簡易檢索 / 詳目顯示

研究生: 楊朝傑
Yang, Chao-Jie
論文名稱: 化膿性鏈球菌之寡胜肽膜透酶 A 的純化與分析
Purification and characterization of oligopeptide permease A in Streptococcus pyogenes
指導教授: 吳俊忠
Wu, Jiunn-Jong
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 94
中文關鍵詞: 化膿性鏈球菌之寡胜肽膜透酶
外文關鍵詞: oligopeptide permease in Streptococcus pyogenes
相關次數: 點閱:77下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化膿性鏈球菌為人類常見的致病菌,臨床上引起的疾病從輕微的咽喉炎、皮膚感染到嚴重的壞死性肌膜炎、鏈球菌毒性休克症候群等。寡胜肽膜透酶由五個蛋白組成,附著於細胞膜上,屬於 ABC-transporter 群。其中 OppA 為細胞外膜上可與受質結合的脂蛋白;OppB 及 OppC 為形成通道的穿膜蛋白;OppD 及 OppF 為內膜上提供能量的 ATPase。先前其他細菌的研究發現,OPP可能具有下列幾項功能:細菌養份的來源、傳送外部的訊息分子、影響細菌的附著能力及 OppA 具有ecto-ATPase 的功能。然而,化膿性鏈球菌 OPP 的生物功能目前並未十分清楚,本篇論文的研究在於了解 OppA 在化膿性鏈球菌的功能。首先進行 PCR分析篩選 41 株菌共 19 種 emm types,我們發現 opp 基因廣泛的存在於每一種 emm types。當我們利用從 TSBY broth 所純化出的 peptides mixture 與重組蛋白 r-OppA 作用後,經由 native cationic gel 電泳分析,發現可在膠體上造成位移改變。利用 KKKKK 及 VYIHPE 二種人工合成的寡胜肽,分別在 4 mM 及 2.5 mM 的濃度時可使得 r-OppA 在膠體上的 band 消失不見。以及將此二種人工合成的寡胜肽標定上螢光,比較 A20(wild-type)及 SW569(oppA mutant)二者運送寡胜肽的能力,發現 SW569 螢光強度明顯比 A20 來得低,因此推測 OppA 可能具有與寡胜肽結合的能力。為了了解寡胜肽與 OppA 結合的區域,我們也建構並純化 6 種不同片段的 r-OppA,但是發現這些片段均無法與寡胜肽結合,表示 OppA 可能必需在具備完整的結構下才會與寡胜肽結合。此外,我們也發現 r-OppA 並不具有 ecto-ATPase 的功能。利用 Western Blot、ligand overlay assay、CELISA、掃瞄式電子顯微鏡及 competitive adhesion assay 五種不同的實驗方式,發現 r-OppA 無法緊密的與細胞結合。但根據 invasion assay 以及antibody inhibited invasion assay 的結果發現 OppA 似乎與促進化膿性鏈球菌侵入宿主細胞有關。

    Streptococcus pyogenes (group A Streptococcus, GAS) is known to be the causation of diseases in broad range symptoms that include streptococcal toxic shock syndrome, sepsis, and necrotising fasciitis. Oligopeptide permease (OPP) is a membrane-associated complex of five proteins (OppABCDF) belonging to the ABC-transporter family. OppA is an outer membrane-associated lipoprotein. OppB and OppC are transmembrane proteins. OppD and OppF are predicted as inner membrane-associated ATPases. The oligopeptide transport system has been described that involved in nutrient acquisition, sensing of extracellular signaling molecules, influence of adherence, and ecto-ATPase of OppA. However, the biological functions of OPP in S. pyogenes are unclear. The aim of this study was to demonstrate the functions of OppA in S. pyogenes. The opp genes were analyzed by PCR and presented in every strain so far we tested it (including 19 emm types of 41 strains). The full length of recombinant OppA (r-OppA) protein incubated with peptides mixture purified from TSBY broth can cause mobility shift on the native cationic gel. The high concentration of 4 mM KKKKK peptide and 2.5 mM VYIHPE peptide could cause the band of r-OppA disappeared on the native cationic gel. The FITC-labeled peptides of KKKKK and VYIHPE incubated with A20 (wild type) and SW569 (oppA mutant). The fluorescence intensity could be decreased in SW569. These results suggested that OppA could bind to oligopeptide. In order to find the peptide-binding domain of OppA, the six different truncated r-OppA proteins were constructed and purified. We found that the truncated r-OppA proteins could not bind to oligopeptide. This result suggested that the intact structure of OppA might be required for the peptide binding ability. In addition, we found that the r-OppA of S. pyogenes had no ATPase activity. The adhesion ability of OppA was determined by the five independent assays including Western Blot, ligand overlay assay, CELISA, scanning electron microscopy and competitive adhesion assay. None of assay could demonstrate that r-OppA can bind to host cells. However, OppA could enhance the invasion activity of S. pyogenes in the invasion assay and antibody inhibited invasion assay.

