| 研究生: |
鍾逸駿 Chung, I-Chun |
|---|---|
| 論文名稱: |
6061鋁合金氧化技術與耐蝕特性研究 A Study on Oxidation and Corrosion Resistance Behavior of 6061 Aluminum Alloy |
| 指導教授: |
鍾震桂
Chung, Chen-Kuei |
| 共同指導教授: |
蘇炎坤
Su, Yan-Kuin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 陽極氧化處理 、微弧氧化處理 、田口式品質 、硫酸 、矽酸鈉 、極化曲線 、腐蝕 、裂痕 、6061鋁合金 |
| 外文關鍵詞: | Anodic aluminum oxide, Micro–arc oxide, Taguchi method, Sulfuric acid, Sodium Silicate, Polarization curves, Corrosion, Crack, AA 6061 |
| 相關次數: | 點閱:177 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋁合金具有重量輕,強度高,具延展性,易於加工成型等優點。雖然鋁合金易在空氣中與氧氣形成氧化膜可以提高耐腐蝕性,但還不足以滿足工界業的需求。在本論文中,我們使用6061鋁合金製作陽極氧化薄膜(AAO)與微弧氧化薄膜(MAO),以提高耐腐蝕性。
在陽極氧化薄膜的研究上,我們分成三個部分。在第一部份,在較寬廣的參數範圍內外加電流密度0.3–3A / dm2以及硫酸濃度1–5 M中探討影響。在較高的電流密度將導致較高的氧化膜成長速率,雖然可增加多孔層的厚度但是保護性較差。增加硫酸濃度將可提升反應速率,尤其當硫酸濃度提升到3–5 M的時候,將導致氧化膜產生裂痕導致耐蝕性降低。在第二部分,使用田口式品質方法研究電解液濃度,電流密度和陽極氧化時間等參數對AA6061鋁合金耐蝕性的影響。使用L9直交表每個實驗參數有三個層級,在陽極氧化過程紀錄電壓的變化、使用能量色散光譜儀來分析AAO膜組成成份的變化,使用掃描電子顯微鏡來觀察AAO膜的表面與橫截面的形貌,最後利用恆電位極化法判斷AAO膜的相對耐腐蝕性。在第三部分,探討AAO膜裂痕的形成以及耐蝕性行為的影響。在高的硫酸濃度(5 M)與低的電流密度(0.3 A/dm2)時,陽極氧化薄膜表面發現許多裂痕形成,當在較高的硫酸濃度時增加電流密度將抑制陽極氧化薄膜裂痕的形成;當電流密度固定在1 A/dm2時降低硫酸濃度亦有助於消除裂痕。當裂痕數量越多時,腐蝕電流密度則越高代表耐蝕性越差,抑制裂痕的形成將導致腐蝕電流變小代表有助於耐蝕性能提升。在陽極氧化薄膜的最佳耐蝕性是腐蝕電流密度為Icorr=8.516×10-11 A/cm2,當硫酸濃度為1 M,電流密度為1 A/dm2,反應時間為20分鐘。
在微弧氧化薄膜的研究上,我們分成三個部分。在第一部份,當電解液濃度為1 g/L 氫氧化鈉 + 4 g/L 矽酸鈉時且反應時間60分鐘時,觀察外加電流密度1–3A / dm2時探討其影響。隨著電流密度增加而微弧氧化薄膜厚度隨著線性增加。當電流密度增加到2–3A / dm2時,因微弧氧化持續產生激烈反應導致熱應力累積增加以致於微弧氧化薄膜表面出現裂痕導致耐蝕性降低。在第二部份,當電流密度固定在1A / dm2時且反應時間60分鐘時,觀察電解液濃度1 g/L氫氧化鈉+ 4, 8, 12 g/L 矽酸鈉時探討其影響。當電解液濃度固定在1 g/L氫氧化鈉時,隨著矽酸鈉濃度(4–12 g/L)增加產生電弧電壓降低(380–320 V)。當電解液濃度固定1 g/L氫氧化鈉下,矽酸鈉濃度由4到8 g/L時,微弧氧化薄膜厚度差異不大,當矽酸鈉濃度增加到12 g/L時,微弧氧化薄膜厚度大幅增加。在第三部份,當電流密度固定在1A / dm2時,電解液濃度為1 g/L 氫氧化鈉 + 4 g/L 矽酸鈉時,觀察反應時間30–90分鐘時探討其影響。隨著反應時間增加而微弧氧化薄膜厚度隨著線性增加。當反應時間增加到90分鐘時,因微弧氧化持續產生激烈反應導致熱應力累積增加以致於微弧氧化薄膜表面出現裂痕。在微弧氧化薄膜的最佳耐蝕性是腐蝕電流密度為Icorr=2.945×10-10 A/cm2,當電流密度為1 A/dm2,電解液濃度為1 g/L 氫氧化鈉 + 4 g/L矽酸鈉溶液,反應時間為60分鐘。
Aluminum alloys have favorable properties such as light weight, high strength, high ductility and good machinability. Although the oxide film formed on aluminum alloys, due to the oxygen in the air enhances the corrosion resistance, it is not enough to meet the needs in industry. In this dissertation, we investigated anodic aluminum oxide (AAO) and micro–arc oxide (MAO) films on 6061 aluminum alloy (AA6061) to improve the corrosion resistance.
