簡易檢索 / 詳目顯示

研究生: 林恒名
Lin, Heng-Ming
論文名稱: 探討登革病毒非結構蛋白在整合素連接激酶介導之第一型干擾素訊息傳導抑制中的角色
Study on the role of dengue nonstructural proteins in integrin-linked kinase-mediated type-I interferon signaling inhibition
指導教授: 張志鵬
Chang, Chih-Peng
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 68
中文關鍵詞: 登革病毒非結構蛋白1非結構蛋白3整合素連接激酶細胞因子信號3第一型干擾素
外文關鍵詞: Dengue virus, Nonstructural protein 1, Nonstructural protein 3, Integrin-linked kinase, Suppressor of cytokine signaling 3, Type-I interferon signaling
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革病毒的感染會造成登革熱、登革休克症候群和登革出血熱等臨床疾病。目前還沒有有效的治療藥物或疫苗。因此,了解登革病毒的致病機制和宿主病毒間的相互作用,對於登革病毒所誘導的疾病之治療是至關重要的。第一型干擾素和數百種干擾素刺激基因可以對抗病毒感染。不幸地,已知登革病毒發展出能夠與宿主相互作用,並擺脫干擾素所介導的抗病毒反應的策略。而我們先前發現,整合素連接激酶 (Integrin-linked kinase, ILK),一種絲氨酸/蘇氨酸蛋白激酶,是促進登革病毒複製的關鍵宿主因子。我們的證據顯示,登革病毒能夠透過ILK/Akt/NF-κB所誘發之細胞因子信號3 (SOCS3),來負向調控第一型干擾素的信息傳遞訊號。然而,尚未清楚登革病毒是如何激活該整合素連接激酶所介導之機制。為了解決這個難題,我們將帶有個別登革病毒蛋白的質體轉染到人類肺癌細胞中,以研究它們在整合素連接激酶所調控路徑中的角色。實驗結果指出,當細胞大量表達登革病毒非結構蛋白1,2A,3和4A時,它們會誘發細胞因子信號3的表現量;而這樣的表現能夠被整合素連接激酶抑制劑所減緩。此外,由這些病毒非結構蛋白所上調的細胞因子信號3,能夠趨緩第一型干擾素所誘發的信號傳導及轉錄激活蛋白1 (STAT1)的活化,以及下游干擾素刺激基因的產生。儘管免疫共沈澱和共聚焦顯微成像試驗顯示,在細胞大量表達登革病毒非結構蛋白1,2A,3和4A時和干擾素連接激酶之間的相關性,但更顯著的在登革病毒感染的細胞中觀察到,登革非結構蛋白1和3與整合素連接激酶之間的相互作用。此外,我們還發現在登革病毒感染時,整合素連接激酶的末端錨蛋白重複序列對於誘發細胞因子信號3是很重要的。這指出登革病毒非結構蛋白可能可以結合到整合素連接激酶的末端錨蛋白重複序列上。綜合以上實驗結果,我們發現這些登革非結構蛋白,在調控整合素連接激酶所依賴的細胞因子信號3之誘發的潛在角色,並提供了能夠作為未來抗病毒藥物研發的策略。

    Dengue virus (DENV) infection is responsible for causing clinical diseases as dengue fever, dengue shock syndrome, and dengue hemorrhagic fever. There are no effective treatments or vaccines currently. Therefore, understanding the dengue pathogenesis and host-virus interaction is crucial for developing treatments against DENV-induced diseases. Type-1 interferons (IFNs) and hundreds of IFN-stimulated genes (ISGs) provide a defense against virus infection. Unfortunately, DENV was found to evolve strategies to interact with host factors and escape from IFN-mediated antiviral responses. We have previous found that integrin-linked kinase (ILK), a serine/ threonine protein kinase, is a crucial host factor for facilitating DENV replication. Our evidence revealed that DENV is able to regulate the negative feedback of IFN signaling via ILK/Akt/ERK/NF-κB-induced suppressor of cytokine signaling 3 (SOCS3) expression. However, it is unclear how DENV activates this ILK-mediated pathway. To solve this puzzle, we transfected individual plasmid cloned with each DENV protein into A549 cells to investigate their roles on ILK-induced SOCS3 expression. The results showed that ectopic expression of DENV NS1, NS2A, NS3, and NS4A induces increased expression of SOCS3, which is abolished by ILK inhibitor. The up-regulated SOCS3 by these DENV nonstructural proteins is able to attenuate IFN-induced STAT1 activation and downstream ISG production. Although the co-immunoprecipitation and the confocal assays demonstrated that ILK is associated with ectopic expressed DENV NS1, NS2A, NS3 and NS4A, significant interaction of ILK with DENV NS1 and NS3 was observed in DENV-infected cells. Furthermore, we also identified the N-terminal ankyrin (ANK) repeats of ILK is critical to induce SOCS3 during DENV infection. This suggests that DENV NS proteins may bind to ANK repeats of ILK. In conclusion, these results reveal the potential role of these DENV nonstructural proteins to regulate ILK-dependent-SOCS3 induction and provide the strategy for the future antiviral therapeutic drug development.