    中文摘要.................................................................. i 英文摘要..................................................................ii 誌謝.....................................................................iii 目錄......................................................................iv 表與圖目錄...............................................................vii 符號及縮寫..............................................................viii 緒論.......................................................................1 材料與方法................................................................10 一、實驗菌株、質體及動物..................................................10 二、儀器與藥品............................................................10 三、實驗菌種培養及其保存..................................................10 四、細胞的培養與保存......................................................10 五、細胞計算方法..........................................................11 六、細菌 DNA 之抽取.......................................................11 七、聚合酶連鎖反應(Polymerase chain reaction, PCR)......................12 八、洋菜膠體電泳..........................................................13 九、限制酶之切割及DNA之接合反應...........................................13 十、大腸桿菌勝任細胞(Competent cell)的製備..............................13 十一、大腸桿菌細胞轉型作用(Transformation)..............................14 十二、重組蛋白之誘導(Induction).........................................14 十三、親合性鎳離子螯合樹脂色層分析法純化重組蛋白質........................15 十四、膠體過濾法(Gel filtration)純化重組蛋白質..........................15 十五、重組蛋白質定量......................................................16 十六、多株抗體(Polyclonal antibody)之製備...............................17 十七、利用 ELISA 方式測定兔子和小白鼠血清抗 OppA 效價.....................17 十八、SDS-PAGE 蛋白質膠體電泳.............................................17 十九、西方點墨法 (Western Blotting).......................................18 二十、化膿性鏈球菌總量蛋白質萃取..........................................18 二十一、細胞總量蛋白質萃取 (Whole cell protein extraction)................18 二十二、移除 r-OppA 內在胜肽 (Removal of endogenous peptide ligand).......19 二十三、不變性陽離子凝膠電泳 (Native cationic gel electrophoresis)........19 二十四、ATPase assay......................................................19 二十五、r-OppA競爭細菌附著於細胞的能力(Competitive adhesion assay)........20 二十六、掃瞄式電子顯微鏡之檢體製備與觀察..................................20 二十七、Ligand overlay assay..............................................20 二十八、Cellular enzyme-linked immunosorbent assay (CELISA)...............21 二十九、侵入細胞能力 (Invasion)...........................................21 三十、抗體抑制侵入細胞能力(antibody inhibited invasion assay).............22 結果: 一、opp基因於不同 emm types 的分佈情形....................................23 二、構築 oppA 之蛋白質表現載體............................................23 三、His-tagged OppA蛋白之表現與純化.......................................24 四、抗r-OppA多株抗體之製備................................................25 五、r-OppA 重組蛋白與寡胜肽(oligopeptide)結合能力.......................25 (A)製作peptides mixture...............................................25 (B)利用Native cationic gel electrophoresis分析寡胜肽結合能力..........26 (C)利用人工合成寡胜肽分析與 r-OppA 結合之能力.........................26 六、利用不同 truncated r-OppA 分析與寡胜肽結合區域........................26 (A)構築不同truncated r-OppA 之蛋白質表現載體..........................27 (B)His-tagged truncated r-OppA蛋白之表現與純化........................28 (C)truncated r-OppA與寡胜肽結合之分析.................................28 七、r-OppA重組蛋白之ATPase酵素活性分析....................................29 八、分析 r-OppA 重組蛋白黏附至宿主細胞的能力..............................29 (A)以 Western Blot 分析r-OppA之黏附能力...............................29 (B)以Ligand overlay assay 分析r-OppA之黏附能力........................30 (C)以 CELISA分析r-OppA之黏附能力......................................30 (D)以掃瞄式電子顯微鏡分析r-OppA之黏附能力.............................30 (E)以 Competitive adhesion assay分析r-OppA之黏附能力..................31 九、分析 OppA 促進 GAS 侵入宿主細胞之能力.................................31 (A)r-OppA 前處理 A549 細胞促進 GAS 侵入細胞之能力.....................31 (B)Anti-rOppA mouse serum 抑制 GAS 侵入細胞之能力.....................31 討論......................................................................33 一、 OPP 運送寡胜肽能力之探討.............................................33 二、環境因子影響 OPP 調控基因之探討.......................................35 三、OppA 之附著能力及促進侵入能力之探討...................................36 參考文獻..................................................................38 表........................................................................47 圖........................................................................54 附錄......................................................................71 自述......................................................................94

