研究生: |
郭哲輔 Kuo, Che-Fu |
---|---|
論文名稱: |
氮化鋁鎵系列之光檢測器 AlGaN-Based Photodetectors |
指導教授: |
張守進
Chang, Shoou-Jinn |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 83 |
中文關鍵詞: | 氮化鋁鎵 、光檢測器 |
外文關鍵詞: | photodetector, AlGaN |
相關次數: | 點閱:45 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,首先我們在氮化鋁鎵/氮化鎵異質結構上成長了不同厚度(15、30及60 nm)的低溫氮化鎵覆蓋層,並製作出氮化鋁鎵/氮化鎵之蕭基光檢測器。我們發現這三種元件在10 V逆偏時暗電流均約為2 × 10 – 10 A,遠小於其他未使用低溫氮化鎵覆蓋層之蕭基光檢測器。這表示藉由使用低溫氮化鎵覆蓋層可以有效抑制暗電流及提昇蕭基能障高度。當入射光為320 nm時,使用了15、30及60 nm低溫氮化鎵覆蓋層之光檢測器在1 V逆偏下的峰值響應分別為0.053、0.044及0.031 A/W,其對應量子效率分別為20.4%、17.2%與12.1%。另外,同樣於1 V逆偏時,這三種元件中使用了15 nm低溫氮化鎵覆蓋層之光檢測器展現出最低的雜訊等效功率為4.88 × 10-13 W,以及最高的正規化檢測度為8.19 × 1012 cmHz0.5W-1。
第二個部份中我們使用了類似第一部份的結構,於15 nm低溫氮化鎵覆蓋層上改以ITO為蕭基接觸,研製出UV-B帶通型光檢測器。ITO於短波長有一個陡峭的吸收邊界,穿透率呈現急遽的下降。此外,當ITO厚度增加或經過回火後,其吸收邊界有紅移的現象,而我們帶通型光檢測器的響應頻譜則明顯受到ITO的吸收所影響。換言之,藉由控制ITO厚度及回火條件,我們可以實現具有不同頻寬之帶通型光檢測器。於1 V逆偏時,以70 nm ITO為接觸電極之光檢測器的峰值響應與最大量子效率分別為0.107 A/W及41.56%。另外,在所製作的帶通型光檢測器中它也展現出最低雜訊等效功率為2.21 × 10-13 W,以及最高正規化檢測度為1.81 × 1013 cmHz0.5W-1。
最後我們也嘗試於矽基板上製作氮化鋁鎵之金半金光檢測器,這裡我們主要是研製Al0.2Ga0.8N之金半金光檢測器。我們可以發現製作於矽基板上之氮化鋁鎵光檢測器,暗電流遠小於其他製作於藍寶石基板上之氮化物元件。在7 V偏壓下其峰值響應為0.09 A/W,而紫外光/可見光拒斥比為324。此外,製作於矽基板上之金半金光檢測器的峰值響應為施加電場的函數,並可藉由加大偏壓來提昇。再者,我們推測其傳導機制為載子傳輸必須穿透晶粒邊界。於2 V偏壓下,Al0.2Ga0.8N之金半金光檢測器的最低雜訊等效功率為3.5 × 10-12 W,最高正規化檢測度為6.89 × 1011 cmHz0.5W-1。
In this thesis, LT-GaN layer with different thickness (i.e. 15, 30 and 60 nm) were first deposited on top of AlGaN/GaN heterostructure. AlGaN/GaN Schottky barrier photodetectors with these LT-GaN cap layers were then fabricated. It was found that the reverse dark currents were all around 2 × 10 – 10 A of these three samples at - 10 V bias. This value is much smaller than those of Schottky-barrier photodetectors without LT-GaN cap layer. It indicates that dark currents were reduced and Schottky barrier heights were enhanced by utilizing LT-GaN cap layers. With an incident light wavelength of 320 nm, it was found that measured peak responsivities under - 1 V bias were 0.053, 0.044 and 0.031 A/W, corresponding to quantum efficiencies of 20.4%, 17.2% and 12.1% for the photodetectors with 15, 30 and 60-nm-thick LT-GaN cap layers, respectively. On the other hand, with a - 1 V applied bias, the Schottky-barrier photodetector with 15-nm-thick LT-GaN cap layer also exhibits the minimum NEP of 4.88 × 10-13 W and the maximum D* of 8.19 × 1012 cmHz0.5W-1 among these Schottky PDs.