    中文摘要…………………………………………….………………………..…………… I Abstract………………………………………………………………………………….. III Acknowledgement………………………………………………………………………... V Table of contents………………………………………………………………………... VII Abbreviations………………………………………………………………...…………... X I. Introduction.……………………………………………………………………………. 1 I.1. Epidemiology of dengue virus……………………………………………………. 1 I.2. Virology of DENV………………………………………………………….......... 1 I.2.1. The characteristics of viral components…………………………………… 2 I.2.2. The life cycle………………………………………………………………. 4 I.3. Pathogenesis of dengue………………………………………..………………….. 4 I.4. DENV infection and host factors………...……………………………………….. 7 I.5. The battle between innate immune response and DENV……….………………... 8 I.6. Suppressor of cytokine signaling 3 (SOCS3) manipulates JAK-STAT signaling ………………………………………………………………………………………... 9 I.7. The overview of integrin-linked kinase (ILK)…………………………………… 11 II. Objective and Specific Aims…………………………………………………………. 14 III. Materials and Methods……………………………………………………………... 15 III.1. Materials………………………………………………………………………. 15 III.1.1. Cell lines……………………………………………………………….. 15 III.1.2. Virus……………………………………………………………………. 15 III.1.3. Bacteria and plasmids…………………………………………………... 15 III.1.4. Antibody……………………………………………………………….. 16 III.1.5. Reagents………………………………………………………………... 18 III.2. Methods……………………………………………………………………….. 24 III.2.1. Cell culture……………………………………………………………... 24 III.2.2. Virus propagation………………………………………………………. 24 III.2.3. Plaque assay……………………………………………………………. 24 III.2.4 DENV infection………………………………………………………... 25 III.2.5. Western blotting………………………………………………………... 25 III.2.6. RT-PCR and Q-PCR……………………………………………………. 26 III.2.7. Immunofluorescence assay (IFA)………………………………………. 26 III.2.8. Cell transfection………………………………………………………... 27 III.2.9. Co-immunoprecipitation (Co-IP)………………………………………. 27 III.2.10. Proximity ligation assay (PLA)……………………………………….. 27 III.2.11. Statistical analyses……………………………………………………. 28 IV. Results………………………………………………………………………………... 29 IV.1. The ectopic expression of DENV NS1, NS2A, NS3, and NS4A induces higher SOCS3 expression……………………………………………………………………...… 29 IV.2. ILK is involved in DENV nonstructural protein-mediated SOCS3 induction ………………………………………………………………………………………. 30 IV.3. DENV nonstructural protein-mediated SOCS3 induction attenuates IFNβ- induced STAT1 activation and ISGs production……………………………………... 30 IV.4. ILK interacts with DENV NS1, NS2A, NS3, and NS4A in ectopic-expressed cells………………………………………………………………………………….. 31 IV.5. ILK interacts with DENV NS1 and NS3 in DENV-infected cells……………... 32 IV.6. N-terminal ankyrin (ANK) repeats of ILK is important for supporting SOCS3 induction in DENV infection………………………………………………... 32 V. Conclusion…………………………………………………………………………….. 34 VI. Discussion……………………………………………………………………………. 35 VII. References…………………………………………………………………………... 40 VIII. Figures……………………………………………………………………………... 54 Figure 1. The ectopic expression of DENV NS1, NS2A, NS3, and NS4A up-regulates SOCS3 expression and Akt phosphorylation…………………...…………………… 55 Figure 2. ILK inhibition reduces DENV protein-triggered SOCS3 induction….. 56 Figure 3. Up-regulated SOCS3 expression by DENV proteins attenuates IFNβ-induced STAT1 phosphorylation and downstream ISG production…………………………... 58 Figure 4. ILK interacts with DENV NS1, NS2A, NS3, and NS4A in ectopic expressing Cells……………….……………………………………………………………….... 59 Figure 5. ILK is colocalized with ectopic expressing DENV NS1, NS2A, NS3, and NS4A…………..…………………………………………………………………..... 60 Figure 6. ILK is colocalized with DENV NS1 and NS3 in DENV-infected cells…… 62 Figure 7. ILK is co-immunoprecipitated with DENV NS1 and NS3 in DENV-infected cells………………………………………………………………….... 63 Figure 8. ILK interacts with DENV NS1 and NS3 determined by PLA in DENV-infected cells………………………………………………………………………… 64 Figure 9. ANK domain of ILK is crucial for inducing SOCS3 during DENV infection……………………………………………………………………………... 65 Figure 10. Proposed model of DENV nonstructural protein-triggered type-I IFN signaling inhibition via ILK-mediated SOCS3…………………………………….... 66 IX. Appendices…………………………………………………………………………... 67 Appendix 1. UV-inactivated DENV is unable to induce SOCS3 upregulation……… 67 Appendix 2. ANK domain of ILK is interacted with DENV NS1 and NS3 in DENV-infected cells……………………………..………………………………………….. 68

    Acconcia, F., Barnes, C.J., Singh, R.R., Talukder, A.H., and Kumar, R. (2007). Phosphorylation-dependent regulation of nuclear localization and functions of integrin-linked kinase. PNAS 104, 6782.

    Ackermann, M., and Padmanabhan, R. (2001). De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276, 39926-39937.

    Aguirre, S., Luthra, P., Sanchez-Aparicio, M.T., Maestre, A.M., Patel, J., Lamothe, F., Fredericks, A.C., Tripathi, S., Zhu, T., Pintado-Silva, J., et al. (2017). Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat Microbiol 2, 17037.