    Akesson, P., Cooney, J., Kishimoto, F., and L. Bjöck. 1990. Protein H--a novel IgG binding bacterial protein. Mol. Immun. 27: 523-531.

    Akesson, P., Sjoholm, A. G., and L. Bjöck. 1996. Protein SIC, a novel extracellular protein of Streptococcus pyogenes interfering with complement function. J. Biol. Chem. 271: 1081-1088.

    Bender, F. C., Whitbeck, J. C., Lou, H., Cohen, G. H., and R. J. Eisenberg. 2005. Herpes simplex virus glycoprotein B binds to cell surfaces independently of heparan sulfate and blocks virus entry. J. Virol. 79: 11588-11597.

    Betschel, S. D., Borgia, S. M., Barg, N. L., Low, D. E., and J. C. De Azavedo. 1998. Reduced virulence of group A streptococcal Tn916 mutants that do not produce streptolysin S. Infect. Immun. 66: 1671-1679.

    Bhakdi, S., Tranum-Jensen, J., and A. Sziegoleit. 1985. Mechanism of membrane damage by streptolysin-O. Infect. Immun. 47: 52-60.

    Borezee, E., E. Pellegrini, and P. Berche. 2000. OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect. Immun. 68: 7069-7077.

    Broder, C. C., Lottenberg, R., and M. D. Boyle. 1989. Mapping of the human plasmin domain recognized by the unique plasmin receptor of group A streptococci. Infect. Immun. 57: 2597-2605.

    Burova, L. A., V. A. Nagornev, P. V. Pigarevsky, M. M. Gladilina, E. A. Gavrilova, V. G. Seliverstova, A. A. Totolian, A. Thern, and C. Schalen. 2005. Myocardial tissue damage in rabbits injected with group A streptococci, types M1 and M22. Role of bacterial immunoglobulin G-binding surface proteins. APMIS. 113:21-30.

    Cabanes, D., Sousa, S., Cebria, A., Lecuit, M., Garcia-del Portillo, F., and P. Cossart. 2005. Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein. EMBO J. 3: 2827-2838.

    Caparon, M. G., Geist, R. T., Perez-Casal, J., and J. R. Scott. 1992. Environmental regulation of virulence in group A streptococci: transcription of the gene encoding M protein is stimulated by carbon dioxide. J. Bacteriol. 174: 5693-5701.

    Chhatwal, G. S. 2002. Anchorless adhesions and invasions of Gram-positive bacteria: a new class of virulence factors. Trends Microbiol. 10: 205-208.

