研究生: |
林家綾 Lin, Chia-Ling |
---|---|
論文名稱: |
應用主題分析於精神科諮詢文件檢索之研究 Topic Analysis for Psychiatric Consultation Record Retrieval |
指導教授: |
吳宗憲
Wu, Chung-Hsien |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 自然語言處理 、資訊檢索 |
外文關鍵詞: | Natural Language Processing, Information Retrieval |
相關次數: | 點閱:138 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
精神科諮詢文件檢索(Psychiatric Consultation Record Retrieval)之目的在協助廣大的憂鬱症潛在族群快速且有效地找到符合自己憂鬱問題的諮詢文件。一份諮詢文件中包含了使用者的憂鬱問題以及相對應的專家建議。藉由參考相關的諮詢文件,使用者能從前人經驗中獲得專家的建議事項,藉此排解自身的憂鬱情緒。為達成此一目標,本論文提出以文件中的主題(Topic)及主題之間的關係(Relation)為基礎,計算使用者查詢(Query)與諮詢文件的相似度。諮詢文件中的主題包括負面生活事件(Negative Life Event)與憂鬱症狀(Depressive Symptom),症狀之間的關係則包括因果關係(Cause-Effect Relation)與時間關係(Temporal Relation)。經由分析文件中的事件、症狀與關係,可對使用者的憂鬱問題更加瞭解,並使檢索結果更能符合使用者之需求。
實驗分成兩大部分。第一部分主要評估主題識別(Topic Identification)的方法;第二部份比較使用主題或文字(Word)的檢索模型,比較對象包括向量空間模型(Vector Space Model, VSM)以及Okapi BM25。實驗結果顯示,考慮諮詢文件中的主題資訊比起單純使用文字資訊更能達到精確的檢索結果。
The aim of psychiatric consultation record retrieval is to assist people efficiently and effectively locating the consultation records relevant to their depressive problems. A consultation record consists of depressive problems and their corresponding responses. By referring to the relevant records, people can be aware that they are not alone because many people have suffered from the same or similar problems. Also, they can understand how to alleviate their depressive symptoms according to the suggestion from the health professionals. To achieve the goal, this thesis proposes the use of topics and inter-topic relations to compute the similarities between users’ queries and consultation records. The topics in the consultation records include negative life events and depressive symptoms. The inter-topic relations, which refer to the relations that hold between symptoms, include cause-effect relations and temporal relations. Taking into account events, symptoms and relations is beneficial for better understanding of users’ information needs so as to obtain more precise retrieval results.
The experiments are divided into two parts. First, the identification of events, symptoms and relations are evaluated. Then, we compare our topic-based retrieval method to word-based methods such as vector space model (VSM) and Okapi BM25 model. The results show that using topic information can achieve higher precision than using word-level information alone.
Abasolo, J. M. and M. Gómez, “MELISA. An Ontology-based Agent for Information Retrieval in Medicine,” in Proc. 1st Int. Workshop on the Semantic Web (SemWeb2000), Lisbon, Portugal, 2000, pp. 73-82.
Araujo, L., “Symbiosis of Evolutionary Techniques and Statistical Natural Language Processing,” IEEE Trans. Evolutionary Computation, vol. 8, no. 1, pp. 14-27, 2004.
Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S. Dwight, J. T, Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Rubin, and G. Sherlock,, "Gene Ontology: Tool for the Unification of Biology," Nature Genetics, vol. 25, pp. 25-29, 2000.
Baeza-Yates, R. and B. Ribeiro-Neto, Modern Information Retrieval. Addison-Wesley, Reading, MA, 1999.
Bai, Y. M., C. C. Lin, J. Y. Chen, and W. C. Liu, “Virtual Psychiatric Clinics,” American Journal of Psychiatry, vol. 158, no. 7, pp. 1160-1161, 2001.
Brostedt, E.M. and N.L. Pedersen, “Stressful Life Events and Affective Illness,” Acta Psychiatrica Scandinavica, vol. 107, no. 3, pp. 208-215, 2003.
Burgess, C., K. Livesay, and K. Lund, “Explorations in Context Space: Words, Sentences, Discourse,” Discourse Processes, vol. 25, no. 2&3, pp. 211-257, 1998.
Cancedda, N., E. Gaussier, C. Goutte, and J. M. Renders, “Word-Sequence Kernels,” Journal of Machine Learning Research, vol. 3, no. 6, pp. 1059-1082, 2003.
Chan, S. W. K., T. B. Y. Lai, W. J. Gao, and B. K. T'sou, “Mining Discourse Markers for Chinese Textual Summarization,” in Proc. of the Sixth Applied Natural Language Processing Conference and the North American Chapter of the Association for Computational Linguistics Workshop on Automatic Summarization, Seattle, Washington, May 2000.
Chen, K.J., C.R. Huang, F.Y. Chen, C.C. Luo, M.C. Chang and C.J. Chen, “Sinica Treebank: Design Criteria, Representational Issues and Implementation,” In Anne Abeille, editor, Building and Using Syntactically Annotated Corpora, Kluwer, pp. 29-37, 2001.
Cherkassky, V. and F. Mulier, Learning from Data. Wiley, New York, 1998.
Chi, S. Y., C. L. Hsiao, L. F. Chien, “A Practical Passage-based Approach for Chinese Document Retrieval,” in Proc. of ROCLING XVII, Tainan, Taiwan, 2005.