    Aguirre, S., Maestre, A.M., Pagni, S., Patel, J.R., Savage, T., Gutman, D., Maringer, K., Bernal-Rubio, D., Shabman, R.S., Simon, V., et al. (2012). DENV inhibits type I IFN production in infected cells by cleaving human STING. PLoS Pathog 8, e1002934.

    Ahmed, A.U., Sarvestani, S.T., Gantier, M.P., Williams, B.R., and Hannigan, G.E. (2014). Integrin-linked kinase modulates lipopolysaccharide- and Helicobacter pylori-induced nuclear factor κB-activated tumor necrosis factor-α production via regulation of p65 serine 536 phosphorylation. J Biol Chem 289, 27776-27793.

    Akhtar, L.N., Qin, H., Muldowney, M.T., Yanagisawa, L.L., Kutsch, O., Clements, J.E., and Benveniste, E.N. (2010). Suppressor of cytokine signaling 3 inhibits antiviral IFN-beta signaling to enhance HIV-1 replication in macrophages. J Immunol 185, 2393-2404.

    Amorim, J.H., Alves, R.P.d.S., Boscardin, S.B., and Ferreira, L.C.d.S. (2014). The dengue virus non-structural 1 protein: Risks and benefits. Virus Res 181, 53-60.

    Ashour, J., Laurent-Rolle, M., Shi, P.Y., and García-Sastre, A. (2009). NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83, 5408-5418.

    Assi, K., Bergstrom, K., Vallance, B., Owen, D., and Salh, B. (2013). Requirement of epithelial integrin-linked kinase for facilitation of Citrobacter rodentium-induced colitis. BMC Gastroenterology 13, 137.

    Avirutnan, P., Fuchs, A., Hauhart, R.E., Somnuke, P., Youn, S., Diamond, M.S., and Atkinson, J.P. (2010). Antagonism of the complement component C4 by flavivirus nonstructural protein NS1. J Exp Med 207, 793-806.

    Avirutnan, P., Hauhart, R.E., Somnuke, P., Blom, A.M., Diamond, M.S., and Atkinson, J.P. (2011). Binding of flavivirus nonstructural protein NS1 to C4b binding protein modulates complement activation. J Immunol 187, 424-433.

    Avirutnan, P., Punyadee, N., Noisakran, S., Komoltri, C., Thiemmeca, S., Auethavornanan, K., Jairungsri, A., Kanlaya, R., Tangthawornchaikul, N., Puttikhunt, C., et al. (2006). Vascular leakage in severe dengue virus infections: a potential role for the nonstructural viral protein NS1 and complement. J Infect Dis 193, 1078-1088.

    Beatty, P.R., Puerta-Guardo, H., Killingbeck, S.S., Glasner, D.R., Hopkins, K., and Harris, E. (2015). Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented by NS1 vaccination. Sci Transl Med 7, 304ra141.

    Benarroch, D., Selisko, B., Locatelli, G.A., Maga, G., Romette, J.L., and Canard, B. (2004). The RNA helicase, nucleotide 5'-triphosphatase, and RNA 5'-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328, 208-218.

    Bode, J.G., Ludwig, S., Ehrhardt, C., Albrecht, U., Erhardt, A., Schaper, F., Heinrich, P.C., and Häussinger, D. (2003). IFN-alpha antagonistic activity of HCV core protein involves induction of suppressor of cytokine signaling-3. Faseb j 17, 488-490.

    Brunetti, J.E., Scolaro, L.A., and Castilla, V. (2015). The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a host factor required for dengue virus and Junín virus multiplication. Virus Res 203, 84-91.

    Ceballos-Olvera, I., Chávez-Salinas, S., Medina, F., Ludert, J.E., and del Angel, R.M. (2010). JNK phosphorylation, induced during dengue virus infection, is important for viral infection and requires the presence of cholesterol. Virology 396, 30-36.

    Chan, J., Ko, F.C.F., Yeung, Y.-S., Ng, I.O.-L., and Yam, J.W.P. (2011). Integrin-Linked Kinase Overexpression and Its Oncogenic Role in Promoting Tumorigenicity of Hepatocellular Carcinoma. PLOS ONE 6, e16984.

    Chen, H.-R., Chao, C.-H., Liu, C.-C., Ho, T.-S., Tsai, H.-P., Perng, G.-C., Lin, Y.-S., Wang, J.-R., and Yeh, T.-M. (2018a). Macrophage migration inhibitory factor is critical for dengue NS1-induced endothelial glycocalyx degradation and hyperpermeability. PLOS Pathogens 14, e1007033.

    Chen, H.-R., Chuang, Y.-C., Lin, Y.-S., Liu, H.-S., Liu, C.-C., Perng, G.-C., and Yeh, T.-M. (2016). Dengue Virus Nonstructural Protein 1 Induces Vascular Leakage through Macrophage Migration Inhibitory Factor and Autophagy. PLOS Neglected Tropical Diseases 10, e0004828.

    Chen, H.R., Lai, Y.C., and Yeh, T.M. (2018b). Dengue virus non-structural protein 1: a pathogenic factor, therapeutic target, and vaccine candidate. J Biomed Sci 25, 58.

    Chen, J., Ng, M.M.-L., and Chu, J.J.H. (2015). Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection. PLOS Pathogens 11, e1005053.