    Chiou, C. S., Liao, T. L., Wang, T. H., Chang, H. L., Liao, J. C., and C. C. Li. 2004. Epidemiology and molecular characterization of Streptococcus pyogenes recovered from scarlet fever patients in central Taiwan from 1996 to 1999. J. Clin. Microbiol. 42: 3998-4006.

    Cleary, P. P., Matsuka, Y. V., Huynh, T., Lam, H., and S. B. Olmsted. 2004. Immunization with C5a peptidase from either group A or B streptococci enhances clearance of group A streptococci from intranasally infected mice. Vaccine 22: 4332-4341.

    Cleary, P. P., Prahbu, U., Dale, J. B., Wexler, D. E., and J. Handley. 1992. Streptococcal C5a peptidase is a highly specific endopeptidase. Infect. Immun. 60: 5219-5223.

    Cundell, D. R., B. J. Pearce, J. Sandros, A. M. Naughton, and H. R. Masure. 1995. Peptide permeases from Streptococcus pneumoniae affect adherence to eucaryotic cells. Infect. Immun. 63: 2493-2498.

    Cywes, C., and M. R. Wessels. 2001. Group A Streptococcus tissue invasion by CD44-mediated cell signalling. Nature 414: 648-652.

    Dale, J. B., Washburn, R. G., Marques, M. B., and M. R. Wessels. 1996. Hyaluronate capsule and surface M protein in resistance to opsonization of group A streptococci. Infect. Immun. 64: 1495-1501.

    Enright, M. C., Spratt, B. G., Kalia, A. J., Cross, H., and D. E. Bessen. 2001. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect. Immun. 69: 2416-2427.

    Fernie-King, B. A., D. J. Seilly, and P. J. Lachmann. 2004. The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins. Immunology 111:444-452.

    Ferretti, J. J., W. M. McShan, D. Ajdic, D. J. Savic, G. Savic, K. Lyon, C. Primeaux, S. Sezate, A. N. Suvorov, S. Kenton, H. S. Lai, S. P. Lin, Y. Qian, H. G. Jia, F. Z. Najar, Q. Ren, H. Zhu, L. Song, J. White, X. Yuan, S. W. Clifton, B. A. Roe, and R. McLaughlin. 2001. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 98: 4658-4663.

    Giordano, D., Giovanni, G., Giulia, L., Silvia, A., Marina, D. C., Ersilia, F., Debra, E. B., and B. Bernard. 2001. Group A streptococcal genotypes from pediatric throat isolates in Rome, Italy. J. Clin. Microbiol. 39: 1687-1690.

    Goodfellow, A. M., Hibble, M., Talay, S. R., Kreikemeyer, B., Currie, B. J., Sriprakash, K. S., and G. S. Chhatwal. 2000. Distribution and antigenicity of fibronectin binding proteins (SfbI and SfbII) of Streptococcus pyogenes clinical isolates from the northern territory, Australia. J. Clin. Microbiol. 38: 389-392.

    Henkel, R. D., VandeBerg, J. L, and R. A. Walsh. 1988. A microassay for ATPase. Anal. Biochem. 169: 312-318.

    Holm, S. E., Norrby, A., Bergholm, A. M., and M. Norgren. 1992. Aspects of pathogenesis of serious group A streptococcal infections in Sweden, 1988-1989. J. Infect. Dis. 166: 31-37.

    Hopfe, M., and B. Henrich. 2004. OppA, the substrate-binding subunit of the oligopeptide permease, is the major Ecto-ATPase of Mycoplasma hominis. J. Bacteriol. 186:1021-1028.

    Horstmann, R. D., Sievertsen, H. J., Knobloch, J., and V. A. Fischetti. 1988. Antiphagocytic activity of streptococcal M protein: selective binding of complement control protein factor H. Proc. Natl. Acad. Sci. USA 85: 1657–1661.

    Hytonen, J., Haataja, S., Gerlach, D., Podbielski, A., and J. Finne. 2001. The SpeB virulence factor of Streptococcus pyogenes, a multifunctional secreted and cell surface molecule with strepadhesin, laminin-binding and cysteine protease activity. Mol. Microbiol. 39: 512-519.

    Ish-Horowicz, D. and J. F. Burke. 1981. Rapid and efficient cosmid cloning. Nucleic Acids Res. 9: 2989-2998.

    Jaffe, J., Natanson-Yaron, S., Caparon, M. G., and E. Hanski. 1996. Protein F2, a novel fibronectin-binding protein from Streptococcus pyogenes, possesses two binding domains. Mol. Microbiol. 21: 373-384.

    Jesper, P. P., Margits, S. K., Jens, C. M., Helga, S., and C. S. Henrik. 2003. Community outbreak of perianal group A streptococcal infection in Denmark. Pediatr. Infect. Dis. J. 22: 105-109.

    Ji, Y., McLandsborough, A. K., and P. P. Cleary. 1996. C5a peptidase alters clearance and trafficking of group A streptococci by infected mice. Infect. Immun. 64: 503-510.

    Johnson, L. P., and P. M. Schlievert. 1984. Group A streptococcal phage T12 carriers the structural gene for pyogenic exotoxin type A. Mol. Gen. Genet. 194: 52-56.

    Kamezawa, Y. T., Nakahara, T., Nakano, S., Abe, Y., Nozaki-Renard, J., and T. Isono. 1997. Streptococcal mitogenic exotoxin Z, a novel acidic superantigenic toxin produced by a T1 strain of Streptococcus pyogenes. Infect. Immun. 65: 3828-3833.

    Kreikemeyer, B., McIver, K. S., and A. Podbielski. 2003. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends Microbiol. 11: 224-232.

    Kreikemeyer, B., Oehmcke, S., Nakata, M., Hoffrogge, R., and A. Podbielski. 2004. Streptococcus pyogenes fibronectin-binding protein F2: expression profile, binding characteristics, and impact on eukaryotic cell interactions. J. Biol. Chem. 279: 15850-15859.

    Kunji, E. R. S., Hagting, A., de Vries, C. J., Juillard, V., Handrikman, A. J., Poolman, B., and Konings, W. N. 1995. Transport of -casein-derived peptides by the oligopeptide transport system is crucial step in the proteolytic pathway of Lactococcus lactis. J. Biol. Chem. 270: 1569-1574.

    Lahteenmaki, K., Kuusela, P., and T. K. Korhonen. 2001. Bacterial plasminogen activators and receptors. FEMS Microbiol. Rev. 25: 531-552.

    Lanfermeijer, F. C., Picon, A., Konings, W.N., and B. Poolman. 1999. Kinetics and consequences of binding of nona- and dodecapeptides to the oligopeptide binding protein (OppA) of Lactococcus lactis. Biochemistry 38: 14440-14450.

    Lazazzera, B. A. 2001. The intracellular function of extracellular signaling peptides. Peptides 22: 1519–1527.

    Lazazzera, B. A., and Grossman, A. D. 1998. The ins and outs of peptide signaling. Trends Microbiol. 6: 288-294.

    Levdikov, V. M., Blagova, E. V., Brannigan, J. A., Wright, L., Vagin, A. A., and A. J. Wilkinson. 2005. The structure of the oligopeptide-binding protein, AppA, from Bacillus subtilis in complex with a nonapeptide. J. Mol. Biol. 345: 879-892.

    McIver, K. S., Heath, A. S., and J. R. Scott. 1995. Regulation of virulence by environmental signals in group A streptococci: influence of osmolarity, temperature, gas exchange, and iron limitation on emm transcription. Infect. Immun. 63: 4540-4542.

    McNab, R., and Jenkinson, H. F. 1998. Altered adherence properties of a Streptococcus gordonii hppA (oligopeptide permease) mutant result from transcriptional effects on cshA adhesin gene expression. Microbiology 144: 127–136.

    McShan, W. M., and J. J. Ferretti. 1997. Genetic diversity in temperate bacteriophages of Streptococcus pyogenes: identification of a second attachment site for phages carrying the erythrogenic toxin A gene. J. Bacteriol. 179: 6509-6511.