For the second part, the similar structure was employed for UV-B bandpass photodetectors. Al0.2Ga0.8N/GaN Schottky-barrier PDs with ITO Schottky contacts on 15-nm-thick LT-GaN cap layers were fabricated and characterized. It was found that the transmittance of ITO films decreases rapidly in the short wavelength region showing a step absorption edge. In addition, the absorption edge of ITO films red-shifted as the films annealed or with increased thicknesses. The response spectra of our bandpass photodetectors were judged by absorption profiles of ITO films significantly. In other words, UV-B PDs could be realized with different bandwidths by controlling thicknesses and annealing conditions. Under - 1 V bias, the photodetectors with 70-nm-thick ITO contact showed the peak responsivity and the peak external quantum efficiency of 0.107 A/W and 41.56% respectively. On the other hand, it also exhibited the minimum NEP of 2.21 × 10-13 W and the maximum D* of 1.81 × 1013 cmHz0.5W-1, among these bandpass photodetectors.
Finally, efforts were made to fabricate AlGaN MSM photodetectors prepared on Si substrates. Here the Al0.2Ga0.8N MSM photodetector was characterized for the most part. It was found that dark current of AlGaN PD prepared on Si substrate was much smaller than that of other nitride device on sapphire substrate. With an applied bias of 7 V, it was found that peak responsivity was 0.09 A/W while UV/visible rejection ratio was 324. Moreover, the responsivity of MSM PDs on Si substrate is a function of applied electrical field and can be effectively improved by increasing the bias. Furthermore, conduction mechanism was suspected that carriers need to penetrate the grain boundaries in silicon-substrate MSM PDs. With a 2 V applied bias, the minimum NEP was found to be 3.5 × 10-12 W for Al0.2Ga0.8N MSM PDs, corresponding to the maximum D* of 6.89 × 1011 cmHz0.5W-1.
CH 1
[1] S. Nakamura, Jpn. J. Appl. Phys., Vol. 36, L1568 (1997).
[2] H. Morkoe, S. Strite, G.B. Gao, M.E. Lin, B. Sveerdlov, and M. Burn, J. Appl. Phys., Vol. 76, 1363 (1994)
[3] E. Monroy, T. palacios, O. Hainaut, F. Omnes, F. Calle, and J.F. Hochedez, Appl. Phys. Lett., Vol. 80, 3198 (2002)
[4] E. Monroy, F. Calle, E. Muñoz, and F. Omnès, Appl. Phys. Lett., Vol. 74, 3401 (1999)
[5] T. Palacios, E. Monroy, F. Calle, and F. Omnès, Appl. Phys. Lett., Vol. 81, 1902 (2002)
[6] J. Lia, Y. Xu, T.Y. Hsiang, and W.R. Donaldson, Appl. Phys. Lett., Vol. 84, 2091 (2004)
[7] J.L. Pau, C. Rivera, E. Muñoz, E. Calleja, U. Schuhle, E. Frayssinet, B. Beaumont, J.P. Faurie, and P. Gibart, J. Appl. Phys., Vol. 95, 8275 (2004)
[8] M. Razeghi and A. Rogalski, J. Appl. Phys., Vol. 79, 7433 (1996)