    Chen, M.-C., Lin, C.-F., Lei, H.-Y., Lin, S.-C., Liu, H.-S., Yeh, T.-M., Anderson, R., and Lin, Y.-S. (2009a). Deletion of the C-Terminal Region of Dengue Virus Nonstructural Protein 1 (NS1) Abolishes Anti-NS1-Mediated Platelet Dysfunction and Bleeding Tendency. The Journal of Immunology 183, 1797.

    Chen, R.F., Wang, L., Cheng, J.T., Chuang, H., Chang, J.C., Liu, J.W., Lin, I.C., and Yang, K.D. (2009b). Combination of CTLA-4 and TGFbeta1 gene polymorphisms associated with dengue hemorrhagic fever and virus load in a dengue-2 outbreak. Clin Immunol 131, 404-409.

    Chuang, Y.C., Wang, S.Y., Lin, Y.S., Chen, H.R., and Yeh, T.M. (2013). Re-evaluation of the pathogenic roles of nonstructural protein 1 and its antibodies during dengue virus infection. J Biomed Sci 20, 42.

    Dai, D.L., Makretsov, N., Campos, E.I., Huang, C., Zhou, Y., Huntsman, D., Martinka, M., and Li, G. (2003). Increased Expression of Integrin-Linked Kinase Is Correlated with Melanoma Progression and Poor Patient Survival. Clinical Cancer Research 9, 4409.

    Dalrymple, N.A., Cimica, V., and Mackow, E.R. (2015). Dengue Virus NS Proteins Inhibit RIG-I/MAVS Signaling by Blocking TBK1/IRF3 Phosphorylation: Dengue Virus Serotype 1 NS4A Is a Unique Interferon-Regulating Virulence Determinant. mBio 6, e00553-00515.

    Daugherty, M.D., and Malik, H.S. (2012). Rules of engagement: molecular insights from host-virus arms races. Annu Rev Genet 46, 677-700.

    Dedhar, S., Williams, B., and Hannigan, G. (1999). Integrin-linked kinase (ILK): a regulator of integrin and growth-factor signalling. Trends Cell Biol 9, 319-323.

    Delcommenne, M., Tan, C., Gray, V., Rue, L., Woodgett, J., and Dedhar, S. (1998). Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proceedings of the National Academy of Sciences 95, 11211.

    Delgado-Ortega, M., Marc, D., Dupont, J., Trapp, S., Berri, M., and Meurens, F. (2013). SOCS proteins in infectious diseases of mammals. Vet Immunol Immunopathol 151, 1-19.

    Diamond, M.S., and Pierson, T.C. (2015). Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control. Cell 162, 488-492.

    Dienz, O., Eaton, S.M., Bond, J.P., Neveu, W., Moquin, D., Noubade, R., Briso, E.M., Charland, C., Leonard, W.J., Ciliberto, G., et al. (2009). The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J Exp Med 206, 69-78.

    Edeling, M.A., Diamond, M.S., and Fremont, D.H. (2014). Structural basis of Flavivirus NS1 assembly and antibody recognition. Proc Natl Acad Sci U S A 111, 4285-4290.

    Effler, P.V., Pang, L., Kitsutani, P., Vorndam, V., Nakata, M., Ayers, T., Elm, J., Tom, T., Reiter, P., Rigau-Perez, J.G., et al. (2005). Dengue fever, Hawaii, 2001-2002. Emerg Infect Dis 11, 742-749.

    Esfandiarei, M., Suarez, A., Amaral, A., Si, X., Rahmani, M., Dedhar, S., and McManus, B.M. (2006). Novel role for integrin-linked kinase in modulation of coxsackievirus B3 replication and virus-induced cardiomyocyte injury. Circ Res 99, 354-361.

    Falconar, A.K. (2007). Antibody responses are generated to immunodominant ELK/KLE-type motifs on the nonstructural-1 glycoprotein during live dengue virus infections in mice and humans: implications for diagnosis, pathogenesis, and vaccine design. Clin Vaccine Immunol 14, 493-504.

    Falgout, B., Pethel, M., Zhang, Y.M., and Lai, C.J. (1991). Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol 65, 2467-2475.

    Fink, J., Gu, F., Ling, L., Tolfvenstam, T., Olfat, F., Chin, K.C., Aw, P., George, J., Kuznetsov, V.A., Schreiber, M., et al. (2007). Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl Trop Dis 1, e86.

    Franzosa, E.A., and Xia, Y. (2011). Structural principles within the human-virus protein-protein interaction network. Proc Natl Acad Sci U S A 108, 10538-10543.

    Frey, K.G., Ahmed, C.M., Dabelic, R., Jager, L.D., Noon-Song, E.N., Haider, S.M., Johnson, H.M., and Bigley, N.J. (2009). HSV-1-induced SOCS-1 expression in keratinocytes: use of a SOCS-1 antagonist to block a novel mechanism of viral immune evasion. J Immunol 183, 1253-1262.

    Fukuda, T., Chen, K., Shi, X., and wu, C. (2004). PINCH-1 Is an Obligate Partner of Integrin-linked Kinase (ILK) Functioning in Cell Shape Modulation, Motility, and Survival. The Journal of biological chemistry 278, 51324-51333.

    Gatto, L., Berlato, C., Poli, V., Tininini, S., Kinjyo, I., Yoshimura, A., Cassatella, M.A., and Bazzoni, F. (2004). Analysis of SOCS-3 promoter responses to interferon gamma. J Biol Chem 279, 13746-13754.