    Molinari, G., and G. S. Chhatwal. 1999. Role played by the fibronectin-binding protein SfbI (Protein F1) of Streptococcus pyogenes in bacterial internalization by epithelial cells. J. Infect. Dis. 179: 1049-1050.

    Morrison, D. A. 1979. Transformation and preservation of competent bacteria cells by freezing. Methods Enzymol. 68: 326-331.

    Nakamura, T., T. Hasegawa, K. Torii, Y. Hasegawa, K. Shimokata, and M. Ohta. 2004. Two-dimensional gel electrophoresis analysis of the abundance of virulent exoproteins of group A Streptococcus caused by environmental changes. Arch. Microbiol. 181:74-81.

    Nordstrand, A., Norgren, M. and S. E. Holm. 1999. Pathogenic mechanism of acute post-streptococcal glomerulonephritis. Scand. J. Infect. Dis. 31:523-537.

    Ohara-Nemoto, Y., M. Sasaki, M. Kaneko, T. Nemoto, and M. Ota. 1994. Cysteine protease activity of streptococcal pyogenic exotoxin B. Can. J. Microbiol. 40: 930-936.

    Okada, N., Liszewski, M. K., Atkinson, J. P., M. Caparon. 1995. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A streptococcus. Proc. Natl. Acad. Sci .USA. 92: 2489-2493.

    Ozeri, V., I. Rosenshine, A. Ben-Ze'Ev, G. M. Bokoch, T. S. Jou, and Hanski. E. 2001. De novo formation of focal complex-like structures in host cells by invading streptococci. Mol. Microbiol. 41:561-573.

    Podbielski, A., M. Woischnik, B. Pohl, and K. H. Schmidt. 1996. What is the size of the group A streptococcal vir regulon? The Mga regulator affects expression of secreted and surface virulence factors. Med. Microbiol. Immunol. 185: 171-181.

    Podbielski, A., Pohl, B., Woischnik, M., Korner, C., Schmidt, K., Rozdzinski, E., and B. Leonard. 1996. Molecular characterization of group A streptococcal (GAS) oligopeptide permease (Opp) and its effect on cysteine protease production. Mol. Microbiol. 21: 1087-1099.

    Podbielski, A., Woischnik, M., Leonard B. A., and K. H. Schmidt. 1999. Characterization of nra, a global negative regulator gene in group A streptococci. Mol. Microbiol. 31: 1051-1064.

    Purushothaman, S. S., Park, H. S., and P. P. Cleary. 2004. Promotion of fibronectin independent invasion by C5a peptidase into epithelial cells in group A Streptococcus. Indian. J. Med. Res. 119: 44-47.

    Raeder, R., Faulmann, E. L., and M. D. Boyle. 1991. Evidence for functional heterogeneity in IgG Fc-binding proteins associated with group A streprococci. J. Immunol. 146: 1247-1453.

    Sambrook, J., Firtsch, E. F., and T. Maniatis. 1989. Molecular cloning : A laboratory manual. 6th ed. Cold spring Harbor Laboratory Press, Cold spring Harbor, N. Y.

    Samen, U., Gottschalk, B., Eikmanns, B. J., and D. J. Reinscheid. 2004. Relevance of peptide uptake systems to the physiology and virulence of Streptococcus agalactiae. J. Bacteriol. 186: 1398-1408.

    Sekiya, K., Satoh, R., Danbara, H., and Y. Futaesaku. 1993. A ring-shaped structure with a crown formed by streptolysin-O on the erythrocyte membrane. J. Bacteriol. 175: 5953-5961.

    Sleigh, S. H., Tame, J. R., Dodson, E. J., and A. J. Wilkinson. 1997. Peptide binding in OppA, the crystal structures of the periplasmic oligopeptide binding protein in the unliganded form and in complex with lysyllysine. Biochemistry 12: 9747-9758.

