-1-1燃料與空氣之供應.............................8 2-1-2 燃燒器結構..................................8 2-2火焰自然螢光量測系統...........................9 2-2-1卡塞格倫反射鏡(Cassegrain)...................10 2-2-2 光纖(Optic fiber)...........................11 2-2-3 單光儀(Monochromator).......................11 2-2-4 液態氮冷卻之CCD照相機(LN-CCD camera)........12 2-3 火焰溫度量測系統-熱電偶(Thermocouple).........13 第三章 實驗理論...................................15 3-1自然螢光(Chemiluminescence)之理論..............15 3-2 振動能階量測溫度之理論........................18 第四章 結果與討論.................................20 4-1 層流預混火焰自然螢光之特性....................20 4-1-1自然螢光之光譜分析...........................20 4-1-2 自然螢光強度與徑向位置之關係................21 4-1-3 自然螢光強度與當量比之關係..................23 4-1-4自然螢光強度比值與當量比之關係...............24 4-2自然螢光在紊流預混火焰上之應用.................25 4-2-1 量測局部火焰當量比..........................25 4-2-2 量測局部火焰溫度............................27 第五章 結論.......................................29 第六章 未來工作...................................31 參考文獻..........................................32 自述..............................................56

    參考文獻

    1.Bureau of Energy, Ministry of Economic Affairs, 2006,
    Energy White Paper. http://www.moeaec.gov.tw/ecw.asp
    2.Docquier, N. and Candel, S., 2002, "Combustion control
    and sensors: a review", Progress in Energy and
    Combustion Science, 28: p. 107-150.
    3.Higgins, B., Mcquay, M. Q., Lacas, F. and Candel, S.,
    2001, "An experimental study on the effect of pressure
    and strain rate on CH chemiluminescence of premixed fuel-lean methane/air flames", Fuel, 80: p. 1583-1591.
    4.Kojima, J., Ikeda, Y., and Nakajima, T., 2000, "Spatially resolved measurement of OH*, CH* and
    C2* chemiluminescence in the reaction zone of laminar
    methane/air premixed flames", Proc. Combust. Inst., 28:
    1757-1764.
    5.Ikeda, Y., Kojima, J., Nakajima, T., Akamatsu, F.and
    Katsuki, M., 2000, "Measurement of the local flamefront structure of turbulent premixed flames by
    local chemiluminescence", Proc. Combust. Inst., 28: 343-
    350.
    6.Hardalupas, Y., Orain, M., Panoutsos, C. S., Taylor, A.M.K.P., Olofsson, J., Seyfried, H., Richter, M., Hult,
    J., Aldén, M., Hermann, F., and Klingmann, J.,
    2004, "Chemiluminescence sensor for local equivalence ratio of reacting mixtures of fuel and air
    (FLAMESEEK)", Appl. Therm. Eng. 24: 1619-1632.
    7.Muruganandam, T. M., Kim, B.-H., Morrell, M. R.,Nori, V., Patel, M., Romig, B. W. and Seitzman, J. M., 2004, "Optical equivalence ratio sensors for gas turbine combustors", Proc. Combust. Inst., 30, 1601-1609.
    8.Kojima, J., Ikeda, Y., and Nakajima, T., 2003, "Multi- point time-series observation of optical emissions for flame-front motion analysis", Meas. Sci. Technol. 14, 1714–1724.
    9.Akamatsu, F., Wakabayashi, T., Tsushima, S., Katsuki, M., Mizutani, Y., Ikeda, Y., Kawahara, N., and Nakajima, T., 1999, "The development of light-collecting probe with high spatial resolution applicable to randomly fluctuating combustion fields", Meas. Sci. Technol. 10:1240–1246.
    10.Kojima, J., Ikeda, Y. And Nakajima, T., 2006, "Basic aspects of OH(A), CH(A), and C2(d) chemiluminescence in the reaction zone of laminar methane-air premixed flames", Combust. Flame, 140, 34-45.
    11.Smith G. P., Luque, J., Park, C., Jeffeies, J. B., Crosley, D. R., 2002, "Low pressure flame determinations of rate constants for OH(A) and CH(A) chemiluminescence", Combust. Flame, 131, pp. 59-69.
    12.Smith G. P., Park, C., Schneiderman, J., Luque, J., 2005, "C2 Swan band laser-induced fluorescence and chemiluminescence in low-pressure hydrocarbon flames", Combust. Flame, 141, pp. 66-77.