    Glasner, D.R., Puerta-Guardo, H., Beatty, P.R., and Harris, E. (2018). The Good, the Bad, and the Shocking: The Multiple Roles of Dengue Virus Nonstructural Protein 1 in Protection and Pathogenesis. Annu Rev Virol 5, 227-253.

    Glasner, D.R., Ratnasiri, K., Puerta-Guardo, H., Espinosa, D.A., Beatty, P.R., and Harris, E. (2017). Dengue virus NS1 cytokine-independent vascular leak is dependent on endothelial glycocalyx components. PLOS Pathogens 13, e1006673.
    Godói, I., Lemos, L., Araújo, V., Bonoto, B., Godman, B., and Guerra Junior, A. (2017). CYD-TDV dengue vaccine: Systematic review and meta-analysis of efficacy, immunogenicity and safety. Journal of Comparative Effectiveness Research 0, 1-16.

    Gubler, D.J. (2011). Dengue, Urbanization and Globalization: The Unholy Trinity of the 21(st) Century. Trop Med Health 39, 3-11.

    Guzman, M.G., Halstead, S.B., Artsob, H., Buchy, P., Farrar, J., Gubler, D.J., Hunsperger, E., Kroeger, A., Margolis, H.S., Martínez, E., et al. (2010). Dengue: a continuing global threat. Nat Rev Microbiol 8, S7-16.

    Guzman, M.G., and Harris, E. (2015). Dengue. The Lancet 385, 453-465.

    Halstead, S.B., and Aguiar, M. (2016). Dengue vaccines: Are they safe for travelers? Travel Medicine and Infectious Disease 14, 378-383.

    Hannigan, G., Troussard, A.A., and Dedhar, S. (2005). Integrin-linked kinase: a cancer therapeutic target unique among its ILK. Nature Reviews Cancer 5, 51-63.

    Hannigan, G.E., Leung-Hagesteijn, C., Fitz-Gibbon, L., Coppolino, M.G., Radeva, G., Filmus, J., Bell, J.C., and Dedhar, S. (1996). Regulation of cell adhesion and anchorage-dependent growth by a new β1-integrin-linked protein kinase. Nature 379, 91-96.

    Hannigan, G.E., McDonald, P.C., Walsh, M.P., and Dedhar, S. (2011). Integrin-linked kinase: not so 'pseudo' after all. Oncogene 30, 4375-4385.

    He, Z., Zhu, X., Wen, W., Yuan, J., Hu, Y., Chen, J., An, S., Dong, X., Lin, C., Yu, J., et al. (2016). Dengue Virus Subverts Host Innate Immunity by Targeting Adaptor Protein MAVS. J Virol 90, 7219-7230.

    Henchal, E.A., and Putnak, J.R. (1990). The dengue viruses. Clin Microbiol Rev 3, 376-396.

    Hoang, L.T., Lynn, D.J., Henn, M., Birren, B.W., Lennon, N.J., Le, P.T., Duong, K.T., Nguyen, T.T., Mai, L.N., Farrar, J.J., et al. (2010). The early whole-blood transcriptional signature of dengue virus and features associated with progression to dengue shock syndrome in Vietnamese children and young adults. J Virol 84, 12982-12994.
    Huang, Y.H., Chang, B.I., Lei, H.Y., Liu, H.S., Liu, C.C., Wu, H.L., and Yeh, T.M. (1997). Antibodies against dengue virus E protein peptide bind to human plasminogen and inhibit plasmin activity. Clin Exp Immunol 110, 35-40.

    Idrees, S., and Ashfaq, U.A. (2012). A brief review on dengue molecular virology, diagnosis, treatment and prevalence in Pakistan. Genet Vaccines Ther 10, 6.

    Jeewandara, C., Gomes, L., Wickramasinghe, N., Gutowska-Owsiak, D., Waithe, D., Paranavitane, S.A., Shyamali, N.L., Ogg, G.S., and Malavige, G.N. (2015). Platelet activating factor contributes to vascular leak in acute dengue infection. PLoS Negl Trop Dis 9, e0003459.

    Kershaw, N.J., Murphy, J.M., Lucet, I.S., Nicola, N.A., and Babon, J.J. (2013). Regulation of Janus kinases by SOCS proteins. Biochem Soc Trans 41, 1042-1047.

    Kim, M., Ogawa, M., Fujita, Y., Yoshikawa, Y., Nagai, T., Koyama, T., Nagai, S., Böttcher, A., Fässler, R., and Sasakawa, C. (2009). Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature 459, 578-582.

    Koeberlein, B., zur Hausen, A., Bektas, N., Zentgraf, H., Chin, R., Nguyen, L.T., Kandolf, R., Torresi, J., and Bock, C.T. (2010). Hepatitis B virus overexpresses suppressor of cytokine signaling-3 (SOCS3) thereby contributing to severity of inflammation in the liver. Virus Res 148, 51-59.

    Krebs, D.L., and Hilton, D.J. (2001). SOCS proteins: negative regulators of cytokine signaling. Stem Cells 19, 378-387.

    Kumar, A.S., Naruszewicz, I., Wang, P., Leung-Hagesteijn, C., and Hannigan, G.E. (2004). ILKAP regulates ILK signaling and inhibits anchorage-independent growth. Oncogene 23, 3454-3461.

