| 研究生: |
林佳蕙 Lin, Chia-Hui |
|---|---|
| 論文名稱: |
鹵化銀之高壓相變行為研究 Pressure-induced phase transitions in silver halides |
| 指導教授: |
龔慧貞
Kung, Jennifer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 地球科學系 Department of Earth Sciences |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | B1結構 、B2結構 、相變 、鹵化銀 、鑽石高壓砧 |
| 外文關鍵詞: | B1, B2, Phase transformation, Silver halides, DAC |
| 相關次數: | 點閱:38 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
NaCl(B1)結構相變至CsCl(B2)結構的過程屬於重構相變。實驗顯示在此類相變過程中,有些以B1結構存在的二元AB型化合物在高壓下會直接相變為B2結構,但也有些物質需經由中間相(intermediate phase)達成相變。根據前人計算結果建議,B2結構為鹵化銀(AgX, X= F、Cl、Br、I)的高壓穩定相,但由於其鍵性落在離子鍵與共價鍵間,可能造成在高壓下的相變行為更複雜。
本研究利用鑽石高壓砧配合同步輻射X光繞射,觀察鹵化銀在室溫下加壓的相變過程,並將實驗結果與前人實驗及理論計算結果比較。AgCl、AgBr、AgI室溫加壓實驗之最高壓力分別為28.0、41.0、47.7 GPa。在AgCl的實驗中,相變過程為B1-KOH-TlI-B2與前人觀察相同,但與前人不同的是本研究發現AgCl相變至B2結構可只藉加壓達成,不需加溫即可克服其相變過程的能障。另外,本研究首次觀察到AgBr的TlI高壓相,其相變過程為B1-KOH-TlI,還觀察到B1結構與KOH結構間存在另一中間相,但目前尚無法定出其結構。AgI加壓至27.1 GPa時仍以KOH結構存在,雖然更高壓下無法辨別其結構,但加壓至47.7 GPa仍未見B2結構的特徵訊號。
本研究中AgBr、AgI雖已分別加壓至41及47.7 GPa皆尚未觀察到其B2結構。但由於這兩者皆觀察到與AgCl相同的中間相,加上前人計算結果之預測,因此我們推測這兩物質在更高壓下也可能相變為B2結構。且這三種樣品的相變壓力與路徑可能與鍵結性質有關,並且隨著共價性越強其相變壓力越大。本研究也觀察到相變過程中,在B1→KOH與TlI→B2之相變體積變化量,其結果呈不連續;而KOH結構相變為TlI結構之體積變化量則呈連續性。因此我們推論B1→KOH及TlI→B2為一階相變,KOH→TlI為二階相變。
The NaCl (B1)/ CsCl (B2) phase transformation is a reconstructive transition. The experimental observations show that some binary AB compounds with B1 phase are known to directly transform into B2 phase, or some of them transform via intermediate phases under high pressures. From computational investigation, a dense B2 phase is clearly favored at high pressures for silver halides (AgX, X= F, Cl, Br and I). In this series of AgX, the bonding character is across from ionic to covalent, which may make the high-pressure structural behavior rather complex.
The silver halides have been studied in the diamond anvil cell (DAC) by angluar dispersive X-ray diffraction technique at room temperature. The high-pressure phase transformations of AgCl, AgBr and AgI have been investigated up to the pressures of 28.0 GPa, 41.0 GPa, 47.7 GPa, respectively. In AgCl, the transformation sequence B1-KOH-TlI-B2 was observed at high pressure that is in good agreement with previous experimental study. Different from previous study, this study showed that AgCl can be transformed to B2 phase at high pressure, room temperature without heating. The pathway of transformation in AgBr was found to be B1-KOH-TlI at high pressure. Moreover, a new phase was observed in AgBr transformed to KOH-type structure from B1 phase, which was not shown in previous study. The identification for this new phase is under way. For AgI, the high pressure KOH-type structure was observed up to 27 GPa. With further compression to the pressure of ~48 GPa, AgI has not been observed to be transformed to B2 phase.
Based on current experimental results and previous computational studies, AgBr and AgI could be transformed to B2 phase at high pressure via same pathway as AgCl. The pressure of phase transition would be related to bonding character; the materials processing stronger covalent bonding will have higher transition pressures. In present study, the results show that the volume changes in B1→KOH and TlI→B2 were discontinuous, but KOH→TlI was continuous. Therefore B1→KOH and TlI→B2 would be the first-order transformation, KOH→TlI was a second-order transformation.
