簡易檢索 / 詳目顯示

研究生: 胡耿薰
Hu, Keng-shun
論文名稱: 醣解作用決定因子六碳醣激酶I對癌症轉移的影響
A novel function of human hexokinase I, the first and rate-limiting enzyme of the glycolysis, in tumor metastasis
指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 115
中文關鍵詞: 六碳醣激酶I癌症轉移
外文關鍵詞: hexokinase I, tumor metastasis
相關次數: 點閱:117下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 科學家知道腫瘤細胞會高度依賴醣解作用提供能量的現象已經超過七十年。過去發現,惡性腫瘤細胞偏好以無氧醣解產生細胞所需能量並降低有氧呼吸作用,此現象稱為瓦式效應。透過控制將葡萄糖磷酸化成六-磷酸葡萄糖的化學反應,六碳醣激酶是醣解作用的第一個並且是速率決定步驟的關鍵酵素,並藉此維持細胞內外醣濃度梯度使得葡萄糖更容易進入到細胞中並開始啟動所有和葡萄糖利用相關的代謝路徑,正因為調控著細胞葡萄糖的供給和利用,六碳醣激酶在細胞中扮演了維持生命所必須的角色。因為腫瘤細胞高度活化的醣解作用,觀察沉默醣解作用第一個酵素”六碳醣激酶”對腫瘤細胞所造成的影響是十分令人感興趣的。在哺乳動物的器官中,有四種高度同源性的六碳醣激酶同功酵素,分別位在不同位置的基因上。因為六碳醣激酶III和六碳醣激酶IV僅在特殊的組織中表現,我們選擇了六碳醣激酶I和六碳醣激酶II作為RNAi沉默對象。在這次的研究中令人注意的是,穩定沉默六碳醣激酶I會對細胞的外形產生非常戲劇性的變化,細胞從原本上皮性的外觀轉變成間質細胞挾長的型態,而穩定沉默六碳醣激酶II並不會對細胞的外形產生影響。更近一步發現穩定沉默六碳醣激酶I 會使得細胞在生長速度、移動能力和侵襲能力上有顯著的提升。此外相較於控制組HeLa、HeLa-vector-1,HeLa-vector-2,穩定沉默六碳醣激酶I的細胞株中粒線體膜電位以及活性氧化物都是處在相當低的情況。活體動物實驗的結果也證實穩定沉默六碳醣激酶I的細胞株腫瘤形成速度和轉移能力都有明顯的增強。在我們的研究中,有許多的證據證明穩定沉默六碳醣激酶I 會造成細胞有上皮-間質細胞轉型(epithelial-mesenchymal transition, EMT)的現象。從我們的研究發現,不正常的六碳醣激酶I表現量可能是影響腫瘤細胞是否惡化轉移的重要因素之一。

    For over 70 years, it has been known that tumor cells exhibit a high rate of glycolysis. By catalyzing the ATP-dependent phosphorylation of glucose to yield glucose-6-phosphate, hexokinase controls the first committed and rate-limiting step of glycolysis, thereby sustaining the concentration gradient that permits facilitated glucose entry into cells and initiates all major pathways of glucose utilization. It plays a vital role in the cellular uptake and utilization of glucose. Because the high rate of glycolysis in cancer cells, it’s interesting to observe the effects of cancer cells when we knockdown the first enzyme of glycolysis, hexokinase. Four highly homologous hexokinase isoforms, encoded by separate genes, have been described in mammalian tissues. Because the HKIII and HKIV isoforms are tissue specific expression, we chose HKI and HKII to be our RNAi-mediated gene silencing targets. In this study, stable knockdown HKI induced dramatically morphological changes from epithelial to fibroblast-like phenotype, whereas stable knockdown HKII showed no distinct phenotype changes. Moreover, the constant HKI knockdown cells exhibited a conspicuous rise not only in cell proliferation, but also in cell motility and invasiveness. Furthermore, the mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) of HKI-knockdown cells were at an extremely low level as compared with control mock and vector-transfected cells. In vivo experiments also demonstrate that HKI-knockdown cells have highly tumorgenesis and metastasis ability. In our study, there were many evidences indicated that persistent knockdown HKI induced the epithelial-mesenchymal transition (EMT). The abnormal expression of hexokianse I may be one of the important factors for cancer cell metastasis.