    Lai, C.Y., Tsai, W.Y., Lin, S.R., Kao, C.L., Hu, H.P., King, C.C., Wu, H.C., Chang, G.J., and Wang, W.K. (2008). Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol 82, 6631-6643.

    Lee, C.J., Liao, C.L., and Lin, Y.L. (2005). Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. J Virol 79, 8388-8399.

    Lee, I.K., Liu, J.W., and Yang, K.D. (2009). Clinical characteristics, risk factors, and outcomes in adults experiencing dengue hemorrhagic fever complicated with acute renal failure. Am J Trop Med Hyg 80, 651-655.

    Lee, Y.-R., Su, C.-Y., Chow, N.-H., Lai, W.-W., Lei, H.-Y., Chang, C.-L., Chang, T.-Y., Chen, S.-H., Lin, Y.-S., Yeh, T.-M., et al. (2007). Dengue viruses can infect human primary lung epithelia as well as lung carcinoma cells, and can also induce the secretion of IL-6 and RANTES. Virus Res 126, 216-225.

    Legate, K.R., Montañez, E., Kudlacek, O., and Füssler, R. (2006). ILK, PINCH and parvin: the tIPP of integrin signalling. Nature Reviews Molecular Cell Biology 7, 20-31.

    Li, R., Liu, B., Yin, H., Sun, W., Yin, J., and Su, Q. (2013). Overexpression of integrin-linked kinase (ILK) is associated with tumor progression and an unfavorable prognosis in patients with colorectal cancer. J Mol Histol 44, 183-189.

    Lin, C.F., Chiu, S.C., Hsiao, Y.L., Wan, S.W., Lei, H.Y., Shiau, A.L., Liu, H.S., Yeh, T.M., Chen, S.H., Liu, C.C., et al. (2005). Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1. J Immunol 174, 395-403.

    Lin, Y.-S., Yeh, T.-M., Lin, C.-F., Wan, S.-W., Chuang, Y.-C., Hsu, T.-K., Liu, H.-S., Liu, C.-C., Anderson, R., and Lei, H.-Y. (2011). Molecular mimicry between virus and host and its implications for dengue disease pathogenesis. Experimental Biology and Medicine 236, 515-523.

    Lin, Y.L., Liu, C.C., Lei, H.Y., Yeh, T.M., Lin, Y.S., Chen, R.M., and Liu, H.S. (2000). Infection of five human liver cell lines by dengue-2 virus. J Med Virol 60, 425-431.

    Liu, I.J., Chiu, C.Y., Chen, Y.C., and Wu, H.C. (2011). Molecular mimicry of human endothelial cell antigen by autoantibodies to nonstructural protein 1 of dengue virus. J Biol Chem 286, 9726-9736.

    Liu, y., Liu, H., Zou, J., Zhang, B., and Yuan, Z.-m. (2014). Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway. Virology 448C, 15-25.

    Lorenzato, A., Torchiaro, E., Olivero, M., and Di Renzo, M.F. (2016). The integrin-linked kinase-associated phosphatase (ILKAP) is a regulatory hub of ovarian cancer cell susceptibility to platinum drugs. European Journal of Cancer 60, 59-68.

    Malavige, G.N., Rostron, T., Rohanachandra, L.T., Jayaratne, S.D., Fernando, N., De Silva, A.D., Liyanage, M., and Ogg, G. (2011). HLA Class I and Class II Associations in Dengue Viral Infections in a Sri Lankan Population. PLOS ONE 6, e20581.

    Marceau, C.D., Puschnik, A.S., Majzoub, K., Ooi, Y.S., Brewer, S.M., Fuchs, G., Swaminathan, K., Mata, M.A., Elias, J.E., Sarnow, P., et al. (2016). Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535, 159-163.

    Martina, B.E., Koraka, P., and Osterhaus, A.D. (2009). Dengue virus pathogenesis: an integrated view. Clin Microbiol Rev 22, 564-581.

    Mazzon, M., Jones, M., Davidson, A., Chain, B., and Jacobs, M. (2009). Dengue virus NS5 inhibits interferon-alpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation. J Infect Dis 200, 1261-1270.

    McDonald, P.C., Fielding, A.B., and Dedhar, S. (2008). Integrin-linked kinase – essential roles in physiology and cancer biology. Journal of Cell Science 121, 3121.

    Meertens, L., Carnec, X., Lecoin, M.P., Ramdasi, R., Guivel-Benhassine, F., Lew, E., Lemke, G., Schwartz, O., and Amara, A. (2012). The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12, 544-557.

    Modhiran, N., Watterson, D., Muller, D.A., Panetta, A.K., Sester, D.P., Liu, L., Hume, D.A., Stacey, K.J., and Young, P.R. (2015). Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci Transl Med 7, 304ra142.

    Morrison, J., Laurent-Rolle, M., Maestre, A.M., Rajsbaum, R., Pisanelli, G., Simon, V., Mulder, L.C., Fernandez-Sesma, A., and García-Sastre, A. (2013). Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog 9, e1003265.

    Mosser, D.M., and Zhang, X. (2008). Interleukin-10: new perspectives on an old cytokine. Immunol Rev 226, 205-218.

    Mukhopadhyay, S., Kuhn, R.J., and Rossmann, M.G. (2005). A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3, 13-22.

    Muñoz-Jordán, J.L., Laurent-Rolle, M., Ashour, J., Martínez-Sobrido, L., Ashok, M., Lipkin, W.I., and García-Sastre, A. (2005). Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol 79, 8004-8013.

