簡易檢索 / 詳目顯示

研究生: 鍾秉憲
Chung, Bing-Xian
論文名稱: 鈷奈米粒子之選擇性物理沈積探討
Study of selective cobalt nanoparticles synthesis deposition by physical deposition
指導教授: 劉全璞
Liu, Chuan-Pu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 131
中文關鍵詞: 單磁區磁性質均勻分散尺寸均一性奈米粒子
外文關鍵詞: cobalt, nanoparticles, size uniformity, distribution well, magnetism, single domain
相關次數: 點閱:104下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用直流磁控濺鍍,於室溫下,成功地製作出具分散性的鈷奈米粒子於二氧化矽/矽(001)基板上。製程改變的參數為基板偏壓(+525至-100 Volts),濺鍍靶材到基板間之距離(6~11 cm),以及沈積時間(10~30 sec),其餘的參數皆保持不變,包含濺鍍功率為50瓦等。使用原子力顯微鏡及掃描式電子顯微鏡,以分析鈷奈米粒子之表面型態及尺寸;利用穿透式電子顯微鏡來分析鈷奈米粒子的微結構。研究發現,外加基板正偏壓,可獲得數個奈米到數十奈米級尺度的鈷奈米粒子;此較大的多晶鈷奈米粒子,乃由較小的單晶鈷聚集而成,且同時具有面心立方和六方最密堆積等兩相共存。為使奈米粒子之尺寸減小並分佈更均勻,可供給較大的正偏壓予基板,而獲得電荷累積之效應,此時奈米粒子的成長動力學,可由VW成長模式變化成類似SK成長模式。

    Dispersive cobalt nanoparticles are fabricated directly on SiO2/Si(001) substrates by DC magnetron sputtering at room temperature. During deposition, the parameters chosen for the investigation are substrate bias (from +525 To –100 Volts), target-to-substrate distance (from 6 to 12 cm) and deposition time (from 10 to 30m sec), while the other parameters are kept the same, including the power of 50 watts. Atomic force microscope (AFM) is employed to determine the density and morphology of cobalt nanoparticles whereas high-resolution electron microscope (HRTEM) is used to visualize the resulting microstructure in the nanoparticles. It is found that Co nanoclusters array ranging from a few nanometers to some tens of nanometers can be fabricated by applying positive substrate bias. The larger polycrystalline cobalt nanaoclusters are formed by the coalescence from the smaller single-crystalline ones, where fcc and hcp phases coexist. The size reduction and uniformity of the nanoclusters array can be further enhanced by applying larger positive biases due to electron charging effects. Under charging effects, the growth kinetics can be altered from the VW to SK-like growth mode.

    摘要.................................................................I 英文摘要.............................................................II 誌謝................................................................III 總目錄...............................................................IV 圖目錄..............................................................VIII 表目錄..............................................................XIII 第一章 前言與研究目的.....................................................................1 1-1 前言.............................................................1 1-2 研究動機.........................................................6 1-3 研究目的.........................................................7 第二章 文獻回顧與理論基礎............................................8 2-1 文獻回顧.........................................................8 2-1-1顆粒狀薄膜之磁記錄媒體..........................................8 2-2直流磁控濺鍍.....................................................15 2-2-1濺鍍原理.......................................................15 2-2-2直流輝光放電...................................................17 2-2-3濺鍍初始階段...................................................19 2-2-4濺鍍初始階段後之成核及成長.....................................20 2-2-5薄膜成長特性與製程參數之關係...................................26 2-3離子束濺鍍.......................................................28 2-3-1濺鍍原理...............................................28 2-4磁性理論.........................................................32 2-4-1材料磁性的起源及磁性體分類.............................32 2-4-2磁滯曲線.......................................................36 2-4-3微觀結構與本質矯頑磁力之關係...................................38 2-4-4磁的異向性.....................................................39 2-4-5鈷薄膜的磁性性質...............................................43 2-4-6單磁區/微晶型機制..............................................47 2-4-7奈米粒子的磁學性能.............................................48 第三章 實驗方法與步驟...............................................50 3-1實驗材料.........................................................50 3-2實驗設備.........................................................52 3-2-1直流磁控濺鍍...................................................52 3-2-2離子束濺鍍.....................................................53 3-3實驗流程.........................................................55 3-3-1以直流磁控濺鍍製作鈷奈米粒子之探討.............................55 3-3-2以離子束濺鍍製作鈷奈米粒子之探討...............................58 3-4實驗分析技術.....................................................61 3-4-1掃瞄式電子顯微鏡(SEM)-薄膜表面及縱深型態分析..................61 3-4-2原子力顯微鏡(AFM)-薄膜表面型態與粗糙度分析....................62 3-4-3拉塞福回向散射分析儀(RBS)-鍍層成份定量分析....................64 3-4-4樣品振盪測磁儀(VSM)-鍍層磁滯曲線量測..........................65 3-4-5穿透式電子顯微鏡(TEM)-薄膜微結構分析..........................67 第四章 實驗結果與討論...............................................69 4-1直流磁控濺鍍製作鈷奈米粒子之性質與結構...........................69 4-1-1濺鍍距離之影響.................................................69 4-1-1.1濺鍍速率.....................................................69 4-1-1.2粗糙度.......................................................70 4-1-1.3表面型態.....................................................71 4-1-1.4磁性質.......................................................78 4-1-1.5微結構分析...................................................83 4-1-2基板偏壓之影響.................................................84 4-1-2.1濺鍍速率.....................................................84 4-1-2.2粗糙度.......................................................84 4-1-2.3表面型態.....................................................86 4-1-2.4磁性質.......................................................99 4-1-2.5微結構分析..................................................106 4-1-3濺鍍時間之影響(基板外加正偏壓)................................108 4-1-3.1濺鍍速率....................................................108 4-1-3.2粗糙度......................................................108 4-1-3.3表面型態....................................................110 4-1-3.4磁性質......................................................114 4-1-3.5 微結構分析.................................................119 4-1-4工作壓力之影響................................................120 4-1-4.1濺鍍速率....................................................120 4-1-4.2粗糙度......................................................121 4-1-4.3表面型態....................................................122 4-2 離子束濺鍍製作鈷奈米粒子之性質與結構...........................126 4-2-1 濺鍍源流量之影響.............................................126 4-2-1.1 表面型態...................................................126 第五章 結論........................................................128 參考文獻...........................................................129

    [1] Thin Film Deposition. (Principles & Practice)
    Donald L. Smith, 1995.
    [2] 改變世界的奈米技術
    [3] Nucleation and Growth of Thin Films
    B. Lewis & J. C. Anderson, New York San Francisco
    [4] 碳化鈦及氮化鈦薄膜在Si(100)基板之磊晶成長
    許華偉,國立清華大學材料科學與工程學系,博士論文(1998).
    [5] 氮化鈦薄膜濺鍍之研究
    王起明,國立清華大學材料科學與工程學系,碩士論文(1996)
    [6] An Introduction to Gas Discharge
    A. M. Howwastson, Pergamon Press, Chapter. 4, 84 (1976)
    [7] Glow Discharge Processes
    B. Chapman, John Willwy & Son, Inc. N. Y., Chapter. 6, 178 (1980).
    [8] 濺鍍鉭基薄膜的相轉變機制與在銅金屬化處理之擴散阻障層性質研究
    陳松德,逢甲大學材料科學研究所,碩士論文(1999).
    [9] 磁性金屬氧化物奈米粒子之合成與鑑定
    魏明芬,國立中正大學化學研究所,碩士論文(2002)
    [10] 微量銅添加對燒結(Nd, Dy) FeB磁石磁性影響及矯頑機制之研究
    張晃暐,國立中正大學物理研究所,碩士論文(2000)
    [11] Soft and Hard Magnetic Materials with Applications
    J. D. Livingston, (1986)72
    [12] G. Hilsccheer, R. Grossinger, S. Heisz, H. Sassik and G. Weisinger,
    J. Magn. Magn. Mater.,84,(1990),577.
    [13] Interrelationship between Structure and Property on Magnetic Materials
    R.Ramesh and G. Thomas, Mater. Sci. Eng., B3, (1989)
    [14] 稀土永磁材料及其應用
    周壽增,(1989), 141
    [15] R.Ramesh and K. Srikrishna, J. Appl. Phys., 64(11), (1988)
    [16] 直流磁控濺鍍鋯及氮化鋯薄膜性質、結構與擴散阻障層應用之研究
    楊恆傑,國立成功大學材料科學及工程學系,碩士論文(2002)
    [17] M. L. Wu, W. D. Qian, Y. W. Chung, Y. Y. Wang, M. S.Wong, William D. Sproul,
    Thin Solid Films, Vol.308, 113 (1997).
    [19] Introduction to Magnetic Materials, B. D. Cullity
    [20] R. Birringer, and H. Gleiter, in Clusters of Atoms and Molecules II, ed. H.
    Haberland, Springer Verlag, Berlin (1994).
    [21] M. Takeyama, A. Noya, & K. Sakanishi, J. Vac. Sci. Technol., B18, No.3,
    1333 (2000).
    [22] H. Yanagisawa, K. Sasaki, Y. Abe, M. Kawamura, & S. Shinkai, Jpn. J. Appl.
    Phys., Vol.37, 5715 (1998).
    [23] C. L. Chien, S. H. Liou and Gang Xiao, J. Magn. Magn. Mater. 54-57, p.759,
    1986.
    [24] Gang Xiao, and C. L. Chien, Appl.. Phys. Lett. 51 (16), p.1280, 1987.
    [25] C. L. Chien et al., J. Appl. Phys. 61(8), p.3311, 1987.
    [26] S. H. Liou and C. L. Chien ,j. Appl. Phys. 63(8), p.3311, 1987
    [27] Y. Kanai and S. H.Charap, J. Appl. Phys. 69 (8) p.44781991
    [28] Kaitsu et al. IEEE Trans. Magn., MAG-32, no.5,p.3813, 1996
    [29] I. Kaitsu et al ., IEEE Trans. Magn. MAG-34, p.1591, 1998.
    [30] K. Ichihara et al., IEEE Trans. Magn. MAg-34, p.1603, 1998.
    [31] S. Stavroyiannis et al., Appl Phys. Lett. 73 (23), p.3453, 1998.
    [32] J. N. Zhou et al.., J. Appl. Phys. 84 (10), p.5693, 1998.
    [33] J. N. Zhou et al., J. Appl. Phys. 85(8), p.6151, 1999.
    [34] Chen Chen , IEEE Trans. Magn. MAG-35, p.3466, 1999.
    [35] C. M. Kuo and P. C. Kuo, J. Appl. Phys. 87 (1), p.1, 1999.
    [36] J. A. Christodoulides, J. Appl. Phys. 87(9), p.6938, 2000.
    [37] M. Yu. J. Appl. Phys. 87 (9), p.6959, 2000.
    [38] A. Kikiysu, J. Appl. Phys. 87 (9), p. 6944, 2000.
    [39] Chen Chen, J. Appl. Phys. 87 (9), p. 6947, 2000.
    [40] Yingfan Xu. J. Appl. Phys. 87 (9), p.6971, 2000.
    [41] J. N. Zhou, J. Du, J, Appl. Phys. 87 (9), p. 5624, 2000.
    [42] C. P. Luo, J. Du, J. Appl. Phys. 87 (9), p. 6941,2000.
    [43] H. Kronmuller, “The Nuceation Fields of Uniaxial Ferromagnetic Crystals”
    Phys. Stat. Sol. (b) 130, (1985), 136.
    [44] 高性能燒結(Nd, Dy)(Fe,Co,Cu)B磁石研製,及矯頑機制之研究
    邱軍浩,國立中正大學物理研究所,碩士論文(2002)
    [45] 實用磁性材料,鄭振東
    [46] F. Liu, Phys. Rev. Lett. 89, 246105 (2002).
    [47] An Introduction to Gas Discharge
    A. M. Howwastson, Pergamon Press, Chapter. 4 84 (1976)

    下載圖示 校內:2004-07-30公開
    校外:2004-07-30公開
    QR CODE