[9] E. Monroy, F. Calle, E. Munoz, and F. Omnes, , in III–V Nitride Semiconductors: Applications and Devices, edited by E.T. Yu and M.O. Manasreh (Gordon and Breach, New York, 2000)
[10] D. Walker, X. Zhan, A. Saxler, P. Kung, J. Xu, and M. Razeghi, Appl. Phys. Lett., Vol. 70, 949 (1997)
[11] E. Monroy, F. Calle, J.A. Garrido, P. Youinou, E. Munoz, F. Omnes, B. Beaumont, and P. Gibart, Semicond. Sci. Technol., Vol. 14, 685 (1999)
[12] G.Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoç, G. Smith, M. Estes, B. Goldenberg, W. Yang, and S. Krishnankutty, Appl. Phys. Lett., Vol. 71, 2154 (1997)
[13] E. Monroy, M. Hamilton, D. Walker, P. Kung, F.J. Sanchez, and M. Razeghi, Appl. Phys. Lett., Vol. 74, 1171 (1999)
[14] Q. Chen, J.W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M.Z. Anwar, M. Asif Khan, D. Kuksenkov, H. Temkin, Appl. Phys. Lett., Vol. 70, 2277 (1997)
[15] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart, and J.A. Munoz, Appl. Phys. Lett., Vol. 73, 2146 (1998)
[16] J.C. Carrano, T. Li, P.A. Grudowski, C.J. Eiting, R.D. Dupuis, and J.C. Campbell, J. Appl. Phys., Vol. 83, 6148 (1998)
CH 2
[1] W.D. Bancroft and H.L. Davis, J.Phys.Chem., 38 (1929)
[2] R.W. Kugel, J. Chem. Educ., Vol. 75, 1125 (1998)
[3] T. Mukai , S. Suresh , K. Kita , H. Sasaki , N. Kobayashi , K. Higashi, and A. Inoue, Acta Mater., Vol. 51, 4197 (2003)
[4] S. Ohmi, M. Takeda, H. Ishiwara and H. Iwai, J. Electrochem. Soc., Vol. 151, 279 (2004)
[5] N.C. Oldham, C.J. Hill, C.M. Garland and T.C. McGill, J. Vac. Sci. Technol. A, Vol. 20, 809 (2002)
[6] A. Andreone, E.D. Gennaro, G. Lamura, M. Salluzzo, A. Purnell, L.F. Cohen, L. Hao, J. Gallop, C. Cantoni, and M. Paranthaman, Supercond. Sci. Technol., Vol. 16, 260 (2003)
[7] R. Azimirad, O. Akhavan and A.Z. Moshfegh, J. Electrochem. Soc., Vol. 153, 11 (2006)
[8] E. Bobeico, F. Varsano, C. Minarini and F. Roca, Thin Solid Films, Vol. 444, 70 (2003)
[9] U. Kleineberg,, T.H. Westerwalbesloh, W. Hachmann, U. Heinzmann, J. Tümmler, F. Scholze, G. Ulm and S. Müllender, Thin Solid Films, Vol. 433, 230 (2003)
[10] I. Porqueras, C. Person, C. Corbella, M. Vives, A. Pinyol and E. Bertran, Solid State Ion., Vol. 165, 131 (2003)
[11] A. M. Goodman, J. Appl. Phys., Vol. 34, 329 (1963).
[12] R. H. Fowler, Phys. Rev, Vol. 38, 45 (1931).
CH 3
[1] E. Monroy, E. Munoz, F.J. Sanchez, F. Calley, E. Calleja, B. Beaumont, P. Gibart, J.A. Munoz and F. Cusso, Semicond. Sci. Technol., Vol. 13, 1042 (1998).
[2] Y.Z. Chiou, Y.K. Su, S.J. Chang, J. Gong, Y.C. Lin, S.H. Liu and C.S. Chang, IEEE J. Quantum Electron., Vol. 39, 681 (2003).
[3] N. Biyikli, I. Kimukin, O. Aytur and E. Ozbay, IEEE Photon. Technol. Lett., Vol. 16, 1718 (2004).