    Muñoz-Jordán, J.L., Sánchez-Burgos, G.G., Laurent-Rolle, M., and García-Sastre, A. (2003). Inhibition of interferon signaling by dengue virus. Proceedings of the National Academy of Sciences 100, 14333-14338.

    Nemésio, H., and Villalaín, J. (2014). Membranotropic regions of the dengue virus prM protein. Biochemistry 53, 5280-5289.

    Okabayashi, T., Kariwa, H., Yokota, S., Iki, S., Indoh, T., Yokosawa, N., Takashima, I., Tsutsumi, H., and Fujii, N. (2006). Cytokine regulation in SARS coronavirus infection compared to other respiratory virus infections. J Med Virol 78, 417-424.

    Oloumi, A., McPhee, T., and Dedhar, S. (2004). Regulation of E-cadherin expression and beta-catenin/Tcf transcriptional activity by the integrin-linked kinase. Biochim Biophys Acta 1691, 1-15.

    Pauli, E.-K., Schmolke, M., Wolff, T., Viemann, D., Roth, J., Bode, J.G., and Ludwig, S. (2008). Influenza A Virus Inhibits Type I IFN Signaling via NF-κB-Dependent Induction of SOCS-3 Expression. PLOS Pathogens 4, e1000196.

    Persad, S., Attwell, S., Gray, V., Mawji, N., Deng, J.T., Leung, D., Yan, J., Sanghera, J., Walsh, M.P., and Dedhar, S. (2001). Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem 276, 27462-27469.

    Persico, M., Capasso, M., Persico, E., Svelto, M., Russo, R., Spano, D., Crocè, L., La Mura, V., Moschella, F., Masutti, F., et al. (2007). Suppressor of cytokine signaling 3 (SOCS3) expression and hepatitis C virus-related chronic hepatitis: Insulin resistance and response to antiviral therapy. Hepatology 46, 1009-1015.

    Pietras, E.M., Saha, S.K., and Cheng, G. (2006). The interferon response to bacterial and viral infections. J Endotoxin Res 12, 246-250.

    Pothlichet, J., Chignard, M., and Si-Tahar, M. (2008). Cutting edge: innate immune response triggered by influenza A virus is negatively regulated by SOCS1 and SOCS3 through a RIG-I/IFNAR1-dependent pathway. J Immunol 180, 2034-2038.

    Puerta-Guardo, H., Glasner, D.R., and Harris, E. (2016). Dengue Virus NS1 Disrupts the Endothelial Glycocalyx, Leading to Hyperpermeability. PLOS Pathogens 12, e1005738.

    Punyadee, N., Mairiang, D., Thiemmeca, S., Komoltri, C., Pan-ngum, W., Chomanee, N., Charngkaew, K., Tangthawornchaikul, N., Limpitikul, W., Vasanawathana, S., et al. (2015). Microparticles Provide a Novel Biomarker To Predict Severe Clinical Outcomes of Dengue Virus Infection. Journal of Virology 89, 1587.

    Rathakrishnan, A., Wang, S.M., Hu, Y., Khan, A.M., Ponnampalavanar, S., Lum, L.C., Manikam, R., and Sekaran, S.D. (2012). Cytokine expression profile of dengue patients at different phases of illness. PLoS One 7, e52215.

    Reich, N.C. (2019). Too much of a good thing: Detrimental effects of interferon. Semin Immunol 43, 101282.

    Reyes-del Valle, J., Salas-Benito, J., Soto-Acosta, R., and del Angel, R.M. (2014). Dengue Virus Cellular Receptors and Tropism. Current Tropical Medicine Reports 1, 36-43.

    Rodenhuis-Zybert, I.A., Wilschut, J., and Smit, J.M. (2010). Dengue virus life cycle: viral and host factors modulating infectivity. Cell Mol Life Sci 67, 2773-2786.

    Samuel, C.E. (2001). Antiviral actions of interferons. Clin Microbiol Rev 14, 778-809, table of contents.

    Screaton, G., Mongkolsapaya, J., Yacoub, S., and Roberts, C. (2015). New insights into the immunopathology and control of dengue virus infection. Nature Reviews Immunology 15, 745-759.

    Sen, G.C. (2001). Viruses and interferons. Annu Rev Microbiol 55, 255-281.

    Sessions, O.M., Barrows, N.J., Souza-Neto, J.A., Robinson, T.J., Hershey, C.L., Rodgers, M.A., Ramirez, J.L., Dimopoulos, G., Yang, P.L., Pearson, J.L., et al. (2009). Discovery of insect and human dengue virus host factors. Nature 458, 1047-1050.

    Shi, Q., Bao, S., Song, L., Wu, Q., Bigner, D.D., Hjelmeland, A.B., and Rich, J.N. (2007). Targeting SPARC expression decreases glioma cellular survival and invasion associated with reduced activities of FAK and ILK kinases. Oncogene 26, 4084-4094.

    Silverman, R.H. (2007). Viral Encounters with 2′,5′-Oligoadenylate Synthetase and RNase L during the Interferon Antiviral Response. Journal of Virology 81, 12720.

    Stern, O., Hung, Y.F., Valdau, O., Yaffe, Y., Harris, E., Hoffmann, S., Willbold, D., and Sklan, E.H. (2013). An N-terminal amphipathic helix in dengue virus nonstructural protein 4A mediates oligomerization and is essential for replication. J Virol 87, 4080-4085.