    目錄---------------------------------------------------------------------------------------1 圖表目錄--------------------------------------------------------------------------------4 中文摘要--------------------------------------------------------------------------------5 英文摘要--------------------------------------------------------------------------------6 第一章 緒論 1-1. 腫瘤細胞中的”瓦式效應” (Warburg effect)-----------------------------7 1-2. 醣解作用及其代謝途徑中第一個酵素----六碳醣激酶 (Hexokinase)---------------------------------------------------------------------------8 1-3. 核糖核酸干擾的發現及機制-------------------------------------------------9 1-4. 核糖核酸干擾的應用---------------------------------------------------------11 1-5. 研究目標-------------------------------------------------------------------------13 第二章 實驗材料與方法 2-1. 實驗材料 2-1-1. 勝任細胞菌株----------------------------------------------------------------14 2-1-2. 限制酶-------------------------------------------------------------------------14 2-1-3. 各種細胞株-------------------------------------------------------------------14 2-1-4. 化學藥品----------------------------------------------------------------------14 2-1-5. 試劑----------------------------------------------------------------------------17 2-1-6. 抗體----------------------------------------------------------------------------17 2-1-7. 培養液-------------------------------------------------------------------------19 2-1-8. 細菌用的培養基-------------------------------------------------------------20 2-1-9. 緩衝液--------------------------------------------------------------------------20 2-1-10. 各種試劑配製---------------------------------------------------------------25 2-1-11. 勝任細胞 (competent cell) 之製備------------------------------------27 2-1-12. 儀器設備---------------------------------------------------------------------27 2-1-13. 廠商網址---------------------------------------------------------------------28 2-2. 實驗方法 2-2-1. 基本分子生物學技術-------------------------------------------------------30 2-2-2. 細胞培養程序-----------------------------------------------------------------36 2-2-3. 細胞相關實驗-----------------------------------------------------------------37 2-2-4. 實驗質體的構築方法-------------------------------------------------------48 第三章 實驗結果 3-1. 利用RNAi評估系統篩選有效抑制人類六碳醣激酶II的shRNA----50 3.2. 利用有效之shHK2載體建立穩定細胞株(stable cell line)-----------51 3-3. 分析shHK2穩定細胞株的細胞狀態-------------------------------------52 3-4. 分析shHK2穩定細胞株中六碳醣激酶I蛋白表現量及不同細胞株 中六碳醣激酶I和六碳醣激酶II表現量-----------------------------------------54 3-5. 利用RNAi評估系統篩選有效抑制人類六碳醣激酶I的shRNA----55 3-6. 利用有效之shHK1載體建立穩定細胞株(stable cell line)----------56 3-7. 分析shHK1穩定細胞株的細胞狀態--------------------------------------57 3-8. 利用動物實驗觀察shHK1穩定細胞株在活體內(in vivo)腫瘤形成能 力及轉移能力----------------------------------------------------------------------------58 第四章 討論------------------------------------------------------------------------------61 第五章 參考文獻------------------------------------------------------------------------64 實驗圖表---------------------------------------------------------------------------------71 作者自述---------------------------------------------------------------------------------115

    Adelman, Z.N., Sanchez-Vargas, I., Travanty, E.A., Carlson, J.O., Beaty, B.J., Blair, C.D., and Olson, K.E. (2002). RNA silencing of dengue virus type 2 replication in transformed C6/36 mosquito cells transcribing an inverted-repeat RNA derived from the virus genome. J Virol 76, 12925-12933.
    Ashrafi, K., Chang, F.Y., Watts, J.L., Fraser, A.G., Kamath, R.S., Ahringer, J., and Ruvkun, G. (2003). Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421, 268-272.
    Brusselmans, K., Vrolix, R., Verhoeven, G., and Swinnen, J.V. (2005). Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem 280, 5636-5645.
