簡易檢索 / 詳目顯示

研究生: 王凌婷
Wang, Ling-Ting
論文名稱: CIGS太陽能電池材料製備與特性研究
Synthesis and Characteristic Study of CIGS Solar Cell Materials
指導教授: 高騏
Gau, Chie
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 89
中文關鍵詞: 黃銅礦銅銦鎵硒太陽能電池多元醇奈米粒子
外文關鍵詞: chalcopyrite, CIGS, solar cell, polyol, nanoparticle
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此研究中,我們合成出具有單一黃銅礦晶相結構的CuInxGa1-xSe2奈米粒子,x介於0.6-0.9之間。CuInxGa1-xSe2奈米粉體使用氯化亞銅(CuCl)、氯化銦(InCl3)、氯化鎵(GaCl3)及硒元素(Se)藥品製備。合成出的奈米粒子其晶粒大小約介於70-125nm之間。
    在合成CIGS奈米粒子中,我們可以藉由調整氯化銦與氯化鎵的量改變銦與鎵的比例。並更進一步的製備出約1微米厚的膜面。
    我們也以化學水浴沉積法製備出應用於CIGS太陽能電池之緩衝層硫化鎘(CdS)與硫化鋅(ZnS)薄膜。由掃描式電子顯微鏡(SEM)可以得到CdS和ZnS薄膜皆有均勻覆蓋性,未來可以應用在CIGS太陽能電池之緩衝層。

    In this study, we report the synthesis in solution of phase pure nanocrystals of chalcopyrite CuInxGa1-xSe2 with x ranged from 0.6-0.9. CuInxGa1-xSe2 nanocrystals were synthesized from copper chlorides, indium chlorides, gallium chlorides and selenium. The nanocrystals ranging from 70 to 125 nm in diameter were synthesized in solution.
    The In/Ga ratio in the CIGS nanocrystals could be controlled by varying the In/Ga reactant ratio in the reaction. Using methods developed to produce micrometer-thick films.
    The buffer layers of cadmium sulfide (CdS) and zinc sulfide (ZnS) thin films were deposited by chemical-bath-deposition (CBD) process for CIGS solar cells. From SEM results, the conformal coverage of CdS and ZnS films on the substrates were achieved. With the desired properties, these thin films shall be employed for the buffer layers of CIGS solar cells.

    摘 要 I Abstract Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 表目錄 Ⅶ 圖目錄 Ⅷ 第一章 緒論 1 1.1研究背景 1 1.2研究動機與目的 3 第二章 文獻回顧與理論說明 5 2.1由溶液製備的奈米粒子 5 2.1.1 水熱/溶熱法(Hydrothermal / Solvothermal method) 5 2.1.2 沉澱法(Precipitation method) 6 2.1.3 溶膠法(Sol method) 8 2.2由不同溶液方法製備CIS/CIGS奈米粒子 8 2.2.1水熱法製備CIS/CIGS奈米粒子 8 2.2.2溶熱法製備CIS/CIGS奈米粒子 9 2.2.3沉澱法製備CIS/CIGS奈米粒子 10 2.2.4溶膠法製備CIS/CIGS奈米粒子 11 2.3 CIS/CIGS吸收層特性 12 2.4 CdS/ZnS緩衝層特性 14 2.4.1化學水浴沉積法 14 2.4.2化學水浴沉積法成長緩衝層 15 2.4.3 CdS緩衝層 16 2.4.4 ZnS緩衝層 17 2.5 CIS(CIGS)薄膜太陽能電池結構 18 2.5.1 鈉玻璃基板(Soda-lime glass) 18 2.5.2 鉬(Mo)背電極(Back electrode) 18 2.5.3 CuInGaSe2主吸收層(Main absorber layer) 19 2.5.4 緩衝層(Buffer layer) 19 2.5.5 ZnO:Al 透光層及抗反射層(Window layer and anti-reflecting coating) 20 2.5.6 Al金屬電極(Metal electrode) 20 2.6非真空製程技術的發展 21 第三章 實驗方法步驟與實驗設備 25 3.1實驗藥品與儀器 25 3.1.1 實驗藥品 25 3.1.2 一般實驗儀器 27 3.1.3 X光粉末繞射儀(X-ray