Our study of AAO films can be divided into three sections. In the first section, the effects of an applied current density (0.3–3 A/dm2) and sulfuric acid concentration (1–5 M) over a wide range on the AA6061 alloy are discussed. Applying high current density resulted in a higher growth rate of the oxide; however, this also made the oxide layer more porous and less protective. Increasing the sulfuric acid concentration also enhanced the reaction rate. The vigorous reaction that took place in the electrolyte with the high sulfuric acid concentrations of 3–5 M led to the deposits cracking, which deteriorated the corrosion resistance. In the second section, the effects of electrolyte concentration, current density, and anodization-time parameters on the evolution of the corrosion resistance for the AA6061 alloy were investigated using the Taguchi method. Each anodization parameter had three levels using an experimental set of L9 orthogonal arrays. Variations in the bias voltage were recorded during the AAO process, and an energy-dispersive spectrometer was used to analyze the variations in the composition of the oxidized films. Variations in surface morphology and cross-section of the AAO were examined using a scanning electron microscope. Finally, the potentiostatic polarization method was used to characterize the relative corrosion resistance of the oxidized films. In the third section, the crack formation and corrosion behavior of the AA6061 oxide films were investigated. A number of cracks formed on the surface of the anodized AA6061 oxide film at the high electrolyte concentration of 5 M and low current density of 0.3 A/dm2. Moreover, increasing the current density suppressed crack formation at the high concentration of 5 M; alternatively, decreasing the electrolyte concentration was also helpful for eliminating cracks at a constant current density of 1 A/dm2. Moreover, the more the cracks, the higher the corrosion current was. Suppressing crack formation was crucial for promoting the corrosion resistance of the AA6061 film with less corrosion current. The best corrosion resistance of the anodized films, with Icorr = 8.516 × 10–11 A/cm2, was attained with 1 M sulfuric acid, a current density of 1 A/dm2, and an anodization time of 20 min.
Our study of MAO films can be divided into three sections. In the first section, the specimens were oxidized at the various direct current densities of 1–3 A/dm2 in a 1 g/L NaOH and 4 g/L Na2SiO3 electrolyte solution for a reaction time of 60 min to characterize the micro–arc oxidation behavior. The thickness of the oxidized films was roughly linearly proportional to the applied current density. The vigorous reaction that occurred at the higher current densities of 2–3 A/dm2 led to more thermal stress in the deposits, which then cracked thereby deteriorating the corrosion resistance. In the second section, the current density and reaction time were fixed at 1 A/dm2 and 60 min. The electrolyte comprised 1 g/L of sodium hydroxide with the different concentrations of 4, 8 and 12 g/L sodium silicate solution added. With the NaOH solution at the concentration of 1 g/L, the increases in sodium silicate (4–12 g/L) concentration led to the initial arc voltage decreasing (380–320 V). With the sodium hydroxide solution at the concentration of 1g/L, the thickness of the MAO films was not significantly changed when the sodium silicate concentration was varied between 4–8 g/L. But, when the sodium silicate concentration was enhanced to 12 g/L, the MAO films grew thicker. In the third section, the specimens were oxidized at the various reaction times of 30–90 min in a concentration of 1 g/L sodium hydroxide and 4 g/L sodium silicate electrolytes solution at a fixed current density of 1 A/dm2 to characterize the micro–arc oxidation behavior. The thickness of the oxidized films was roughly linearly proportional to the applied reaction time. The reaction time of 90 min led to the accumulation of more thermal stress in the deposits, which then cracked thereby deteriorating the corrosion resistance. The best corrosion resistance of the MAO film with Icorr=2.945×10–10 A/cm2 was attained at a current density of 1 A/dm2, under a concentration of 1 g/L NaOH and 4 g/L Na2SiO3 electrolyte solution, and with a reaction time of 60 min.