    Bullock, A.N., and Fersht, A.R. (2001). Rescuing the function of mutant p53. Nat Rev Cancer 1, 68-76.
    Caplen, N.J., Zheng, Z., Falgout, B., and Morgan, R.A. (2002). Inhibition of viral gene expression and replication in mosquito cells by dsRNA-triggered RNA interference. Mol Ther 6, 243-251.
    Chen, Z., Indjeian, V.B., McManus, M., Wang, L., and Dynlacht, B.D. (2002). CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell 3, 339-350.
    Chi, J.T., Chang, H.Y., Wang, N.N., Chang, D.S., Dunphy, N., and Brown, P.O. (2003). Genomewide view of gene silencing by small interfering RNAs. Proc Natl Acad Sci U S A 100, 6343-6346.
    Chiu, Y.L., and Rana, T.M. (2002). RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 10, 549-561.
    Cioca, D.P., Aoki, Y., and Kiyosawa, K. (2003). RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines. Cancer Gene Ther 10, 125-133.
    Clemens, J.C., Worby, C.A., Simonson-Leff, N., Muda, M., Maehama, T., Hemmings, B.A., and Dixon, J.E. (2000). Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc Natl Acad Sci U S A 97, 6499-6503.
    Cogoni, C., and Macino, G. (1997). Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa. Proc Natl Acad Sci U S A 94, 10233-10238.
    Cogoni, C., and Macino, G. (1999a). Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399, 166-169.
    Cogoni, C., and Macino, G. (1999b). Homology-dependent gene silencing in plants and fungi: a number of variations on the same theme. Curr Opin Microbiol 2, 657-662.
    Dalmay, T., Hamilton, A., Rudd, S., Angell, S., and Baulcombe, D.C. (2000). An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543-553.
    Davidson, B.L., and Paulson, H.L. (2004). Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol 3, 145-149.
    de Fougerolles, A., Vornlocher, H.P., Maraganore, J., and Lieberman, J. (2007). Interfering with disease: a progress report on siRNA-based therapeutics. Nat Rev Drug Discov 6, 443-453.
    Debes, J.D., Schmidt, L.J., Huang, H., and Tindall, D.J. (2002). p300 mediates androgen-independent transactivation of the androgen receptor by interleukin 6. Cancer Res 62, 5632-5636.
    Depicker, A., and Montagu, M.V. (1997). Post-transcriptional gene silencing in plants. Curr Opin Cell Biol 9, 373-382.
    Dykxhoorn, D.M., Novina, C.D., and Sharp, P.A. (2003). Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4, 457-467.
    Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498.
    Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
    Fraser, A.G., Kamath, R.S., Zipperlen, P., Martinez-Campos, M., Sohrmann, M., and Ahringer, J. (2000). Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408, 325-330.
    Ge, Q., McManus, M.T., Nguyen, T., Shen, C.H., Sharp, P.A., Eisen, H.N., and Chen, J. (2003). RNA interference of influenza virus production by directly targeting mRNA for degradation and indirectly inhibiting all viral RNA transcription. Proc Natl Acad Sci U S A 100, 2718-2723.
    Gitlin, L., and Andino, R. (2003). Nucleic acid-based immune system: the antiviral potential of mammalian RNA silencing. J Virol 77, 7159-7165.
    Gitlin, L., Karelsky, S., and Andino, R. (2002). Short interfering RNA confers intracellular antiviral immunity in human cells. Nature 418, 430-434.
    Gonczy, P., Echeverri, C., Oegema, K., Coulson, A., Jones, S.J., Copley, R.R., Duperon, J., Oegema, J., Brehm, M., Cassin, E., et al. (2000). Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331-336.
    Grishok, A., Tabara, H., and Mello, C.C. (2000). Genetic requirements for inheritance of RNAi in C. elegans. Science 287, 2494-2497.
    Hamilton, A.J., and Baulcombe, D.C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950-952.
    Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J. (2000). An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404, 293-296.
    Harper, S.Q., Staber, P.D., He, X., Eliason, S.L., Martins, I.H., Mao, Q., Yang, L., Kotin, R.M., Paulson, H.L., and Davidson, B.L. (2005). RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. Proc Natl Acad Sci U S A 102, 5820-5825.