powder diffractometer) 28 3.1.4 多功能X光繞射儀(Multipurpose thin-film x-ray diffractometer) 29 3.1.5 掃描式電子顯微鏡(Scanning electron microscope; SEM) 30 3.1.6 穿透式電子顯微鏡(Transmission electron microscope; TEM) 31 3.2 CuInGaSe2奈米粒子的製備與分析 32 3.2.1 合成CIGS奈米粒子 32 3.2.2 實驗流程 33 3.3 In:Ga比例改變 34 3.4薄膜吸收層之製備 34 3.4.1 基板清洗 35 3.4.2 鉬基板鍍製 35 3.4.3 薄膜塗佈 36 3.4.4 薄膜燒結 37 3.5薄膜緩衝層之製備 38 3.5.1 硫化鎘製備 38 3.5.2 硫化鋅製備 39 第四章 實驗結果與討論 40 4.1合成CIGS奈米粉末 40 4.2調整In/Ga含量比 41 4.3調整Cu/In/Ga/Se比例 43 4.4 CIGS薄膜吸收層成長探討及分析 45 4.5化學水浴法製備緩衝層 47 4.5.1 硫化鎘薄膜 47 4.5.2 硫化鋅薄膜 48 第五章 結論 50 參考文獻 52

    [1] 邱秋燕, 廖曰淳, 郭豐綱,“低成本銅銦鎵硒(CIGS)太陽電池技術發展”工業材料, 276, p.58-68. (2009)
    [2] A.S. Kindyak , V.V. Kindyak, V.F. Gremenok, “Energy-gap variations in thin laser-deposited Cu(In,Ga)Se2 films,” Materials Letters., 28, p.273-275. (1996)
    [3] Arturo Morales-Acevedo, “Effective absorption coefficient for graded band-gap semiconductors and the expected photocurrent density in solar cells,” Solar Energy Materials & Solar cells., 93, P.41-44. (2009)
    [4] M. A. Contreras, M. J. Romero, R. Noufi, “Characterization of Cu(In,Ga)Se2 materials used in record performance solar cells,” Thin Solid Films., 511-512 p.51-54. (2006)
    [5] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor,” Progress in Photovoltaics: Research and Applications., 16, p.235-239. (2008)
    [6] 王彥超, 劉旺林, 許朝凱, 吳淑媛, 朱筱鈞,“使用非真空塗佈法製備銅銦硒薄膜太陽能電池特性研究,” 科儀新知, 31, p.28-34. (2009)
    [7] 何孟穎, “CIGS薄膜太陽電池技術優勢與研發進展” 光連雙月刊, 80, p.8-14. (2009)
    [8] 徐如人,龐文琴, “無機合成與製備化學” 五南圖書出版股份有限公司, p.733-742. (2004)
    [9] 林琬蓉.“FePt合金粒子之製備與性質研究”國立成功大學材料科學研究所碩士論文 , p.7-9. (2007)
    [10] C. B. Murray, D. J. Noms, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites,” J. Am. Chem. Soc., 115, 8706-8715. (1993)
    [11] 利宗倫. “以溶熱法合成Ⅰ-Ⅲ-Ⅵ 族CuInS2奈米粒子及其特性探討” 國立成功大學化學工程研究所碩士論文, p.12-13.(2008)
    [12] L. S. Li, N. Pradhan, Y. Wang, and X. Peng, “High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors,” Nano Letters., 4, 2261-2264. (2004)
    [13] L. Qu, Z. A. Peng, and X. Peng, “Alternative routes toward high quality CdSe nanocrystals,” Nano Letters,1 , p.333-337. (2001)
    [14] W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals,” Chem. Mater, 15, p.2854-2860. (2003)
    [15] Z. A. Peng and X. Peng, “Nearly monodisperse and shape - controlled CdSe nanocrystals via alternative routes: nucleation and growth,” J. Am. Chem. Soc, 124, 3343-3353. (2002).