    13.Jeong, Y. K., Jeon, C. H. and Chang, Y. J., 2006, "Evaluation of the equivalence ratio of the reacting mixture using intensity ratio of chemiluminescence in laminar partially premixed CH4-air flames", Experimental Thermal and Fluid Science. 30: 663-673.
    14.Chou, T. and Patterson, D. J., 1995, "In-cylinder measurement of mixture mal-distribution in an L-head engine", Combustion and Flame, 101(1-2): p. 45-57.
    15.Lawn, C. J., 2000, "Distributions of instantaneous heat release by the cross-correlation of chemiluminescent emissions", Combustion and Flame, 123(1-2): p. 227-240.
    16.Blevins, L. G. and Gore, J. P., 1999, "Computed structure of low strain rate partially premixed CH4/air counterflow flames: implications for NO formation", Combustion and Flame, 116(4): p. 546-556.
    17.Blevins, L. G., Renfro, M. W., Lyle, K. H., Laurendeau, N. M. and Gore, J. P., 1999, "Experimental study of temperature and CH radical location in partially premixed CH4/air coflow flames", Combustion and Flame, 118(4): p. 684-696.
    18.Hardalupas, Y. and Orain, M., 2004, "Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame", Combustion andFlame, 139: p. 188-207.
    19.Higgins, B., Mcquay, M. Q., Lacas, F., Rolon, J. C., Darabiha, N. and Candel, S., 2001, "Systematic measurements of OH chemiluminescence for fuel-lean, high-pressure, premixed, laminar flames", Fuel, 80: p. 67-74.
    20.Aleiferis, P. G., Hardalupas, Y., Taylor, A. M. K. P. and Urata, K. I. A. Y., 2004, "Flame chemiluminescence studies of cyclic combustion variations and air-to-fuel ratio of the reacting mixture in a lean-burn stratified-charge spark-ignition engine", Combustion and Flame, 136(1-2): p. 72-90.
    21.Ikeda, Y. and Zimmer, L., "Measurement of combustion fluctuations in turbulent premixed methane/air burner and high pressure oil burner", Proceedings of the 3rd Symposium on smart control of turbulence: p. 55-68.
    22.Jeng, J. L., Li, Y. Y., Yang, S. Y. and Chen, W. H., 2007, "Simultaneous CH* and C2* chemiluminescence spatial measurement of Bunsen flame structure", Energy & Combustion.
    23.Ikeda, Y., Kurahashi, T., Kawahara, N. and Tomita, E., 2004, "Temperature Measurements of Laminar Propane/Air Premixed Flame Using Detailed OH* Spectra Intensity Ratio", 12th International Symposium, Applications of Laser Techniques to Fluid Mechanics.
    24.Leo, M. D., Saveliev, A., Kennedy, L. A. and Zelepouga, S. A., 2007, "OH and CH luminescence in opposed flow methane oxy-flames", Combustion and Flame, 149(4): p. 435-447.
    25.Ishiguro, T., Tsuge, S., Furuhata, T., Kitagawa, K., Arai, N., Hasegawa, T., Tanak, R. and Gupta, A. K., "Homogenization and stabilization during combustion of hydrocarbons with preheated air" Proc. Combust. Inst. 27: 3205-3213 (1998).
    26.Samaniego, J. M., Egolfopoulos, F. N. and Bowman, C. T., 1995, "CO2* Chemiluminescence in Premixed Flames", Combust. Sci. and Tech., Vol.109, p.183-203.
    27.Muruganandam, T. M., Kim, B.-H., Olsen, R., Patel, M., Romig, B. W. and Seitzman, J. M., 2003, "Chemiluminescence Based Sensors for Turbine Engines", in: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2003-4490, July 20-23.
    28.Yuan, Z. G., 1995, "The filtered Abel transform and its application in combustion diagnostics", in: Proc. West. States Sect./Combust. Inst. Fall Meeting, October 30-31.
    29.Lee, J. G. and Santavicca, D. A., 2003, "Experimental Diagnostics for the Study of Combustion Instability in lean premixed combustor", Journal of Propulsion and Power, Vol. 19, No. 5, p.735-750.
    30.簡毓倩,2007,“火焰自然螢光量測系統之研發”,國立成功大學航空太空工程研究所碩士論文。

    下載圖示 校內:2011-08-03公開
    校外:2011-08-03公開
    QR CODE