    Holen, T., Amarzguioui, M., Wiiger, M.T., Babaie, E., and Prydz, H. (2002). Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res 30, 1757-1766.
    Jacque, J.M., Triques, K., and Stevenson, M. (2002). Modulation of HIV-1 replication by RNA interference. Nature 418, 435-438.
    Jiang, M., and Milner, J. (2003). Bcl-2 constitutively suppresses p53-dependent apoptosis in colorectal cancer cells. Genes Dev 17, 832-837.
    Kamath, R.S., Fraser, A.G., Dong, Y., Poulin, G., Durbin, R., Gotta, M., Kanapin, A., Le Bot, N., Moreno, S., Sohrmann, M., et al. (2003). Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231-237.
    Kapadia, S.B., Brideau-Andersen, A., and Chisari, F.V. (2003). Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc Natl Acad Sci U S A 100, 2014-2018.
    Kartasheva, N.N., Contente, A., Lenz-Stoppler, C., Roth, J., and Dobbelstein, M. (2002). p53 induces the expression of its antagonist p73 Delta N, establishing an autoregulatory feedback loop. Oncogene 21, 4715-4727.
    Kittler, R., and Buchholz, F. (2003). RNA interference: gene silencing in the fast lane. Semin Cancer Biol 13, 259-265.
    Lassus, P., Opitz-Araya, X., and Lazebnik, Y. (2002). Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297, 1352-1354.
    Lee, N.S., Dohjima, T., Bauer, G., Li, H., Li, M.J., Ehsani, A., Salvaterra, P., and Rossi, J. (2002). Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 20, 500-505.
    Lindbo, J.A., Silva-Rosales, L., Proebsting, W.M., and Dougherty, W.G. (1993). Induction of a Highly Specific Antiviral State in Transgenic Plants: Implications for Regulation of Gene Expression and Virus Resistance. Plant Cell 5, 1749-1759.
    Liu, J., Valencia-Sanchez, M.A., Hannon, G.J., and Parker, R. (2005). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7, 719-723.
    Lu, P.Y., Xie, F.Y., and Woodle, M.C. (2003). siRNA-mediated antitumorigenesis for drug target validation and therapeutics. Curr Opin Mol Ther 5, 225-234.
    Lu, P.Y., Xie, F.Y., and Woodle, M.C. (2005). Modulation of angiogenesis with siRNA inhibitors for novel therapeutics. Trends Mol Med 11, 104-113.
    Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563-574.
    Martinez-Zaguilan, R., Seftor, E.A., Seftor, R.E., Chu, Y.W., Gillies, R.J., and Hendrix, M.J. (1996). Acidic pH enhances the invasive behavior of human melanoma cells. Clin Exp Metastasis 14, 176-186.
    McCaffrey, A.P., Nakai, H., Pandey, K., Huang, Z., Salazar, F.H., Xu, H., Wieland, S.F., Marion, P.L., and Kay, M.A. (2003). Inhibition of hepatitis B virus in mice by RNA interference. Nat Biotechnol 21, 639-644.
    Moss, E.G. (2003). Silencing unhealthy alleles naturally. Trends Biotechnol 21, 185-187.
    Napoli, C., Lemieux, C., and Jorgensen, R. (1990). Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans. Plant Cell 2, 279-289.
    Ogita, S., Uefuji, H., Yamaguchi, Y., Koizumi, N., and Sano, H. (2003). Producing decaffeinated coffee plants. Nature 423, 823.
    Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J., and Conklin, D.S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16, 948-958.
    Paul, C.P., Good, P.D., Winer, I., and Engelke, D.R. (2002). Effective expression of small interfering RNA in human cells. Nat Biotechnol 20, 505-508.
    Rozhin, J., Sameni, M., Ziegler, G., and Sloane, B.F. (1994). Pericellular pH affects distribution and secretion of cathepsin B in malignant cells. Cancer Res 54, 6517-6525.