    Staali, L., Bauer, S., Mörgelin, M., Björck, L., and H. Tapper. 2006. Streptococcus pyogenes bacteria modulate membrane traffic in human neutrophils and selectively inhibit azurophilic granule fusion with phagosomes. Cell Microbiol. 8: 690-703.

    Stevens, D. L. 1992. Invasive group A streptococcus infections. Clin. Infect. Dis. 14: 2-13.

    Tam, R., and M. H. Saier. 1993. Structural, functional, and evolutionary relationships among extracellular solute-binding receptors of bacteria. Jr. Microbiol. Rev. 57: 320-346.

    Tame, J. R., Murshudov, G.. N., Dodson, E. J., Neil, T. K., Dodson, G.. G. Higgins, C. F., and A. J. Wilkinson. 1994. The structural basis of sequence-independent peptide binding by OppA protein. Science 264: 1578–1581.

    Toyosaki, T., Yoshioka, T., Tsuruta, Y., Yutsudo, T., Iwasaki, M, and R. Suzuki. 1996. Definition of the mitogenic factor (MF) as a novel streptococcal superantigen that is different from Streptococcal pyogenic exotoxins A, B, and C. Eur. J. Immunol. 26: 2693-2701.

    Tsai, W. H., C. W. Chang, W. J. Chuang, Y. S. Lin, J.J. Wu, C. C. Liu, W. T. Chang, and M. T. Lin. 2004. Streptococcal pyogenic exotoxin B-induced apoptosis in A549 cells is mediated by a receptor- and mitochondrion-dependent pathway. Infect. Immun. 72:7055-7062.

    Wang, C. H., Lin, C. Y., Luo, Y. H., Tsai, P. J., Lin, Y. S., Lin, M. T., Chuang, W. J., Liu, C. C., and J. J. Wu. 2005. Effects of oligopeptide permease in group A streptococcal infection. Infect. Immun. 73: 2881-2890.

    Wang, X. G., Kidder, J. M., Scagliotti, J. P., Klempner, M. S., Noring R., and L. T. Hu. 2004. Analysis of differences in the functional properties of the substrate binding proteins of the Borrelia burgdorferi oligopeptide permease (Opp) operon. J. Bacteriol. 186: 51-60.

    Weineisen, M., U. Sjobring, M. Fallman, and T. Andersson. 2004. Streptococcal M5 protein prevents neutrophil phagocytosis by interfering with CD11b/CD18 receptor-mediated association and signaling. J. Immunol. 172:3798-3807.

    Wexler, D. E., Chenoweth, D. E., and P. P. Cleary. 1985. Mechanism of action of the group A streptococcal C5a inactivator. Proc. Natl. Acad. Sci. USA. 82: 8144- 8148.

    Whitnack, E., and E. H. Beachey. 1985. Inhibition of complement-mediated opsonization and phagocytosis of Streptococcus pyogenes by D fragments of fibrinogen and fibrin bound to cell surface M protein. J. Exp. Med. 162: 1983–1997.

    Yan, J. J., Liu, C. C., Ko, W. C., Hsu, S. Y., Wu, H. M., Lin, Y. S., Lin, M.T., Chuang, W. J., and J. J. Wu. 2003. Molecular analysis of group A streptococcal isolates associated with scarlet fever in southern Taiwan between 1993 and 2002. J. Clin. Microbiol. 41: 4858-4861.

    行政院衛生署疫情報導 1996. 噬肉菌- A 群鏈球菌感染性壞疽-在台灣之現況分析12: 201-211.

    鄒志成 2004. Effect of the dacA gene in Streptococcus pyogenes infection. 國立成功大學微生物及免疫學研究所碩士論文

    曾鈺晶 2005. Effects of oligopeptide permease in group A streptococcal adhesion. 國立成功大學醫學檢驗生物技術研究所碩士論文。

    王志宏 2005. Roles of Oligopeptide permease in group A streptococcal infection. 國立成功大學基礎醫學研究所博士論文

    下載圖示 校內:立即公開
    校外:2006-07-25公開
    QR CODE