1. B. Valdez, S. Kiyota, M. Stoytcheva, R. Zlatev, and J.M. Bastidas, "Cerium-based conversion coatings to improve the corrosion resistance of aluminium alloy 6061-T6", Corrosion Science 87 (2014) 141–149.
2. C.K. Chung , W.T. Chang, M.W. Liao, and H.C. Chang, "Effect of pulse voltage and aluminum purity on the characteristics of anodic aluminum oxide using hybrid pulse anodization at room temperature", Thin Solid Films 519 (2011) 4754–4758.
3. R. U. Din, K.B. Bordo, M.S. Jellesen, and R. Ambat, "Accelerated growth of oxide film on aluminium alloys under steam: Part II: Effects of alloy chemistry and steamvapour pressure on corrosion and adhesion performance", Surface and Coatings Technology. 276 (2015) 106–115.
4. S. Zheng, C. Li, Q. Fu, M. Li, W. Hu, Q. Wang, M. Du, X. Liu and Z. Chen, "Fabrication of self-cleaning superhydrophobic surface on aluminum alloys with excellent corrosion resistance", Surface and Coatings Technology 276 (2015) 341–348.
5. Robert E. and Sanders, Jr, "Technology Innovation in Aluminum Products", The Journal of The Minerals 53 (2001) 21–25.
6. Rajan Verma, and Rajeshwar Singh, "Optimisation of influence of Tig Welding parameters on mechanical properties of aluminum 6061 alloy: A Review", IPASJ International Journal of Mechanical Engineering 4 (2016) 27–32.
7. K.A. Korinek, "Chromate Conversion Coatings", ASM Handbook, Corrosion, American Society for Materials, Materials Park, OH, 13 (1987) 389.
8. R.G. Buchheit, and A.E. Hughes, "Chromate and Chromate-Free Conversion Coatings", ASM Handbook, Corrosion: Fundamentals, Testing and Protection, American Society for Materials, Materials Park, OH, 13 (2003) 720–736.
9. F. Viejo, A.E. Coy, F.J. García-García, M.C. Merino, Z. Liu, P. Skeldon, and G.E. Thompson, "Enhanced performance of the AA2050-T8 aluminium alloy following excimer laser surface melting and anodising processes", Thin Solid Films 518 (2010) 2722–2731.
10. D. Embuka, A.E. Coy, C.A. Hernandez-Barrios, F. Viejo, and Z. Liu, "Thermal stability of excimer laser melted films formed on the AA2024-T351 aluminium alloy: Microstructure and corrosion performance", Surface and Coatings Technology 313 (2017) 214–221.
11. L. RuizdeLara, R. Jagdheesh, J. L. Ocaña, "Corrosion resistance of laser patterned ultrahydrophobic aluminium surface ", Materials Letters 184 (2016) 100–103.
12. L. Dubourg, H. Pelletier, D. Vaissiere, F. Hlawka, and A. Cornet, "Mechanical characterisation of laser surface alloyed aluminium–copper systems", Wear 253 (2002) 1077–1085.
13. M. A. D-Crespo, A. M. T-Huerta, S. E. Rodil, E. R-Meneses, G. G. S- Velazquez, and M. A. H- Perez, "Effective corrosion protection of AA6061 aluminum alloy by sputtered Al–Ce coatings", Electrochimica Acta 55 (2009) 498–503.
14. Y. Liu, J. Huang, J.B. Claypool, C. E. Castano, and M. J. O’Keefe, "Structure and corrosion behavior of sputter deposited cerium oxidebased coatings with various thickness on Al 2024-T3 alloy substrates", Applied Surface Science 355 (2015) 805–813.
15. E. G-Berasategui, R. Bayón, C. Zubizarreta, J. Barriga, R. Barros, R.Martins, and E. Fortunato, "Corrosion resistance analysis of aluminium-doped zinc oxide layers deposited by pulsed magnetron sputtering", Thin Solid Films 594 (2015) 256–260.