    Schwarz, D.S., Hutvagner, G., Haley, B., and Zamore, P.D. (2002). Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol Cell 10, 537-548.
    Semizarov, D., Frost, L., Sarthy, A., Kroeger, P., Halbert, D.N., and Fesik, S.W. (2003). Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci U S A 100, 6347-6352.
    Shlomai, A., and Shaul, Y. (2003). Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology 37, 764-770.
    Shu, X., Wu, W., Mosteller, R.D., and Broek, D. (2002). Sphingosine kinase mediates vascular endothelial growth factor-induced activation of ras and mitogen-activated protein kinases. Mol Cell Biol 22, 7758-7768.
    Shuey, D.J., McCallus, D.E., and Giordano, T. (2002). RNAi: gene-silencing in therapeutic intervention. Drug Discov Today 7, 1040-1046.
    Sijen, T., Fleenor, J., Simmer, F., Thijssen, K.L., Parrish, S., Timmons, L., Plasterk, R.H., and Fire, A. (2001). On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465-476.
    Sioud, M. (2004). Therapeutic siRNAs. Trends Pharmacol Sci 25, 22-28.
    Stark, G.R., Kerr, I.M., Williams, B.R., Silverman, R.H., and Schreiber, R.D. (1998). How cells respond to interferons. Annu Rev Biochem 67, 227-264.
    Stubbs, M., McSheehy, P.M., Griffiths, J.R., and Bashford, C.L. (2000). Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6, 15-19.
    Tabara, H., Sarkissian, M., Kelly, W.G., Fleenor, J., Grishok, A., Timmons, L., Fire, A., and Mello, C.C. (1999). The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99, 123-132.
    Timmons, L., Tabara, H., Mello, C.C., and Fire, A.Z. (2003). Inducible systemic RNA silencing in Caenorhabditis elegans. Mol Biol Cell 14, 2972-2983.
    Tuschl, T., Zamore, P.D., Lehmann, R., Bartel, D.P., and Sharp, P.A. (1999). Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev 13, 3191-3197.
    van der Krol, A.R., Mur, L.A., de Lange, P., Mol, J.N., and Stuitje, A.R. (1990). Inhibition of flower pigmentation by antisense CHS genes: promoter and minimal sequence requirements for the antisense effect. Plant Mol Biol 14, 457-466.
    Vaupel, P., Okunieff, P., and Neuringer, L.J. (1989). Blood flow, tissue oxygenation, pH distribution, and energy metabolism of murine mammary adenocarcinomas during growth. Adv Exp Med Biol 248, 835-845.
    Wall, N.R., and Shi, Y. (2003). Small RNA: can RNA interference be exploited for therapy? Lancet 362, 1401-1403.
    Warburg, O. (1956). On the origin of cancer cells. Science 123, 309-314.
    Wianny, F., and Zernicka-Goetz, M. (2000). Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2, 70-75.
    Wilson, J.A., Jayasena, S., Khvorova, A., Sabatinos, S., Rodrigue-Gervais, I.G., Arya, S., Sarangi, F., Harris-Brandts, M., Beaulieu, S., and Richardson, C.D. (2003). RNA interference blocks gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. Proc Natl Acad Sci U S A 100, 2783-2788.
    Xia, H., Mao, Q., Paulson, H.L., and Davidson, B.L. (2002). siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 20, 1006-1010.
    Yoon, H.S., Chen, X., and Yang, V.W. (2003). Kruppel-like factor 4 mediates p53-dependent G1/S cell cycle arrest in response to DNA damage. J Biol Chem 278, 2101-2105.
    Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33.
    Zeng, Y., and Cullen, B.R. (2002). RNA interference in human cells is restricted to the cytoplasm. Rna 8, 855-860.
    Zhang, L., Yang, N., Mohamed-Hadley, A., Rubin, S.C., and Coukos, G. (2003). Vector-based RNAi, a novel tool for isoform-specific knock-down of VEGF and anti-angiogenesis gene therapy of cancer. Biochem Biophys Res Commun 303, 1169-1178.

    下載圖示 校內:2013-08-25公開
    校外:2013-08-25公開
    QR CODE