    [16] W. W. Yu and X. Peng, “Formation of high-quality CdS and other II-VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers,” Angew. Chem. Int. Ed, 41, p.2368-2371. (2002)
    [17] W. W. Yu, Y. A. Wang, and X. Peng, “Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals,” Chem. Mater, 15, p. 4300-4308. (2003)
    [18] N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, “Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes,” J. Phys. Chem. B, 106, p. 7177–7185. (2002)
    [19] M. A. Hines, G. S. Philippe, “Bright UV-blue luminescent colloidal ZnSe nanocrystals,” J. Phys. Chem. B, 102, p. 3655–3657. (1998)
    [20] M. Shim, G. S. Philippe, “Organic-capped ZnO nanocrystals: synthesis and n-type character,” J. Am. Chem. Soc., 123, p.11651–11654. (2001)
    [21] Y. Jin, C. An, K. Tang, L. Huang, G. Shen, “Hydrothermal synthesis and characterization of CuIn2.0Se3.5 nanocrystallites,” Materials Letters., 57, 4267-4270. (2003)
    [22] Y. G. Chun, K. H. Kim, K. H. Yoon, “Synthesis of CuInGaSe2 nanoparticles by solvothermal route,” Thin Solid Films.,480-481, 46-49. (2005)
    [23] K. H. Kim, Y. G. Chun, M. Kaiser, B. O. Park, K. H. Yoon, “Synthesis of CuInSe2 and CuInGaSe2 nanoparticles by solvothermal route,” Materials Science. 449-452, p.273-276. (2004)
    [24] C. H. Chang, J. M. Ting, “Phase, morphology, and dimension control of CIS powders prepared using a solvothermal process,” Thin Solid Films. 517, p.4174-4178. (2009)
    [25] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, B. A. Korgel. “Synthesis of CuInS2, CuInSe2, and Cu(In x Ga1-x)Se2 (CIGS) nanocrystal “inks” for printable photovoltaics,” J. AM. Chem. SOC, 130, 16770-16777. (2008)
    [26] H. Grisaru, O. Palchik, A. Gedanken, “Microwave-assisted polyol synthesis of CuInTe2 and CuInSe2 nanoparticles,” Inorg. Chem. 42, p.7148-7155. (2003)
    [27] J. Tang, S. Hinds, S. O. Kelley, E. H. Sargent, “Synthesis of colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 nanoparticles,” Chem. Mater. 20, p.6906-6910. (2008)
    [28] S. Ahn, K. Kim, Y. Chun, K. Yoon, “Nucleation and growth of Cu(In,Ga)Se2 nanoparticles in low temperature colloidal process,” Thin Solid Films”. 515, p.4036-4040. (2007)
    [29] R. W. Birkmire, E. Eser, “Polycrystalline thin film solar cells: present status and future potential,” Annu. Rev. Mater. Sci.,27, 625 (1997)
    [30] 楊德仁, “太陽能電池材料” 五南圖書出版股份有限公司, p.457-472. (2008)
    [31] 巫文全、王文軒、駱榮富, “快速熱退火氣氛對化學浴沉積製備 ZnS 薄膜之影響” 真空科技, 14-4 , p.30-34.
