簡易檢索 / 詳目顯示

研究生: 彭柏鈞
Peng, Po-Chun
論文名稱: 都會區機車行車型態與空氣污染物排放特性之 調查
Development of Motocycle Driving Cycle and Exhaust Characteristics in Meteropolian Area
指導教授: 蔡俊鴻
Tasi, Jin-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 181
中文關鍵詞: NOxHCCO行車型態機動車輛動力計
外文關鍵詞: Dynamometer, Motorcycle, NOx, HC, CO, Driving Pattern
相關次數: 點閱:110下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機車因具有機動性、便捷、停車方便、價格便宜等特性,為台灣地區最普遍之個人交通工具。而行車型態為影響機車排放空氣污染物之重要參數,台灣地區目前以歐洲經濟同盟行車型態(ECE行車型態),執行機車測試污染排放標準,但ECE行車型態是在歐洲地區使用於測試汽車污染物排放標準,無法代表台灣地區實際道路行駛之行車型態,也不能真實反映行駛中機車污染排放。故本研究利用自行建立之機車行車型態(KH type 32)與ECE行車型態,進行機車尾氣污染物排放之檢測,比較不同行車型態機車排放空氣污染物(CO、HC與NOx)排放濃度與排放係數。
    本研究於高雄都會區四條主要道路,利用固定追車法實地進行追車調查,共獲得46筆成功旅次,將46旅次共分為316個區段,再利用隨機區段組合法建立高雄都會區機車代表性行車型態(KH type 32)。組合之KH type 32行車型態之行駛距離為6568.2公尺,總行駛時間為1126秒,而各代表性參數,旅行速率21.0(km/hr)、行駛速率29.0(km/hr)、加速度0.6(m/s2)、減速度0.6(m/s2)每一區段加減速率變換次數16.4、區段平均行駛時間111.3(s)、怠速時間比27.7(%)、定速時間比8.7(%)、加速時間比32.6(%)、減速時間比31.0(%)、加速度方均根0.6(m/s2)。本研究建立之KH type 32行車型態與國外知名行車型態(如:FTP75、ECE、日本10與11mode)比較,並利用統計學T檢定,發現各行車型態之代表性參數均有明顯之差異,顯示台灣本土化行車型態與而法規測試標準行車型態(ECE行車型態)有明顯之差異。
    本研究將建立高雄都會區機車代表性行車型態(KH type 32)與法規標準ECE行車型態,為動力計測試空氣污染物排放之行車型態,比較兩行車型態耗能與污染物排放關係,顯示機車行駛KH type 32行車型態CO、HC與NOx排放係數為7.27、1.94與0.12(g/km),而ECE行車型態為4.75、1.44與0.086(g/km),顯示行駛KH type 32行車型態空氣污染物排放係數較高於ECE行車型態。而針對ECE與KH type 32行車型態排放空氣污染物之相關性,顯示ECE與KH type 32呈線性關係且R2值約都高於0.71以上,顯示兩行車型態排放污染物濃度相關性良好。引擎型式(二、四行程)比較,發現二行程機車CO與HC排放係數高於四行程機車,NOx則為四行程機車高於二行程機車,顯示引擎型式為污染排放之影響參數。針對空氣污染物排放係數與行駛里程之相關性,二、四行程機車CO與HC排放係數與行駛里程成正相關性,而四行程機車相關性較差,顯示二行程引擎隨行駛里程劣化率大於四行程引擎。而機車行駛KH type 32所致CO、HC與NOx油耗排放係數亦高於ECE行車型態,約1.02~2.26倍之間。故應建立本土化機車行車型態取代ECE行車型態,更能代表機車實際行駛時污染物排放特性。

    This study developed a localized driving cycle for motorcycle in the urban areas of Kaohsiung. We collected speed-time data from the actual traffic conditions and proposed a methodology to develop a motorcycle driving cycle (KH type) in Kaohsiung. The KH type was built up by choosing parts of the on-road speed-time data that was summarized the statistic of the all test runs. The characteristics of KH type are low average travel speed, high acceleration-deceleration changes and low cruising proportion that compared to the famous driving cycles. 10 parameters of KH type are average speed of the entire driving cycle (21.0 km/hr), average running speed (29.0 km/hr), average acceleration of all acceleration phases (0.6 m/s2), average deceleration of all deceleration phases (0.6 m/s2), mean length of driving period (111.3 s), average number of acceleration-deceleration change within one driving period (16.4), time proportions of idling (27.7%), cruising (8.7%), acceleration (32.6%), deceleration (31.0%), and root mean square acceleration (0.6 m/s2).
    Nineteen motorcycles were tested on a dynamometer following the designated test procedure of the Economic Commission for Europe (ECE) and KH type. The emission factors of KH /ECE cycle of CO, HC and NOx are 7.27/4.75 g/km, 1.94/1.44 g/km and 0.12/0.086 g/km, respectively. Air pollutant emission factors of KH type are higher than ECE in 2-stroke and 4-stroke motorcycles. The fuel consumption testing of KH type is also higher than ECE, whether they are two-stroke or four-stroke motorcycles. The emissions of CO and HC from 2-stroke motorcycles were higher than 4-stroke motorcycles. On the other hand, NOx emission from 2-stroke motorcycles are lower than 4-stroke motorcycles of both KH type and ECE cycle. Furthermore, there is a linear relationship between the KH type and ECE cycle.

    總目錄 第一章 前言.............................................1-1 1-1 研究緣起............................................1-1 1-2 研究目的............................................1-2 第二章 文獻回顧.........................................2-1 2-1高雄都會區移動源空氣污染物排放特性...................2-1 2-1-1高雄都會區背景概況.................................2-1 2-1-2高雄都會區空氣品質現況.............................2-2 2-1-3機動車輛排放揮發性有機物對人體之影響...............2-2 2-2行車型態定義與回顧...................................2-4 2-2-1美國環保局聯邦測試程序之行車型態...................2-5 2-2-2日本行車型態.......................................2-6 2-2-3歐洲經濟聯盟行車型態...............................2-6 2-2-4地方性行車型態之研究...............................2-7 2-2-5國內有關行車形態之研究.............................2-13 2-3行車型態建構方法.....................................2-15 2-3-1追車調查方法.......................................2-15 2-3-2行車型態建構方法...................................2-18 2-3-3行車型態彙集方法...................................2-19 2-3-4行車型態建構方法之比較.............................2-19 2-4機動車輛空氣污染物排放特徵...........................2-20 2-4-1機動車輛空氣污染物之危害性.........................2-21 2-4-2機動車輛空氣污染物排放來源.........................2-23 2-4-3機動車輛排放空氣污染物之影響參數...................2-23 第三章 研究方法.........................................3-1 3-1研究架構.............................................3-1 3-2都會區機車行車型態之建構.............................3-2 3-2-1都會區道路測試流程與規劃...........................3-2 3-2-2都會區道路測試實施方法與設備建立...................3-3 3-2-3數據分析與行車型態的建構...........................3-4 3-3機車篩選與測試行車形態之選擇.........................3-6 3-3-1機車篩選...........................................3-6 3-3-2行車型態之選擇.....................................3-7 3-4機車排氣測定採樣程序.................................3-7 3-4-1動力計簡介.........................................3-8 3-4-2機車排氣之採樣程序.................................3-8 3-4-3污染物排放計算.....................................3-10 3-5機車排氣之分析程序與品保品管.........................3-12 3-5-1 分析設備..........................................3-12 第四章 結果與討論.......................................4-1 4-1道路測試調查結果分析.................................4-1 4-1-1追車調查機車行車特性分析與比較.....................4-1 4-1-2不同時段機車行車狀態之比較.........................4-6 4-1-3歷年機車追車調查比較...............................4-7 4-2高雄都會區機車行車型態之建立與探討...................4-8 4-2-1高雄都會區機車行車型態之建立.......................4-8 4-2-2高雄都會區代表性機車行車型態之分析.................4-9 4-2-3與國外標準行車型態之比較...........................4-10 4-3不同行車型態排放空氣污染物濃度結果與解析.............4-12 4-3-1機車行駛不同行車型態排放各項空氣污染物濃度之解析...4-13 4-3-2不同行車型態空氣污染物排放濃度之相關性.............4-14 4-3-3機車排放污染物濃度與已行車里程數關聯性.............4-15 4-4不同行車型態排放空氣污染物係數結果與解析.............4-16 4-4-1機車行駛不同行車型態排放各項空氣污染物係數之解析...4-16 4-4-2不同行車型態空氣污染物排放係數之相關性.............4-18 4-4-3機車排放污染物係數與行車里程數關聯.................4-19 4-4-4不同行車型態單位油耗所致各項污染物排放係數.........4-20 第五章 結論與建議.......................................5-1 5-1 結論................................................5-1 5-2 建議................................................5-3 參考文獻

    1. 行政院交通部,統計月報,民國九十一年十二月。
    2. 南高屏總量管制示範計畫,民國八十六年。
    3. 高雄市政府環境保護局,高雄市空氣污染防制計劃書,民國九十二年二月。
    4. 財團法人成大研究發展基金會,都會區機車行車型態與排放係數之研究計畫書,民國九十年。
    5. 行政院環保署,「汽車排放空氣污染物儀器檢驗人員汽機車惰轉狀態及負載檢驗訓練教材(第三期)」,(1990)。
    6. 行政院環境保護署,台北都會區車車輛行車型態建立及平均排放係數計算程式建立及更新計劃,民國八十五年。
    7. 行政院環境保護署,高雄都會區車車輛行車型態建立及平均排放係數計算程式建立及更新計劃,民國八十六年。
    8. 行政院環保署,「執行汽車新車型審驗、新車抽驗及各國污染法歸比較計畫研究報告」,(1994a)。
    9. 高雄市政府環境保護局委託春迪企業,九十一年及九十二年度機車排氣定期檢定計畫期中報告,民國九十一年十一月。
    10. 屏東縣環境保護局,屏東縣機車行車型態與排放係數之調查研究,民國八十九年十二月。
    11. 鄧金地,台北都會區小型汽車與機車行車型態之研究,交通大學碩士論文,民國八十五年。
    12. 翁閎政,機車排氣之揮發性有機物特徵及光化反應性研究,成功大學碩士論文,民國八十七年。
    13. 何文淵,汽油車引擎廢氣揮發性有機物成份及光化反應潛勢,國立成功大學碩士論文,民國八十八年。
    14. 劉育穎,機車排放醛酮化合物特徵與光化反應性研究,成功大學碩士論文,民國九十年。
    15. 李秉壬,市區小客車行車型態之研究,成功大學碩士論文,民國七十八年。
    16. 王文正,以實際道路行車型態作動力計測試之機車排放係數研究,中山大學碩士論文,民國九十年。
    17. 林志峰,屏東縣機車行車型態與排放係數之調查研究,中山大學碩士論文,民國八十九年。
    18. 張有恆、廖志堅,都會區小客車行車型態與耗能分析,能源季刊,頁34-51,民國七十九年。
    19. 趙浩然,多種機動車輛排放醛酮化合物之研究,國立成功大學博士論文,民國八十九年。
    20. Bailey, J. C., Schmidl, B., Williams, M. L., Speciated Hydrocarbon Emissions from Vehicles Operated over the Normal Speed Range on the Road, Atmos, Environ, 24A(1):43~52(1990).
    21. Black, F. M., High, L. E., Automotive Hydrocarbon Emission Patterns in the Measurement of Nonmethane Hydrocarbon Emission Rates, Detroit, MI, SAE Paper 770144(1977).
    22. Bonamassa, F., Wong-Woo, H., Composition and Reactivity of Exhaust Hydrocarbons from 1966 California Cars, paper presented.before the Division of Water, Air and Waste Chemistry, 152nd National Meeting, Amercian Chemical Society, New York, September(1966).
    23. Chan, C. C., Lin, S. H., Her, G.R., Students Exposure to Volatile Organic Compounds Whole Commuting by Motorcycle and Bus in Taipei City, J. Air ﹠Waste Management Association, Vol.43, pp.1231-1238(1993).
    24. Chan, C. C., Nien, C. K., Tasi, C. Y.,Her, G. R., Comparsion of Tail Pipe Emission from Motorcycles and Passenger Cars, J. Air ﹠Waste Management Association, Vol.45, pp.116-124(1995).