16. H. Habazaki, H. Mitsui, K. Ito, K. Asami, K. Hashimoto, and S. Mrowec, "Roles of aluminum and chromium in sulfidation and oxidation of sputter-deposited Al- and Cr-refractory metal alloys", Corrosion Science 44 (2002) 285–301.
17. A. Pardo, P. Casajus, M. Mohedano, A.E. Coy, F. Viejo, B. Torres, and E. Matykina, "Corrosion protection of Mg/Al alloys by thermal sprayed aluminium coatings", Applied Surface Science 255 (2009) 6968–6977.
18. Z. Yin, and F. Chen, "Effect of nickel immersion pretreatment on the corrosion performance of electroless deposited Ni–P alloys on aluminum", Surface and Coatings Technology. 228 (2013) 34–40.
19. A. E. Fetohi, R.M. Abdel Hameed, and K.M. El-Khatib, "Development of electroless Ni–P modified aluminum substrates in a simulated fuel cell environment", Journal of Industrial and Engineering Chemistry 30 (2015) 239–248.
20. F. Delaunois, and P. Lienard, "Heat treatments for electroless nickel–boron plating on aluminium alloys", Surface and Coatings Technology 160 (2002) 239–248.
21. Sung-Ying Tsai, Chien-Hung Lin, Yu-Jhan Jian, Kung-Hsu Hou, and Ming-Der Ger, "The fabrication and characteristics of electroless nickel and immersion Au-polytetrafluoroethylene composite coating on aluminum alloy 5052 as bipolar plate", Surface and Coatings Technology 313 (2017) 151–157.
22. D. Shen, G. Li, C. Guo, J. Zou, J. Cai, D. He, H. Ma, and F. Liu, "Microstructure and corrosion behavior of micro-arc oxidation coatingon 6061 aluminum alloy pre-treated by high-temperature oxidation", Applied Surface Science 287 (2013) 451–456.
23. Q. P. Tran, J. K. Sun, Y. C. Kuo, C. Y. Tseng, J. L. He, and T. S. Chin, "Anomalous layer-thickening during micro-arc oxidation of 6061 Al alloy", Journal of Alloys and Compounds 697 (2017) 326–332.
24. Q. P. Tran, Y. C. Kuo, J. K. Sun, J. L. He, and T. S. Chin, "High quality oxide-layers on Al-alloy by micro-arc oxidation using hybrid voltages", Surface and Coatings Technology 303 (2016) 61–67.
25. C.-C. Tseng , J.-L. Lee , T.-H. Kuo, S.-N. Kuo, K.-H. Tseng, "The influence of sodium tungstate concentration and anodizing conditions on microarc oxidation (MAO) coatings for aluminum alloy", Surface and Coatings Technology 206 (2012) 3437–3443.
26. M.-A. Chen, Y.-C. Ou, Y.-H. Fu, Z.-H. Li, J.-M. Li, S.-D. Liu, "Effect of friction stirred Al-Fe-Si particles in 6061 aluminum alloy on structure and corrosion performance of MAO coating", Surface and Coatings Technology 304 (2016) 85–97.
27. K. Dejun , and W. Jinchun, "Salt spray corrosion and electrochemical corrosion properties of anodic oxide film on 7475 aluminum alloy", Journal of Alloys and Compounds 632 (2015) 286–290.
28. Y. Wen, H. Meng, and W. Shang, "Influence of preparation temperature on the electrochemical characteristics of the Dodecafluoroheptyl-propyl-trimethoxysilane SAMs on aluminum alloy 6061", Surface and Coatings Technology 258 (2014) 574–579.
29. T.-S. Shih, H.-S. Yong,and W.-N. Hsu, "Effects of Cryogenic Forging and Anodization on the Mechanical Properties and Corrosion Resistance of AA6066–T6 Aluminum Alloys", Metals 6 (2016) 51 (12p).
30. G. E. J. Poinern, N. Ali and D. Fawcett, " Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development", Materials 4 (2011) 487–526.
31. Y. Huang, D. K. Sarkar, and X.-G. Chen, "Fabrication of Corrosion Resistance Micro-Nanostructured Superhydrophobic Anodized Aluminum in a One-Step Electrodeposition Process", Metals 6 (2016) 47 (8p).