    [32] M. J. Furlong, M. Froment, M. C. Bernard, R. Cortès, A. N. Tiwari, M. Krejci, H. Zogg and D. Lincot, “Aqueous solution epitaxy of CdS layers on CuInSe2,” Journal of Crystal Growth., 193(1-2), p. 114-122. (1998)
    [33] 張振昌, “化學水浴沈積法成長硫化鎘薄膜之研究” 國立中山大學材料科學研究所碩士論文, p.2-3. (2006)
    [34] R.N. Bhattacharya, K. Ramanathan, “Cu(In,Ga)Se2 thin film solar cells with buffer layer alternative to CdS,” Solar Energy.,77, p. 679–683. (2004)
    [35] W. Shafarman, L. Stolt, “Hand-book of Photovoltaic Science and Engineering,” Wiley, p.567-616.(2003)
    [36] M.A. Contreras, T. Nakada, M. Hongo, A.O. Pudov, J.R. Sites, “ZnO/ZnS(O,OH)/Cu(In,Ga)Se2/Mo solar cell with 18.6% efficiency,” In: 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan. (2003)
    [37] Q. Liua, M. Guobinga, A. Jianping, “Chemical bath-deposited ZnS thin films: preparation and characterization,” Applied Surface Science. 254, p.5711–5714. (2008)
    [38] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H.W. Schock, “Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin films,” Thin Solid Films. 361-362, p.161-166. (2000)
    [39] M. Ruckh, D. Schmid, M. Kaiser, R. Schäffler, T. Walter, H.W. Schock, “Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films,” Solar Energy Materials and Solar Cells. 41/42, p.335-343. (1996)
    [40] G. Gordillo, F. Mesa, C. Calder´on, “Electrical and morphological properties of low resistivity Mo thin films prepared by magnetron sputtering,” Brazilian Journal of Physics. 36, p.982–985. (2006)
    [41] K. H. Yoon, S. K. Kim, R. B. V. Chalapathy, J. H. Yun, J. C. Lee, J. Song .“Characterization of a molybdenum electrode deposited by sputtering and its effect on Cu(In,Ga)Se2 solar cells,” Journal of the Korean Physical Society. 45, p.1114-1118. (2004)
    [42] J. H. Scofield, A. Duda, D. Albin, B. L. Ballard, P. K. Predecki. “Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells, ” Thin Solid Films. 260, p.26-31. (1995)
    [43] 林芷羽, “起始原料在合成CIS和CIGS粉體結晶相生成影響之研究” 中原大學化學學系研究所碩士論文, p.18-20. (2008)
    [44] 邱秋燕, 廖曰淳, 楊慕震, 黃渼雯, 羅一玲,“銅銦鎵硒(CIGS)太陽能電池-非真空製程技術發展簡介,” 工業材料, 264, p.79-88. (2008)
    [45] Nanosolar Inc, “High-performance thin-film photovoltaics using low-cost process technology,” PVSEC 17, Tokyo, Japan
    [46] 葉昱昕, “從量產印刷式CIGS型太陽能電池看Nanosolar的技術突破點與銷售策略,” 工業材料, (2007)
    [47] V. K. Kapur, A. Bansal, P. Le, O. I. Asensio, “Non-vacuum processing of CuIn1-xGaxSe2 solar cells on rigid and flexible substrates using nanoparticle precursor inks,” Thin Solid Films., 431-432 , 53–57. (2003)
    [48] G. Norsworthy, C. R. Leidholm, A. Halani, V. K. Kapur, R. Roe, B. M. Basol, R. Matson, “CIS film growth by metallic ink coating and selenization,” Solar Energy Materials and Solar Cells., 60 p.127-134. (2000)
    [49] C. Eberspacher, K. Pauls, J. Serra, “Non-vacuum processing of CIGS solar cells” PVSEC 16. Glasaow. Mav 2000
    [50] C. Eberspacher, K. Pauls, J. Serra, “Non-vacuum techniques for fabricating thin-film CIGS,” PVSEC 16. Glasaow. Mav 2000
    [51] M. Kaelina, D. Rudmanna, F. Kurdesaua, H. Zogga, T. Meyerb, A.N. Tiwaric, “Low-cost CIGS solar cells by paste coating and selenization,” Thin Solid Films. 480-481, p.486–490. (2005)
    [52] 林麗娟, “X光繞射原理及其應用” 工業材料,86, p.100-109. (1994).
    [53] 林麗娟, “X光繞射在工業材料分析上之應用” 工業材料, 80, p. 50-55 (1993).
    [54] K. Orgassa, H. W. Schock, J. H. Werner, “Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells,” Thin Solid Films. 431-432, p.387-391. (2003)
    [55] S. Ahn, C. Kim, Y. Chun, J. Yun, J. Lee, “Effects of heat treatments on the properties of Cu(In,Ga)Se2 nanoparticles,” Solar Energy Materials & Solar Cells. 91, p.1836-1841. (2007)
    [56] S. Ahn, K. H. Kim, J. H. Yun, K. H. Yoon, “Effects of selenization conditions on densification of Cu(In,Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles,” Journal of Applied Physics. 105, p.113533. (2009)
    [57] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward, A. Duda , “Properties of 19.2% efficiency ZnO/ CdS/ CuInGaSe2 thin-film solar cells,” Prog.Photovolt: Res. Appl. 11,p.225–230.(2003)

    無法下載圖示 校內:2016-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE