簡易檢索 / 詳目顯示

研究生: 李憶翔
Li, Yi-Siang
論文名稱: 攪拌槽混合器之對流混合特性之最佳化
Optimization of Mixed Convection Characteristic in the Impeller Stirred Tank
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 55
中文關鍵詞: 晶格波茲曼法攪拌槽濃度類神經網路最佳化
外文關鍵詞: Lattice Boltzmann method, Stirred tank, Concentration, Neural Network, Optimization
相關次數: 點閱:68下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用晶格波茲曼法不可壓縮D2Q9速度模型討論一開放圓型攪拌混合器於流體的混合問題。在不同的系統參數組合下以被動純量法推得濃度模型求得濃度場及混合率。本文系統設計參數主要有三個:(1)攪拌棒的擺動速度(2)攪拌棒的擺動振幅(3)兩流體入口的夾角。經由不同的參數探討此流場的混合效益。結果顯示當擺動速度最快時會有較佳的混合效益;擺動振幅最大時會有較佳的混合效益,而入口角度大小的混合效益則會受到擺動速度及擺動振幅的影響。本文更利用所得的結果,以類神經網路法建構設計參數與混合率的關係模型,並以此模型決定最佳混合效益所需的設計參數。經模擬結果分析,使用類神經網路找到的最佳設計參數的確具有局部最佳特性而具有相當的參考性。

    In this dissertation, mixed problem of the Lattice Boltzmann method is applied to simulate the incompressible model of D2Q9 of the open stirred tank with an impeller. The concentration field and the mixing rate were obtained by the passive mass method in different system parameters. There are three main system design parameters:(1) swing velocity of stirred rod(2) swing amplitude of stirred rod(3) the angle of the two fluid inlets. The mixing efficiency of this flow field is discussed by different parameters. In this dissertation, the model of relationship between design parameters and mixed rate is constructed by neural network method, and it determines the design parameters required for the best mixing rate. The simulation results show that the best design parameters were found by using neural networks and have the best local characteristics.

    摘要i Extended Abstractii 誌謝viii 目錄ix 圖目錄xi 符號表xiii 第一章緒論1 1.1 研究動機與目的1 1.2 文獻回顧1 1.3 本文架構3 第二章晶格波茲曼法理論與類神經網路4 2.1 晶格波茲曼法理論4 2.2 晶格波茲曼法D2Q9模型與巨觀方程式5 2.3 濃度方程式16 2.4 類神經網路與其應用17 第三章邊界處理方法與程式流程及最佳參數搜尋23 3.1邊界處理方法23 3.1.1邊界格點判別法23 3.1.2反彈邊界24 3.1.3速度與壓力邊界24 3.1.4曲面邊界25 3.1.5移動邊界26 3.1.6濃度方程式反彈邊界27 3.2 程式流程28 3.3 最佳參數搜尋法29 第四章數值模擬結果與討論35 4.1 模型之幾何與相關參數設定35 4.1.1 模型幾何及邊界條件35 4.1.2 攪拌棒運動模式36 4.2 不同等角速度旋轉下之混合效益影響36 4.3 不同振幅下之混合效益影響37 4.4 不同入口角度下之混合效益影響37 4.5 系統混合效益之類神經網路模型38 4.6 最佳參數下之混合效益39 第五章結論與未來展望51 5.1 結論51 5.2 未來展望52 參考文獻53

    An, S. J., Kim, Y. D., Heu, S., and Maeng, J. S., Numerical study of the mixing characteristics for rotating and oscillating stirrers in a microchannel. Journal of the Korean Physical Society, 49(2), 651-659, 2006

    Bhatnagar, P. L., Gross, E. P., and Krook, M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical review, 94(3), 511, 1954

    Bouzidi, M. H., Firdaouss, M., and Lallemand, P., Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics of fluids, 13(11), 3452-3459, 2001

    Chang, S. C., Chen, C. L., and Cheng, S. C., Analysis of convective heat transfer improved impeller stirred tanks by the lattice Boltzmann method. International Journal of Heat and Mass Transfer, 87, 568-575, 2015

    Chang, S. C., Hsu, Y. S., and Chen, C. L., Lattice Boltzmann simulation of fluid flows with fractal geometry: An unknown-index algorithm. J. Chin. Soc. Mech. Eng, 32(6), 523-531, 2011

    Chen, S., Martinez, D., and Mei, R. On boundary conditions in lattice Boltzmann methods. Physics of fluids, 8(9), 2527-2536, 1996

    Higuera, F. J., and Jimenez, J., Boltzmann approach to lattice gas simulations. EPL (Europhysics Letters), 9(7), 663, 1989

    Hou, S., Sterling, J., Chen, S., Doolen, G. D., Lawniczak, A., and Karpal, R., Pattern formation and lattice gas automata. Fields Institute Communications, 6, 151, 1996

    Inamuro, T., Yoshino, M., and Ogino, F., A non‐slip boundary condition for lattice Boltzmann simulations. Physics of fluids, 7(12), 2928-2930, 1995

    Kim, Y. D., An, S. J., and Maeng, J. S., Numerical analysis of the fluid mixing behaviors in a microchannel with a circular cylinder and an oscillating stirrer. Journal of the Korean Physical Society, 50(2), 505-513, 2007

    Lallemand, P., and Luo, L. S., Lattice Boltzmann method for moving boundaries. Journal of Computational Physics, 184(2), 406-421, 2003

    McNamara, G. R., and Zanetti, G., Use of the Boltzmann equation to simulate lattice-gas automata. Physical review letters, 61(20), 2332, 1988

    Noble, D. R., Chen, S., Georgiadis, J. G., and Buckius, R. O., A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Physics of Fluids, 7(1), 203-209, 1995

    Qian, Y. H., d'Humières, D., and Lallemand, P., Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters), 17(6), 479, 1992

    Ziegler, D. P., Boundary conditions for lattice Boltzmann simulations. Journal of Statistical Physics, 71(5), 1171-1177, 1993

    Zou, Q., and He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of fluids, 9(6), 1591-1598, 1997

    Chang, S. C. Lectures for the Lattice Boltzmann Method, Department of Mechanical Engineering, NCKU, Taiwan, 2016.

    王進德,蕭大全. 類神經網路與模糊控制理論入門: 全華科技圖書股份有限公司, 1994.

    王慶餘, "類神經網路應用於輻射測溫法在鋼材上之研究",成功大學,機械工程學系研究所,碩士論文, 2011

    何雅玲,王勇,李慶. 格子 Boltzmann 方法的理论及应用: 科学出版社, 2009.

    郭照立,鄭楚光. 格子 Boltzmann 方法的原理及应用: 科学出版社, 2009.

    賴柏辰, "應用類神經網路及遺傳演算法於晶圓級封裝之結構最佳化",成功大學,機械工程學系研究所,碩士論文, 2013

    顏靜良, "結合類神經田口法與基因演算法為基礎於冷軋板形製程參數最佳化之設計",成功大學,工業設計學系研究所,碩士在職專班論文, 2011

    下載圖示 校內:2019-08-31公開
    校外:2019-08-31公開
    QR CODE