32. C.K. Chung , M.W. Liao, H.C. Chang, and C.T. Lee, "Effects of temperature and voltage mode on nanoporous anodic aluminum oxide films by one-step anodization", Thin Solid Films 520 (2011) 1554–1558.
33. A. P. Samantilleke, J. O. Carneiro, S. Azevedo, T. Thuy and V. Teixeira, "Electrochemical Anodizing, Structural and Mechanical Characterization of Nanoporous Alumina Templates", Journal of Nano Research 25 (2013) 77–89.
34. H. Masuda, F. Hasegawa, and S. Ono, "Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution", Journal of Electrochemical Science 144 (1997) 127-130.
35. C.-G. Kuo, Y.-T. Hsieh, C.-F. Yang, C.-H. Huang, and C.-Y. Yen, "Growth of Anodic Aluminum Oxide Templates and the Application in Fabrication of the BiSbTe-Based Thermoelectric Nanowires", International Journal of Photoenergy 2014 (2014) 978184 (7p).
36. G.E. Thompson, "Porous anodic alumina: fabrication, characterization and applications", Thin Solid Films 297 (1997) 192–201.
37. X. He, C. Chiu, M. J. Esmacher, and H. Liang, "Nanostructured photocatalytic coatings for corrosion protection and surface repair", Surface and Coatings Technology 237 (2013) 320–327.
38. Y.-S. Huang, T.-S. Shih, and J.-H. Chou, "Electrochemical behavior of anodized AA7075-T73 alloys as affected by the matrix structure", Applied Surface Science 283 (2013) 249–257.
39. T.-C. Cheng and C.-C. Chou, "The Electrical and Mechanical Properties of Porous Anodic 6061-T6 Aluminum Alloy Oxide Film", Journal of Nanomaterials 2015 (2015) 371405 (5p).
40. T.-S. Shih, P.-S. Wei, and Y.-S. Huang, "Optical properties of anodic aluminum oxide films on Al1050 alloys", Surface and Coatings Technology 202 (2008) 3298–3305.
41. M. M.-Domanska, M. Noreka, W. J. Stepniowski, and B. Budner, "Fabrication of high quality anodic aluminum oxide (AAO) on low purity aluminum–A comparative study with the AAO produced on high purity aluminum", Electrochimica Acta 105 (2013) 424– 432.
42. Y.-S. Huang, T.-S. Shih, and C.-E. Wu, "Electrochemical behavior of anodized AA6063-T6 alloys affected by matrix structures", Applied Surface Science 264 (2013) 410–418.
43. G. D. Sulka, V. Moshchalkov, G. Borghs, and J.-P. Celis, "Electrochemical impedance spectroscopic study of barrier layer thinning in nanostructured aluminium", Journal of Applied Electrochemistry 37 (2007) 789–797.
44. H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution", Japanese Journal of Applied Physics 37 (1998) 1340–1342.
45. J. Zhang, J. E. Kielbasa, and D. L. Carroll, "Controllable fabrication of porous alumina templates for nanostructures synthesis", Materials Chemistry and Physics 122 (2010) 295–300.
46. G Q Ding, W Z Shen, M J Zheng and Z B Zhou, "Integration of single-crystalline nanocolumns into highly ordered nanopore arrays", Nanotechnology 17 (2006) 2590–2594.
47. J. Wang, C-W. Wang, Y. Li, and W-M. Liu, "Optical constants of anodic aluminum oxide films formed in oxalic acid solution", Thin Solid Films 516 (2008) 7689–7694.
48. H. Ghaforyan and M. Ebrahimzadeh, "Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina Fabrication", Journal of Materials Science and Engineering B1 (2011) 82–85.
49. C.K. Chung, T. Y. Liu, W. T. Chang, "Effect of oxalic acid concentration on the formation of anodic aluminum oxide using pulse anodization at room temperature", Microsystem Technologies 16 (2010) 1451–1456.
50. G Q Ding, M J Zheng, W L Xu and W Z Shen, "Fabrication of controllable free-standing ultrathin porous alumina membranes", Nanotechnology 16 (2005) 1285–1289.
51. O. Jessensky, F. Muller, and U. Gösele, "Self-Organized Formation of Hexagonal Pore Structures in Anodic Alumina", Journal of The Electrochemical Society 145 (1998) 3735–3740.