Duda, R. O. and P. E. Hart, Pattern Classification and Scene Analysis. Wiley, New York, 1973.
Fellbaum, C., WordNet: An Electronic Lexical Database. Cambridge, MA: MIT Press, 1998.
Fontelo, P., F. Liu and M. Ackerman, “askMEDLINE: a Free-text, Natural Language Query Tool for MEDLINE/PubMed,” BMC Medical Informatics and Decision Making, vol. 5:5, 2005.
Grenager, T., D. Klein, and C. D. Manning, “Un-supervised Learning of Field Segmentation Models for Information Extraction,” in Proc. of the 43th Annual Meeting of the ACL, pp. 371-378, 2005.
Hamilton, M., “A Rating Scale for Depression,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 23, pp. 56-62, 1960.
Hasegawa, T., S. Sekine, R. Grishman, “Discov-ering Relations among Named Entities from Large Corpora,” in Proc. of the 42th Annual Meeting of the ACL, pp. 415-422, 2004.
Jarvelin, K. and J. Kekalainen, "IR Evaluation Methods for Retrieving Highly Relevant Documents," in Proc. of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 41-48, July 2000.
Karanikolas, N. N. and C. Skourlas, “Computer Assisted Information Resources Navigation,” Medical Informatics and the Internet in Medicine, vol. 25, no. 2, pp. 133-146, 2000.
Kaszkiel, M., and J. Zobel, “Effective Ranking with Arbitrary Passages,” Journal of the American Society for Information Science and Technology, vol. 52, no. 4, pp. 344-364, 2001.
Kim, J.T. and D.I. Moldovan, “Acquisition of Linguistic Patterns for Knowledge-Based Information Extraction,” IEEE Trans. Knowledge and Data Engineering, vol. 7, no. 5, pp. 713-724, 1995.
Lehnert, W., C. Cardie, D. Fisher, J. McCarthy, E. Riloff, and S. Soderland, “University of Massachusetts: Description of the CIRCUS System used for MUC-4,” in Proc. Fourth Message Understanding Conference (MUC-4), pp. 282-288, 1992.
Leroy, G. and H. Chen, “Meeting medical terminology needs--the Ontology-Enhanced Medical Concept Mapper,” IEEE Trans. Information Technology in Biomedicine, vol. 5, no. 4, pp. 261-270, 2001.
Lin, H. Y., W. J. Hou and H. H. Chen, “Retrieval of Biomedical Documents by Prioritizing Key Phrases,” in Proc. of the Fourteenth Text REtrieval Conference, Gaithersburg, Maryland, 2005.
Lindberg, D. A., B. L. Humphreys, and A. T. McCray, “The Unified Medical Language System,” Methods of Information in Medicine, vol. 32, pp. 281–291, 1993.
Lodhi, H., C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins, “Text Classification Using String Kernels,” Journal of Machine Learning Research, vol. 2, no. 3, pp. 419-444, 2002.
Manning, C. and H. Schütze, Foundations of Statistical Natural Language Processing. Cambridge, Mass.: MIT Press, 1999.
Michalewicz, Z., Genetic Algorithms + Data Structure = Evolution Programs. New York: Springer-Verlag, 1996.
Muslea, I., “Extraction Patterns for Information Extraction Tasks: A Survey,” in Proc. AAAI Workshop on Machine Learning for Information Extraction, pp. 1-6, 1999.
Pagano, M.E., A.E. Skodol, R.L. Stout, M.T. Shea, S. Yen, C.M. Grilo, C.A. Sanislow, D.S. Bender, T.H. McGlashan, M.C. Zanarini, and J.G. Gunderson, “Stressful Life Events as Predictors of Functioning: Findings from the Collaborative Longitudinal Personality Disorders Study,” Acta Psychiatrica Scandinavica, vol. 110, pp. 421-429, 2004.
Robertson, S. E., S. Walker, M. M. Beaulieu and M.Gatford, “Okapi at TREC-4,” in Proc. of the fourth Text REtrieval Conference (TREC-4), NIST, 1996.
Robertson, S. E., S. Walker, S. Jones, M. M. Hancock-Beaulieu and M.Gatford, “Okapi at TREC-3,” in Proc. of the Third Text REtrieval Conference (TREC-3), NIST, 1995.
Rodríguez, H., S. Climent, P. Vossen, L. Bloksma, W. Peters, A. Alonge, F. Bertagna, and A. Roventint, “The top-down strategy for building EuroWordNet: Vocabulary coverage, base concepts and top ontology,” Computers and the Humanities, vol. 32, pp. 117–159, 1998.
Salton, G. and C. Buckley, “Term-weighting Approaches in Automatic Text Retrieval,” Information Processing and Management, vol. 24, no. 5, pp. 513-523, 1988.
Salton, G. and M. J. McGill, Introduction to Modern Information Retrieval. McGraw-Hill, New York, 1983.
Soderland, S., “Learning Information Extraction Rules for Semi-Structured and Free Text,” Machine Learning, vol. 34, no. 1-3, pp. 233-272, 1999.
Voorhees, E. M. and D. K. Harman, “Overview of the Sixth Text REtrieval Conference (TREC-6),” Information Processing and Management, vol. 36, no. 1, pp. 3-35, 2000.
Voorhees, E. M., “Evaluation by Highly Relevant Documents,” in Proc. of the 24rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 74-82, September 2001.