[4] G.Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Morkoc﹐ G. Smith, M. Estes, B. Goldenberg, W. Yang and S. Krishnankutty, Appl. Phys. Lett., Vol. 71, 2154 (1997).
[5] N. Biyikli, I. Kimukin, T. Tut, T. Kartaloglu, O. Aytur and E. Ozbay, Semicond. Sci. Technol., Vol. 19, 1259 (2004).
[6] G. Parish, S. Keller, P. Kozodoy, J.P. Ibbetson, H. Marchand, P.T. Fini, S.B. Fleischer, S.P. DenBaars, U.K. Mishra and E.J. Tarsa, Appl. Phys. Lett., Vol. 75, 247 (1999).
[7] A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M.A. Khan, D. Kuksenkov and H. Temkin, Appl. Phys. Lett., Vol. 71, 2334 (1997).
[8] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, Appl. Phys. Lett., Vol. 80, 347 (2002).
[9] O. Katz, G. Bahir and J. Salzman, Appl. Phys. Lett., Vol. 84, 4092 (2004).
[10] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, Appl. Phys. Lett., Vol. 79, 1417 (2001).
[11] E. Monroy, T. Palacios, O. Hainaut, F. Omnes, F. Calle and J.F. Hochedez, Appl. Phys. Lett., Vol. 80, 3198 (2002).
[12] Y. K. Su, Y. Z. Chiou, F. S. Juang, S.J. Chang and J.K. Sheu, Jpn. J. Appl. Phys., Vol. 40, 2996 (2001).
[13] M. Mosca, J.L. Reverchon, F. Omnes and J.Y. Duboz, Appl. Phys. Lett., Vol. 95, 4367 (2004).
[14] T. Palacios, E. Monroy, F. Calle and F. Omnes, Appl. Phys. Lett., Vol. 81, 1902 (2002).
[15] J. Lia, Y. Xu, T.Y. Hsiang and W.R. Donaldson, Appl. Phys. Lett., Vol. 84 (2004).
[16] J. L. Pau, C. Rivera, E. Munoz, E. Calleja, U. Schuhle, E. Frayssinet, B. Beaumont, J. P. Faurie and P. Gibart, J. Appl. Phys., Vol. 95, 8275 (2004).
[17] Y. Z. Chiou and J. J. Tang, Jpn. J. Appl. Phys., Vol. 43, 4146 (2004).
[18] C.K. Wang, S.J. Chang, Y.K. Su, C.S. Chang, Y.Z. Chiou, C.H. Kuo, T.K. Lin, T.K. Ko and J.J. Tang, Mater. Sci. Eng. B., Vol. 112, 25 (2004).
[19] T. Palacios, F. Calle, E. Monroy and F. Omnes, Phys. Stat. Sol. (a), Vol. 194, 476 (2002).
[20] L. Wang, M.I. Nathan, T.H. Lim, M.A. Khan, and Q. Chen, Appl. Phys. Lett., Vol. 68, 1267 (1996).
[21] C.T. Lee, Y.J. Lin, and D.S. Liu, Appl. Phys. Lett., Vol. 79, 2573 (2001).
[22] J.K. Kim, H.W. Jang, C.M. Jeon, and J.L. Lee, Appl. Phys. Lett., Vol. 81, 4655 (2002).
[23] J.K. Sheu, Y.K. Su, G.C. Chi, M.J. Jou, and C.M. Chang, Appl. Phys. Lett., Vol. 72, 3317 (1998).
[24] L.W. Yin, Y. Hwang, J.H. Lee, R.M. Kolabas, R.J. Trew, and U.K. Mishra, IEEE Electron Device Lett., Vol. 11, 561 (1990).
[25] J.K. Sheu, C.J. Kao, M.L. Lee, W.C. Lai, L.S. Yeh, G.C. Chi, S.J. Chang, Y.K. Su, and J.M. Tsai, J. Electron. Mater., Vol. 32, 400 (2003).
[26] H. Norde, J. Appl. Phys., Vol. 50, 5052 (1979).
[27] K. E. Bohlin, J. Appl. Phys., Vol. 60, 1223 (1986).
[28] M.L. Lee, J.K. Sheu, W.C. Lai, S.J. Chang, Y.K. Su, M.G. Chen, C.J. Kao, G.C. Chi and J.M. Tsai, Appl. Phys. Lett., Vol. 82, 2913 (2003).
[29] M.L. Lee, J.K. Sheu, Y.K. Su, S.J. Chang, W.C. Lai and G.C. Chi, IEEE Electron Device Lett., Vol. 25, 593 (2004).
[30] N. Biyikli, O. Aytür, I. Kimukin, T. Tut and E. Ozbay, Appl. Phys. Lett., Vol.27, 3272 (2002).
[31] E. Monroy, F. Calle, E. Munoz, F. Omnes, P. Gibart and J. A. Munoz, “AlxGa1-xN:Si Schottky barrier photodiodes with fast response and high detectivity”, Appl. Phys. Lett., Vol.73, 2147 (1998).
CH 4
[1] R. Pastila and D. Leszczynski, Photodermatol. Photoimmunol. Photomed., Vol. 21, 183 (2005).
[2] M. Kobayashi, J. Ueno, M. Enami, S. Katsuta, A. Ichiba, K. Ogura, K. Onomitsu and Y. Horikoshi, J. Cryst. Growth., Vol. 278, 273 (2005).
[3] S. Nakamura and M. Senoh, Jpn. J. Appl. Phys., Vol. 34, L1332 (1995).
[4] K. Bayat, Y. Vygranenko, A. Sazonov and M. Farrokh-Baroughi, Semicond. Sci. Technol., Vol. 21, 1699 (2006).
[5] M.H. Nayfeh, S. Rao, O.M. Nayfeh, A. Smith and J. Therrien, IEEE Trans. Nanotechnol., Vol. 4, 660 (2005).
[6] R. Gharbi, M. Abdelkrim, M. Fathallah, E. Tresso, S. Ferrero, C.F. Pirri and T. Mohamed Brahim, Solid-State Electron., Vol. 50, 367 (2006).
[7] M. Krause, M. Topic, H. Stiebig and H. Wagner, Phys. Status Solidi A - Appl. Mat., Vol. 185, 121 (2001).
[8] G. Thungström, E. Dubaric and B. G. Svensson, Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip., Vol. 460, 165 (2001).
[9] C. Guedj, N. Moussy, W. Rabaud, P. Roca i Cabarrocas, S. Tchakarov and J.P. Kleider, J. Non-Cryst. Solids, Vol. 338-340, 759 (2004).
[10] N. Biyikli, T. Kartaloglu, O. Aytur, I. Kimukin, and E. Ozbay, Appl. Phys. Lett., Vol. 79, 2838 (2001).
[11] L.S. Yeh, M.L. Lee, J.K. Sheu, M.G. Chen, C.J. Kao, G.C. Chi, S.J. Chang and Y.K. Su, Solid-State Electron., Vol. 47, 873 (2003).
[12] D. Ciplys, R. Rimeika, M.S. Shur, S. Rumyantsev, R. Gaska, A. Sereika, J. Yang and M. Asif Khan, Appl. Phys. Lett., Vol. 80, 2020 (2002).
[13] C.W. Wang, Appl. Phys. Lett., Vol. 80, 1568 (2002).
[14] N. Biyikli, T. Kartaloglu, O. Aytur, I. Kimukin and E. Ozbay, Mrs. Internet J. Nitride Semicond. Res., Vol. 8, Article 8 (2003).
[15] M.L. Lee, J.K. Sheu, W.C. Lai, S.J. Chang, Y.K. Su, M.G. Chen, C.J. Kao, G.C. Chi and J.M. Tsai, Appl. Phys. Lett., Vol. 82, 2913 (2003).
[16] M.L. Lee, J.K. Sheu, Y.K. Su, S.J. Chang, W.C. Lai and G.C. Chi, IEEE Electron Device Lett., Vol. 25, 593 (2004).
[17] A. Fujisawa, T. Nishino and Y. Hamakawa, Jpn. J. Appl. Phys., Vol. 27, 552 (1988).
[18] C.G. Granqvist and A. Hultåker, Thin Solid Films, Vol. 411, 1 (2002).
[19] M.J. Alam and D.C. Cameron, Thin Solid Films, Vol. 377-378, 455 (2000).
[20] T. Minami, T. Yamamoto, Y. Toda and T. Miyata, Thin Solid Films, Vol. 373, 189 (2000).
[21] A. Fujisawa, T. Nishino and Y. Hamakawa, Jpn. J. Appl. Phys., Vol. 27, 552 (1988).
[22] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, Appl. Phys. Lett., Vol. 80, 347 (2002).
[23] O. Katz, G. Bahir and J. Salzman, Appl. Phys. Lett., Vol. 84, 4092 (2004).
[24] O. Katz, V. Garber, B. Meyler, G. Bahir and J. Salzman, Appl. Phys. Lett., Vol. 79, 1417 (2001).
[25] V. Adivarahan, G. Simin, G. Tamulaitis, R. Srinivasan, J. Yang, M. Asif Khan, M.S. Shur and R. Gaska, Appl. Phys. Lett., Vol. 79, 1903 (2001).
[26] H. Norde, J. Appl. Phys., Vol. 50, 5052 (1979).
[27] K. E. Bohlin, J. Appl. Phys., Vol. 60, 1223 (1986).
CH 5
[1] T. Takeuchi, H. Amano, K. Hiramatsu, N. Sawaki, I. Akasaki, J. Cryst. Growth, Vol. 115, 634 (1991)
[2] T. Lei, T.D. Moustakas, R.J. Graham, Y. He, S.J. Berkowitz, J. Appl. Phys., Vol. 71, 4933 (1992)
[3] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, I. Akasaki, J. Cryst. Growth, Vol. 128, 391 (1993)
[4] K. Hirosawa, K. Hiramatsu, N. Sawaki, I. Akasaki, Jpn. J. Appl. Phys. part 2-Letters, Vol. 32, L1039 (1993)
[5] H. Liu, A.C. Frenkel, J.G. Kim, R.M. Park, J. Appl. Phys., Vol. 74, 6124 (1993)
[6] J.G. Kim, A.C. Frenkel, H. Liu, R.M. Park, Appl. Phys. Lett., Vol. 65, 91 (1994)
[7] A. Yamamoto, M. Tsujino, M. Ohkubo, A. Hashimoto, J. Cryst. Growth, Vol. 137, 415 (1994)
[8] T. Hashimoto, O. Imafuji, M. Ishida, Y. Terakoshi, T. Sugino, A. Yoshikawa, K. Itoh, J. Shirafuji, J. Cryst. Growth, Vol. 169, 185 (1996)
[9] N.P. Kobayashi, J.T. Kobayashi, W.J. Choi, P.D. Dapkus, X.G. Zhang, D.H. Rich, J. Cryst. Growth, Vol. 189, 172 (1998)
[10] A. Strittmatter, A. Krost, V. Turck, M. Strassburg, D. Bimberg, J. Blasing, T. Hempel, J. Christen, B. Neubauer, D. Gerthsen, T. Christmann, B.K. Meyer, Mater. Sci. and Eng. B, Vol. 59, 29 (1999)
[11] X. Zhang, S.J. Chua, Z.C. Feng, J. Chen, J. Lin, Phys. Stat. Sol. (a), Vol. 176, 605 (1999)