52. A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, " Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina", Journal of applied physics 84 (1998) 6023–6026.
53. D.M. Byrne, and S. Taguchi, "The Taguchi approach to parameter design", Quality Progress 20 (1987) 19–26.
54. F. Keller, M. S. Hunter, and D. L. Robinson, " Structural Features of Oxide Coatings on Aluminum", Joural of the Electrochemical Society 100 (1953) 411–419.
55. V.P. Parkhutik, and V.I. Shershulsky, "Theoretical modeling of porous oxide-growth on aluminum", Journal of Physics D: Applied Physics 25 (1992) 1258–1263.
56. S. K. Thamida and H.-C. Chang, "Nanoscale pore formation dynamics during aluminum anodization", Chaos 12 (2002) 240–251.
57. Z. Wu, C. Richter, and L. Menon, "A Study of Anodization Process During Pore Formation in Nanoporous Alumina Template", Journal of The Electrochemical Society 154 (2007) 8–12.
58. C. K. Chung, M.W. Liao, H. C. Chang, W. T. Chang, T. Y. Liu, "On characteristics of pore size distribution in hybrid pulse anodized high-aspect- ratio aluminum oxide with Taguchi method", Microsystem Technologies 19 (2013) 387–393.
59. A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S.J. Dowey, " Plasma electrolysis for surface engineering", Surface and Coatings Technology 122 (1999) 73–93.
60. M. Kaseem, and Y. G. Ko, "Electrochemical Response of Al2O3-MoO2-TiO2 Oxide Films Formed on 6061 Al Alloy by Plasma Electrolytic Oxidation", Journal of The Electrochemical Society 163 (2016) 587–592.
61. S. Ji, Y. Weng, Z. Wu, Z. Ma, X. Tian, R. K. Y. Fu, G. Wu, P. K. Chu, and F. Pan, "Excellent corrosion resistance of P and Fe modified micro-arc oxidation coating on Al alloy", Journal of Alloys and Compounds 710 (2017) 452–459.
62. K. Sayuri, V. Benjamin, S. Margarita, Z. Roumen and B. J. Maria, "Anticorrosion behavior of conversion coatings obtained from unbuffered cerium salts solutions on AA6061-T6", Journal of Rare Earths. 29 (2011) 961–968.
63. L. Zaraska, G. D. Sulka, J. Szeremeta, and M. Jaskuła, "Porous anodic alumina formed by anodization of aluminum alloy (AA1050) and high purity aluminum", Electrochimica Acta 55 (2010) 4377–4386.
64. M. Xiangfeng, W. Guoying, G. Hongliang, Y. Yundan, C. Ying, and H. Dettinger, "Anodization for 2024 Al Alloy from Sulfuric-Citric Acid and Anticorrosion Performance of Anodization Films", International Journal of Electrochemical Science 8 (2013) 10660–10671.
65. I. Mohammadi and A. Afshar, "Modification of nanostructured anodized aluminum coatings by pulse current mode", Surface and Coatings Technology 278 (2015) 48–55.
66. P. Wang, T. Wu, Y. T. Xiao, L. Zhang, J. Pu, W. J. Cao, and X. M. Zhong, "Characterization of micro-arc oxidation coatings on aluminum drillpipes at different current density", Vacuum 142 (2017) 21–28.
67. N. Xiang, R. G. Song, J. J. Zhuang, R. X. Song, X. Y. Lu, and X. P. Su, " Effects of current density on microstructure and properties of plasma electrolytic oxidation ceramic coatings formed on 6063 aluminum alloy", Transaction of Nonferrous Metals Society of China 26 (2016) 806–813.
68. C.-K. Chen, D.-S. Chan, C.-C. Lee, and S.-H. Chen, "Fabrication of Orderly Copper Particle Arrays on a Multi-Electrolyte-Step Anodic Aluminum Oxide Template", Journal of Nanomaterials 2013 (2013) 784927 (7p).
69. T.-S. Shih, P.-C. Chen, and Y.-S. Huang, "Effects of the hydrogen content on the development of anodic aluminum oxide film on pure aluminum", Thin Solid Films 519 (2011) 7817–7825.
70. P.-S. Wei and T.-S. Shih, "Monitoring the Progressive Development of an Anodized Film on Aluminum", Journal of The Electrochemical Society 154 (2007) 678–683.