    25. Crauser, J. P., Mauring, M. and Joumard, R., Representative Kinematic Sequences for the Road traffic in France, SAE paper 890875(1989).
    26. Esteves-Booth, A., Muneer, T.,Kirby, H., Kubie, J., Hunter, J., The Measurement of Vehicular Driving Cycle within the City of Edinburgh, Transportation Research, part D 6, pp. 209-220(2001).
    27. Gandhi, K. K., Zvonow, V. A. Harbans, S., Development of a Driving Cycle for Fuel Consumption in Urban Driving, Transportation Research, Vol. 17A, No. 1. pp. 1-11(1983).
    28. Kent, J. H., Allen, G. H., Rule, G., A Driving Cycle for Sydney, Transportation Research, Vol. 12, No. 3. pp. 147-152(1978).
    29. Kent, J. H., Mudford, N. R., Motor Vehicle Emission and Fuel Consumption Modeling, Transportation Research, Vol. 13A, No. 6. pp. 395-406(1979).
    30. Kenworthy, J. R., Newman, P. W. G., A Driving Cycle for Perth:Methodologyy and Preliminary Results, SAE-A/ARRB Conf. Paper 82149(1982).
    31. Klingenderg, H., Automoble Exhaust Emission Testing, Spinger(1996).
    32. Kuhler, M., Karstens, D., Improved Driving Cycle for Testing Automotive Exhaust Emission, SAE paper 780650(1978).
    33. Pierson, W. R., Gertler, A. W., Bradow, R. L., Comparison of the SCAQS Tunnel Study with Other On-Road Vehicle Emission Data, J. A&WMA., Vol. 40(1990).
    34. Seizingger, D. E., Marshall, W. F., Cox, F. W., Boyd, M. W., Vehicle Evaporative and Exhaust Emission as Influeced by Benzene Content of Gasoline, 6124-6135, SAE Technical paper Serice 860531(1986).
    35. Shing Tet Leong., S. Muttamara., Preecha Laortanakul., Influence of Benzene Emission from Motorcycles on Bangkok Air Quality Atmospheric Environment, 36, pp. 651–661(2002)
    36. Sigsby, J. E., Tejada, S., Ray, W., Volatile Oragnic Compound Emissions from 46 In-Use Passengers Cars, Environ. Sci. Technol., Vol. 21. No. 5, pp. 466-475(1987).
    37. Simanaitis, D. J., Emission Test Cycle Around the World, Automotive Engineering, Vol. 85, No. 8, pp. 34-43(1977).
    38. Tsai, J. H., Hsu, Y. C., Weng, H. C., Lin, W. Y., Jeng, F. T., Air Pollutant Emission Factors from New and In-Use Motorcycles, Atmos. Environ., Vol.34, pp.4747-4754,(2000).
    39. Tsai, J. H., Chan, I. C., Cheng, H. M., Yu Y. H., Chiang H. L., Cost-Effectiveness of Motorcycle Smoke Check Program in Taiwan,R.O.C.,11th CRC On-Road Vehicle Emissions Workshop,(2001).
    40. Tong, H. Y., Hung, W. T., Cheung, C. S., Development of a driving cycle for Hong Kong, Atmos. Environ., Vol.33, pp.2323-2335,(1999).
    41. Wang Chun Shu, Huang Qing De, Ling Ren Shu and Zhang Yu Ting, Measurement of Passenger Car Operation in Beijing Pertinent to Exhaust and Fuel Economy, SAE paper 852242(1985).
    42. Watson, H. C., Milkins. E. E., Preston, M. O., Chittleboroungh, C. and Alimoradian, B., Perdicting Fuel Consumption and Emission Transferring Chassis Dynamometer Results to Real Driving Condition, SAE paper 830435(1983).
    43. Watson, H. C., Milkins. E. E., Braunsteins, J., Development of the Melbourne Peak Driving Cycle,SAE-A and ARRB Second Traffic Energy and Emissions Conference paper 82148(1982).
    44. Yoshizumi, K., Nakamura, K., Ionue, K. and Ishiguro, T., Automotive Exhaust Emissions in an Urban Area, SAE paper 800326(1980).

    下載圖示 校內:立即公開
    校外:2003-08-21公開
    QR CODE