[12] H.M. Liaw, R. Venugopal, J. Wan, R. Doyle, P.L. Fejes, M.R. Melloch, Solid-State Electron., Vol. 44, 685 (2000)
[13] H. Ishikawa, G.Y. Zhao, N. Nakada, T. Egawa, T. Jimbo, M. Umeno, Jpn. J. Appl. Phys. part 2-Letters, Vol. 38, L492 (1999)
[14] J.W. Lee, S.H. Jung, H.Y. Shin, I.H. Lee, C.W. Yang, S.H. Lee, J.B. Yoo, J. Cryst. Growth, Vol. 237, 1094 (2002)
[15] Y. Honda, Y. Kuroiwa, M. Yamaguchi, N. Sawaki, J. Cryst. Growth, Vol. 242, 77 (2002)
[16] S.H. Jang, S.J. Lee, I.S. Seo, H.K. Ahn, O.Y. Lee, J.Y. Leem, C.R. Lee, J. Cryst. Growth, Vol. 241, 289 (2002)
[17] J.J. Wu, D.B. Li, Y. Lu, X.X. Han, J.M. Li, H.Y. Wei, T.T. Kang, X.H. Wang, X.L. Liu, Q.S. Zhu, Z.G. Wang, J. Cryst. Growth, Vol. 273, 79 (2004)
[18] Y. Lu, G.W. Cong, X.L. Liu, D.C. Lu, Q.S. Zhu, X.H. Wang, J.J. Wu, Z.G. Wang, J. Appl. Phys., Vol. 96, 4982 (2004)
[19] C.F. Shih, N.C. Chen, C.A. Chang, and K.S. Liu, Jpn. J. Appl. Phys., Vol. 44, L140 (2005).
[20] H. Ishikawa, K. Asano, B. Zhang, T. Egawa, and T. Jimbo, Phys. Status Solidi A-Appl. Mat., Vol. 201, 2653 (2004).
[21] J.L. Pau, E. Monroy, E. Munoz, F. Calle, M.A. Sanchez-Garcia, E. Calleja, Electron. Lett., Vol. 37, 239 (2001).
[22] A. Osinsky, S. Gangopadhyay, J.W. Yang, R. Gaska, D. Kuksenkov, H. Temkin, I.K. Shmagin, Y.C. Chang, J.F. Muth, and R.M. Kolbas, Appl. Phys. Lett., Vol. 72, 551 (1998).
[23] C.W. Wang, Appl. Phys. Lett., Vol. 80, 1568 (2002).
[24] E. Ozbay, N. Biyikli, I. Kimukin, T. Kartaloglu, T. Tut, and O. Aytür, IEEE J. Sel. Top. Quantum Electron., Vol. 10, 742 (2004).
[25] C.K. Wang, S.J. Chang, Y.K. Su, Y.Z. Chiou, S.C. Chen, C.S. Chang, T.K. Lin, H.L. Liu, and J.J. Tang, IEEE Trans. Electron Devices, Vol. 53, 38 (2006).
[26] Y.Z. Chiou, IEEE Electron Device Lett., Vol.26, 172 (2005).
CH 6
[1] S.J. Chang, H. Hung, Y.C. Lin, M.H. Wu, H. Kuan, and R.M. Lin, Jpn. J. Appl. Phys., Vol. 46, 2471 (2007)
[2] Dissertation of NCKU, ” efficiency of GaN based light emitting diodes improved by chip process technique and the growth of GaN based light emitting diodes on Si substrate,” by Yi-Chao Lin, 2005
[3] S. Kaiser, M. Jakob, J. Zweck, W. Gebhardt O. Ambacher, R. Dimitrov, A.T. Schremer, J.A. Smart, and J.R. Shealy, J. Vac. Scien. Technol. B, Vol. 18, 733-740 (2000)
[4] Z. Lao, V. Hurm, W. Bronner, A. Hulsmann, T. Jakobus, K. Kohler, M. Ludwig, B. Raynor, J. Rosenzweig, M. Schlechtweg, and A. Thiede, IEEE Photo. Tec. Lett., Vol. 10, 710 (1998)