71. T. Haruna, T. Kouno, and S. Fujimoto, " Electrochemical conditions for environment-assisted cracking of 6061 Al alloy", Corrosion Science 47 (2005) 2441–2449.
72. R. Rosliza, H. B. Senin, and W. B. Wan Nik, "Electrochemical performances and corrosion inhibition of AA6061 in tropical seawater", ASEAN Journal Science and Technology Development (AJSTD) 25 (2008) 251–259.
73. T. Wei, F. Yan, and J. Tian, "Characterization and wear- and corrosion-resistance of microarc oxidation ceramic coatings on aluminum alloy", Journal of Alloys and Compounds 389 (2005) 169–176.
74. B. Zheng, Y. Zhao, W. Xue, and H. Liu, "Microbial influenced corrosion behavior of micro-arc oxidation coating on AA2024", Surface and Coatings Technology 216 (2013) 100–105.
75. M. M.S. A. Bosta, and K. J. Ma, "Influence of electrolyte temperature on properties and infrared emissivity of MAO ceramic coating on 6061 aluminum alloy", Infrared Physics & Technology 67 (2014) 63–72.
76. W.-C. Gu, G.-H. Lv, H. Chen, G.-L. Chen, W.-R. Feng, and S.-Z. Yang, "Characterisation of ceramic coatings produced by plasma electrolytic oxidation of aluminum alloy", Materials Science and Engineering A 447 (2007) 158–162.
77. S. Dejiu, C. Jingrui, L. Guolong, H. Donglei, W. Lailei, M. Haojie, X. Yonghong, C. He, and Y. Yaqian, "Effect of ultrasonic on microstructure and growth characteristics of micro-arc oxidation ceramic coatings on 6061 aluminum alloy", Vacuum 99 (2014) 143–148.
78. K.-J. Zheng, M. M.S. A. Bosta, and W.-J. Wu, "Preparation of self-lubricating composite coatings through a micro-arc plasma oxidation with graphite in electrolyte solution", Surface and Coatings Technology 259 (2014) 318–324.
79. J.-H. Wang, M.-H. Du, F.-Z. Han, and J. Yang, "Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al alloys", Applied Surface Science 292 (2014) 658–664.
80. X. Yang, L. Chen, Y. Qu, R. Lin, K. Wei, and W. Xue, "Optical emission spectroscopy of plasma electrolytic oxidation process on 7075 aluminum alloy", Surface and Coatings Technology 324 (2017) 18–25.
81. L. R. Krishna, P.S.V.N.B. Gupta, and G. Sundararajan, "The influence of phase gradient within the micro arc oxidation (MAO) coatings on mechanical and tribological behaviors", Surface and Coatings Technology 269 (2015) 54–63.
82. K. Wang, B.-H. Koo, C.-G. Lee, Y.-J. Kim, S.-H. Lee, and E. Byon, "Effects of electrolytes variation on formation of oxide layers of 6061 Al alloys by plasma electrolytic oxidation", Transaction of Nonferrous Metals Society of China 19 (2009) 866–870.
83. Q.-Q. Guo, B.-L. Jiang, J.-P. Li, G.-H. Li, and F. Xia, "Corrosion resistance of micro-arc oxidized ceramic coating on cast hypereutectic alloy", Transaction of Nonferrous Metals Society of China 20 (2010) 2204–2207.
84. M. M.S. A. Bosta, K.-J. Ma, and H.-H. Chin, "The effect of MAO processing time on surface properties and low temperature infrared emissivity of ceramic coating on aluminium 6061 alloy", Infrared Physics & Technology 60 (2013) 323–334.
85. M. M.S. A. Bosta, and K.-J. Ma, "Suggested mechanism for the MAO ceramic coating on aluminium substrates using bipolar current mode in the alkaline silicate electrolytes", Applied Surface Science 308 (2014) 121–138.
86. T. Aerts, I. D. Graeve, and H. Terryn, "Anodizing of aluminium under applied electrode temperature: Process evaluation and elimination of burning at high current densities", Surface and Coatings Technology 204 (2010) 2754–2760.
87. B. G.-García, E. G.-Lecina, J. A. Díez, M. Belenguer and C. Müller, " Local Burning Phenomena in Sulfuric Acid Anodizing: Analysis of Porous Anodic Alumina Layers on AA1050", Electrochemical and Solid-State Letters 13 (2010) 33–35.
