簡易檢索 / 詳目顯示

研究生: 洪彰鍵
Hong, Jang-Jian
論文名稱: 以單向耦合隱藏式馬可夫模型及譜群聚法進行軌跡分析
Trajectory Analysis using SDC-HMM and Spectral Clustering
指導教授: 詹寶珠
Chung, Pau-Choo
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 40
中文關鍵詞: 譜群聚法單向耦合隱藏式馬可夫模型
外文關鍵詞: Spectral Clustering, Single Direction Coupled Hidden Markov Model
相關次數: 點閱:155下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文裡,我們提出一個單向耦合隱藏式馬可夫模型來分析在家中的日常生活軌跡,利用軌跡分析來分析日常的行為,藉著譜群聚法先對軌跡做分群的動作,再利用單向耦合隱藏式馬可夫模型,來整合軌跡裡的空間跟時間特徵。單向耦合隱藏式馬可夫模型包含兩種模型,一種是空間,一種是時間的模型,兩種的模型長度並不相同,時間的模型耦合到空間的模型,最後計算軌跡及樣板的相似度,如此一來,我們就可以對軌跡做更精確的分析。
    在我們的方法裡,我們會從軌跡中取得空間跟時間的特徵,在相同時間間隔去取得空間的特徵,以相同的移動量去取得時間的特徵,接著再利用普群聚法分別對這兩種特徵做分群,先對空間特徵做分群,再對時間特徵做分群,將有相同路徑及速度的軌跡分在同一群。接著利用這些分好群的軌跡來建立樣版,利用這些樣版來建立單向耦合隱藏式馬可夫模型,來進行對軌跡做分析。當新行為伴隨新軌跡的產生時,與每個現存的樣板比較後發現相似度太低,系統將會藉著自我學習的功能來為新的軌跡做樣版。

    In this paper, we propose a Single Direction Coupled Hidden Markov Model (SDC-HMM) to analyze daily trajectories in house. We analyze dairy behaviors according to trajectories analysis. First, we use spectral clustering to cluster trajectories into clusters. Then we use SDC-HMM to integrate spatial and temporal features in trajectories. SDC-HMM has two model, one is spatial and another is temporal. The number of states in tow models is different. Temporal model couples to spatial model. Then we use it to calculate similarity between patterns and trajectories. Finally, we can analyze trajectories more precise.
    In our approach, we extract time and spatial information from trajectories. The spatial features are extracted from fixing time dwell. The temporal features are extracted from fixing shift distance. Then we use spectral clustering to cluster those trajectories. Trajectories in the same cluster have the same path and the same moving speed. Then we use those clusters to construct patterns, and use those patterns to construct SDC-HMM to do trajectories analysis. Abnormal trajectories are detected with low probability which computed by SDC-HMM. While new behaviors appear with new trajectories, the Self Learning function of the system constructs patterns for them.

    摘要 I Abstract III 誌謝 V Table of contents VI List of Figures VIII List of Tables IX 1. INTRODUCTION 1 2. SYSTEM ARCHITECTURE AND SPECTRAL CLUSTERING 5 2.1 SYSTEM ARCHITECTURE 5 2.2 SPECTRAL CLUSTERING 6 2.2.1 Laplacians and Their basic properties 7 A. The unnormalized graph Laplacian 7 B. The normalized graph Laplacian 8 C. Spectral clustering Algorithm 8 3. METHOD 12 3.0 Overview 12 3.1 FEATURES EXTRACTION 12 3.2 CONSTRUCT PATTERNS 15 3.2.1 CLUSTERING OVERVIEW 15 3.2.2 SPECTRAL CLUSTERING 16 3.3 SDC-HMM 18 3.3.1 Model 18 3.3.2 SDC-HMM 20 3.4 SELF-LEARNING 21 4. EXPERIMENT AND RESULTS 23 4.1 SIMULATION ENVIRONMENT 23 4.2 TRAJECTORIES CLUSTERING 28 4.3 TRAJECTORIES ANALYSIS 29 4.4 SELF-LEARNING 32 5. CONCLUSION 35 6. REFERENCE 37

    [1] Zhouyu Fu, Weiming Hu, and Tieniu Tan, “Similarity based vehicle trajectory clustering and anomaly detection,” IEEE Int. Conf. Image Processing , 2005

    [2] Weiming Hu, Dan Xie, Tieniu Tan, and Steve Maybank, ”Learning activity patterns using fuzzy self-organizing neural network,” IEEE TRANS. SYSTEMS, MAN, AND CYBERNETICS—PART B, 34( 3):1618-1626, 2004

    [3] Porikli, F., ”Learning object trajectory patterns by spectral clustering,” IEEE Int. Conf. Multimedia and Expo, 2004

    [4] Zhou, Yue, Yan, and Shuicheng Huang, Thomas S. ”Detecting anomaly in videos from trajectory similarity analysis,” IEEE Int. Conf. Multimedia and Expo ,2007

    [5] Owens, J., and Hunter, A, ”Application of the self-organizing map to trajectory classification,” Third IEEE Inter. Workshop on Visual Surveillance Proceedings, 2000.