    Su, C.-I., Tseng, C.-H., Yu, C.-Y., and Lai, M.M.C. (2016). SUMO Modification Stabilizes Dengue Virus Nonstructural Protein 5 To Support Virus Replication. Journal of Virology 90, 4308-4319.

    Tassaneetrithep, B., Burgess, T.H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., Eller, M.A., Pattanapanyasat, K., Sarasombath, S., Birx, D.L., et al. (2003). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197, 823-829.

    Thiemmeca, S., Tamdet, C., Punyadee, N., Prommool, T., Songjaeng, A., Noisakran, S., Puttikhunt, C., Atkinson, J.P., Diamond, M.S., Ponlawat, A., et al. (2016). Secreted NS1 Protects Dengue Virus from Mannose-Binding Lectin-Mediated Neutralization. J Immunol 197, 4053-4065.

    Tsai, T.T., Chuang, Y.J., Lin, Y.S., Chang, C.P., Wan, S.W., Lin, S.H., Chen, C.L., and Lin, C.F. (2014). Antibody-dependent enhancement infection facilitates dengue virus-regulated signaling of IL-10 production in monocytes. PLoS Negl Trop Dis 8, e3320.
    Tseng, P.C., Chen, C.L., Shan, Y.S., Chang, W.T., Liu, H.S., Hong, T.M., Hsieh, C.Y., Lin, S.H., and Lin, C.F. (2014). An increase in integrin-linked kinase non-canonically confers NF-κB-mediated growth advantages to gastric cancer cells by activating ERK1/2. Cell Commun Signal 12, 69.

    Wan, S.W., Lin, C.F., Yeh, T.M., Liu, C.C., Liu, H.S., Wang, S., Ling, P., Anderson, R., Lei, H.Y., and Lin, Y.S. (2013). Autoimmunity in dengue pathogenesis. J Formos Med Assoc 112, 3-11.

    Wang, B., Yurecko, R.S., Dedhar, S., and Cleary, P.P. (2006). Integrin-linked kinase is an essential link between integrins and uptake of bacterial pathogens by epithelial cells. Cell Microbiol 8, 257-266.

    Widmaier, M., Rognoni, E., Radovanac, K., Azimifar, S.B., and Fässler, R. (2012). Integrin-linked kinase at a glance. Journal of Cell Science 125, 1839.

    World Health, O. (2009). Dengue guidelines for diagnosis, treatment, prevention and control : new edition (Geneva: World Health Organization).

    Wu, C., and Dedhar, S. (2001). Integrin-linked kinase (ILK) and its interactors: a new paradigm for the coupling of extracellular matrix to actin cytoskeleton and signaling complexes. J Cell Biol 155, 505-510.

    Wu, S., He, L., Li, Y., Wang, T., Feng, L., Jiang, L., Zhang, P., and Huang, X. (2013). miR-146a facilitates replication of dengue virus by dampening interferon induction by targeting TRAF6. J Infect 67, 329-341.

    Xu, H., Di, B., Pan, Y.X., Qiu, L.W., Wang, Y.D., Hao, W., He, L.J., Yuen, K.Y., and Che, X.Y. (2006). Serotype 1-specific monoclonal antibody-based antigen capture immunoassay for detection of circulating nonstructural protein NS1: Implications for early diagnosis and serotyping of dengue virus infections. J Clin Microbiol 44, 2872-2878.

    Yokota, S., Yokosawa, N., Okabayashi, T., Suzutani, T., and Fujii, N. (2005). Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 confers efficient viral replication. Virology 338, 173-181.

    Yokota, S., Yokosawa, N., Okabayashi, T., Suzutani, T., Miura, S., Jimbow, K., and Fujii, N. (2004). Induction of suppressor of cytokine signaling-3 by herpes simplex virus type 1 contributes to inhibition of the interferon signaling pathway. J Virol 78, 6282-6286.

    Yu, C.-Y., Chang, T.-H., Liang, J.-J., Chiang, R.-L., Lee, Y.-L., Liao, C.-L., and Lin, Y.-L. (2012). Dengue Virus Targets the Adaptor Protein MITA to Subvert Host Innate Immunity. PLOS Pathogens 8, e1002780.

    Zhang, L., Badgwell, D.B., Bevers, J.J., 3rd, Schlessinger, K., Murray, P.J., Levy, D.E., and Watowich, S.S. (2006). IL-6 signaling via the STAT3/SOCS3 pathway: functional analysis of the conserved STAT3 N-domain. Mol Cell Biochem 288, 179-189.

    Zheng, J., Yang, P., Tang, Y., Pan, Z., and Zhao, D. (2015). Respiratory Syncytial Virus Nonstructural Proteins Upregulate SOCS1 and SOCS3 in the Different Manner from Endogenous IFN Signaling. J Immunol Res 2015, 738547.

    Zhou, Y., Liu, Y., Yan, H., Li, Y., Zhang, H., Xu, J., Puthiyakunnon, S., and Chen, X. (2014). miR-281, an abundant midgut-specific miRNA of the vector mosquito Aedes albopictus enhances dengue virus replication. Parasit Vectors 7, 488.

    下載圖示 校內:2025-08-21公開
    校外:2025-08-21公開
    QR CODE