88. J. J. Roa, B. G.-Garcı´a, E. G.-Lecina, and C. Müller, "Mechanical properties at nanometric scale of alumina layers formed in sulphuric acid anodizing under burning conditions", Ceramics International 38 (2012) 1627–1633.
89. M. Kim, Y. Kim, H. Lee, C.-Y. Park, W.-K. Lee, T. Kang and K. T. Lim, "Analysis of Polymer Hybrid-coated Anodic Aluminum Oxide", Molecular Crystals and Liquid Crystals 622 (2015) 120–124.
90. R. U. Din, K. Bordo, M. S. Jellesen, and R. Ambat, "Accelerated growth of oxide film on aluminium alloys under steam: Part II: Effects of alloy chemistry and steam vapour pressure on corrosion and adhesion performance", Surface and Coatings Technology 276 (2010) 106–115.
91. M. Whelan, K. Barton, J. Cassidy, J. Colreavy, and B. Duffy, "Corrosion inhibitors for anodised aluminium", Surface and Coatings Technology 227 (2013) 75–83.
92. M. G.-Rubio, P. Ocon, M. Curioni, G.E. Thompson, P. Skeldon, A. Lavia, and I. Garcia, "Degradation of the corrosion resistance of anodic oxide films through immersion in the anodising electrolyte", Corrosion Science 52 (2010) 2219–2227.
93. R. U. Din, M. S. Jellesen, and R. Ambat, "Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performance", Applied Surface Science 355 (2015) 716–725.
94. N. W. Liu, A. Datta, C. Y. Liu, and Y. L. Wang, "High-speed focused-ion-beam patterning for guiding the growth of anodic alumina nanochannel arrays", Applied Physics Letters 82 (2003) 1281–1283.
95. T.-T. Kao and Y.-C. Chang, "Influence of anodization parameters on the volume expansion of anodic aluminum oxide formed in mixed solution of phosphoric and oxalic acids", Applied Surface Science 288 (2014) 654–659.
96. M. Niknahad, S. Moradian, and S.M. Mirabedini, "The adhesion properties and corrosion performance of differently pretreated epoxy coatings on an aluminium alloy", Corrosion Science 52 (2010) 1948–1957.
97. T.-H. Fang, T. H. Wang, S.-H. Kang, and C.-H. Chuang, "Indentation deformation of mesoporous anodic aluminum oxide", Current Applied Physics 9 (2009) 880–883.
98. K. Miyazawa, S. Shimomura, T. Wakahara, and M. Tachibana, "Transmission electron microscopy analysis of vertically grown C60 fullerene microtube-AAO membrane joint interfaces", Diamond and Related Materials 65 (2016) 204–208.
99. Y. Ma, H. Hu, D. Northwood, and X. Nie, "Optimization of the electrolytic plasma oxidation processes for corrosion protection of magnesium alloy AM50 using the Taguchi method", Journal of Materials Processing Technology 182 (2007) 58–64.
100. G. D. Sulka, S. Stroobants, V. Moshchalkov, G. Borghs, and J.-P. Celis, "Synthesis of Well-Ordered Nanopores by Anodizing Aluminum Foils in Sulfuric Acid", Journal of The Electrochemical Society 149 (2002) 97–103.
101. G. D. Sulka, S. Stroobants, V. V. Moshchalkov, G. Borghs, and J.-P. Celis, "Effect of Tensile Stress on Growth of Self-Organized Nanostructures on Anodized Aluminum", Journal of The Electrochemical Society 151 (2004) 260–264.
102. S.-Y. Li, J. Wang, Y. Li, X.-Q. Zhang, G. Wang, and C.-W. Wang, "Photoluminescent properties of anodic aluminum oxide films formed in a mixture of malonic and sulfuric acid", Superlattices and Microstructures 75 (2014) 294–302.
103. S. Ko, D. Lee, S. Jee, H. Park, K. Lee, and W. Hwang, "Mechanical properties and residual stress in porous anodic alumina structures", Thin Solid Films 515 (2006) 1932–1937.
104. A. M. A.-Elnaiem, A.M.Mebed, W. A. E.-Said, and M.A. A.-Rahim, "Porous and mesh alumina formed by anodization of high purity aluminum films at low anodizing voltage", Thin Solid Films 570 (2014) 49–56.
校內:2027-08-01公開