    [6] Junejo, I.N., Javed, O., and Shah, M., ”Multi feature path modeling for video surveillance,” International Conference on Pattern Recognition, 2004.

    [7]Hsu-Yung Cheng, and Jenq-Neng Hwang”Automated event detection for video surveillance via hidden markov models,” Computer vision, Graphic and Image Processing Conference, 2007

    [8] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss, “On spectral clustering: analysis and an algorithm,” Neural Info. Processing Systems, 2001

    [9]Yongjin Lee, and Seungjin Choi, ”Minimum entropy, k-means, spectral clustering,” IEEE Inter. Conf. Neural Networks, 2004

    [10] Marcal, A.R.S. Castro, L., ”Hierarchical clustering of multispectral images using combined spectral and spatial criteria,” IEEE Geoscience and Remote Sensing Letters, 2005

    [11]Ozertem, U., and Erdogmus, D., ”Spectral clustering with mean shift preprocessing,” IEEE Workshop on Machine Learning for Signal Processing, 2005

    [12]Jenssen, R., Eltoft, T., and Principe, J.C., ”Information theoretic spectral clustering,” IEEE Inter. Conf. Neural Networks, 2004.

    [13] Jianning Zhang, Lifeng Sun, Shiqiang Yang, and Yuzhuo Zhong, ”Joint inter and intra shot modeling for spectral video shot clustering,” IEEE Inter. Conf. Multimedia and
    Expo, 2005.

    [14]Dhillon, I.S., Yuqiang Guan, and Kulis, B.,”Weighted graph cuts without eigenvectors: a multilevel approach,” IEEE Trans. Pattern Analysis and Machine Intelligence, 2007.

    [15] Jonghwa Choi, Dongkyoo Shin, and Dongil Shin, ”Research and implementation of the context-aware middleware for controlling home appliances,” IEEE Trans. Consumer Electronics, 2005.

    [16] Zhang Jian, Zhan Songtao, Ji Yang, and Zhang Ping, ”Reasoning mechanism based on the demspter-shafer evidence theory for pervasive context aware computing application,” China ChinaComFirst International Conf. Communications and Networking, 2006.

    [17]Binh An Truong, Young-Koo Lee, and Sung-Young Lee,”Modeling and reasoning about uncertainty in context-aware system,” IEEE Inter. Conf. e-Business Engineering, 2005.

    [18] H Si, Y Kawahara, H Morikawa, and T Aoyama,”A stochastic approach for creating context-aware services based on context histories in smart home,” 1st International Workshop on Exploiting Context Histories in Smart Environments, pp.37–42, 2005.

    [19] Markus C. Huebscher and Julie A. McCann ”An adaptive middleware framework for context-aware applications,” Personal and Ubiquitous Computing, Vol. 10, No.1, pp. 12–20, 2006.

    [20] Ibrahim, Noha, and le Mouel, Frederic,”Context-aware specialization of semantic rules for choosing services in pervasive environments,” IEEE Inter. Conf. Pervasive Services, 2007.

    [21] J. Martin Serrano, and Joan Serrat. ”Information modeling and handling for context-aware multimedia services,” IEEE Wireless Communications, 2006

    [22] Schmidt, A., and van Laerhoven, K. ”How to build smart appliance” IEEE Personal Communications, 2001

    [23] N. Johnson, D.C. Hogg,“ Learning the distribution of object trajectories for event recognition” British Machine Vision Conference, 1995.

    [24] L.R Rabiner, “A tutorial on hidden Markov Models and Selected Applications in Speech Recognition”, Proc. IEEE 77 (2) (1989) 257-286.

    [25] C.D. Liu, P.C. Chung “A daily behavior enabled hidden Markov model for human behavior understanding”, Elsevier Science on Pattern Recognition Volume 41, Issue 5, (2008) Pages 1572-1580.

    [26] Lei Xie , Z.Q. Liu, “Speech Animation Using Coupled Hidden Markov Models”, in: 18th International Conference on Pattern Recognition, 2006 (ICPR 2006).

    下載圖示 校內:2011-08-21公開
    校外:2013-08-21公開
    QR CODE