余樹楨 晶體之結構與性質。渤海堂文化事業有限公司,台北,共569頁,1987年。
林文偉、郭艷光、劉柏挺 Zincblende結構三元氮化物的能帶模擬與分析,物理雙月刊,廿五卷四期,582-591頁,2003年。
黃怡禎 探討地球內部的利器-鑽石高壓砧。科學發展,358期,34-39頁,2002年。
Ahrens L. H., Geochim. Cosmochim. Acta. 2, 155 (1952)
Akahama Y., Kawamura H., and Singh A. K., J. Appl. Phys. 95, 4767 (2004)
Bassett W. A. and Takahashi T., Am. Mineral. 50, 1576 (1965)
Bell P. M., Xu J., and Mao H. K., in Shock Waves in Condensed Matter, ed. Y. M. Gupta, Plenum, New York (1986)
Birch F., Phys. Rev. 71, 809 (1947)
Bloss F. D., Crystallography and Crystal Chemistry: An Introduction, New York: Holt, Rinehart and Winston. ISBN:0-03-085155-6 (1920)
Bridgman P. W., Proc. Am. Acad. Arts Sci. 74, 1 (1945)
Buerger M. J., Phase transformation in solids ed R. Smoluchowski, J. E. Mayers and W. A. Weyl, New York: Wiley, p.183 (1949)
Catti M. and Piazza L. Di, J. Phys. Chem. B 110 1576 (2006)
Catti M., Phys. Rev. B 74, 174105 (2006)
Causa M., Dovesi R., Pisani C., and Roetti C., Phys. Rev. B 33, 1308 (1986)
Chattopadhyay T., Werner A., and Von Schnering H. G., Rev. Phys. Appl. 19, 807 (1984)
Cohen A. J. and Gordon R. G., Phys. Rev. B 14, 4593 (1976)
Cullity B. D. and Stock S. R., Elements of X-ray Diffraction (Prentice-Hall, Upper Saddle River, NJ, ed. 3, 2001)
Duffy T. S., Hemley R. J., and Mao H. K., Phys. Rev. Lett. 74, 1371 (1995)
Gupta D. C. and Singh R. K., Phys. Rev. B 43, 11185 (1991)
Heinz D. L. and Jeanloz R., J. Appl. Phys. 55, 885 (1984)
Holzapfel W. B., Hartwig M., and Sievers W., J. Phys. Chem. Ref. Data 30, 515 (2001)
Hull S. and Berastegui P., J. Phys: Condens. Matter. 10, 7945 (1998)
Hull S. and Keen D. A., Phys. Rev. B. 59, 750 (1999)
Jeanloz R. and Ahrens T. J., Geophys. J. R. Astron. Soc. 62, 505 (1980)
Jochym P. T. and Parlinski K., Phys. Rev. B 65, 24106 (2001)
Kabalkina S. S., Shcherbakov M. O., and Vereshchagin A. L. F., Sov. Phys. Dokl. 15, 751 (1971)
Keen D. A. and Hull S., J. Phys. Condens. Matter 5, 23 (1993)
Keen D. A., Hull S., Hayes W., and Gardner N. J. G., Phys. Rev. Lett. 77, 4914 (1996)
Kirchhoff F., Holender J. M., and Gillan M. J., Phys. Rev. B 49, 17420 (1994)
Kung J., Li B., Uchida T., Wang Y., Neuville D., and Liebermann R. C., Phys. Earth Plant. Inter. 14, 27-44 (2004)
Kung J., Li B., and Liebermann R. C., J. Phys. Chem. Solids. 67, 2051-2055 (2006)
Kusaba K., Syono Y., Kikegawa T., and Shimomura O., J. Chem. Solids. 56, 751 (1995)
La Bail A., Duroy H., and Fourquet J. L., Matter. Res. Bull. 23, 447 (1988)
Larson A. C. and Von Dreele R. B., GSAS manual. Los Alamos National Laboratory, Report LAUR: 86-748 (1988)
Leger J. M., Haines J., Danneels C.,and de Oliveira L. S., J. Phys. Condens. Matter 10, 4201 (1998)
Li Y., Zhang L. J., Cui T., Li Y. W., Wang Y., Ma Y. M., and Zou G. T., J. Phys. Condens. Matter, 20 195218 (2008)
Li X. Y. and Jeanloz R., Phys. Rev. B 36, 474 (1987)
Liu L. G. and Bassett W. A., J. Geophys. Res. 77, 4934 (1972)
Liu L. G. and Bassett W. A., J. Appl. Phys. 44, 1475 (1973)
MacGillavry C. H., Rieck G. D., and Lonsdale K., International Tables for X-Ray Crystallography: Volume Ⅲ: Physical and Chemical Tables, ISBN:90-277-1532-7 (1985)
Majewski J. A. and Vogl P., Phys. Rev. Lett. 57, 1366 (1986)
Mao H. K., Xu J., and Bell P. M., J. Geophys. Res. 91, 4673 (1986)
Maskasky J. E., Phys. Rev. B. 43, 5769 (1991)
Mehl M. J., Cohen R. E., and Krakauer H., J. Geophys. Res. Solid Earth 93, 8009 (1988)
Mujica A., Rubio A., Munoz A., Needs R. J., Rev. Mod. Phys. 75, 863 (2003)
Nunes G. S., Allen P. B., and Martins J. L., Phys. Rev. B. 57, 5098 (1998)
Organov A. R., Gillan M. J., and Price G. D., J. Chem. Phys. 118, 10174 (2003)
Oganov A. R. and Dorogokupets P. I., Phys. Rev. B 67, 224110 (2003)
Ohtaka O., Takebe H., Yoshiasa A., Fukui H., and Katayama Y., Solid State Commun. 123, 213 (2002)
Phillips J. C., Rev. Mod. Phys. 42, 317 (1970)
Rietveld H. M., J. Appl. Cryst. 2, 65 (1969)
Riggleman B. M. and Drickamer H. G., J. Chem. Phys. 38, 2721 (1963)
Sato Y. and Jeanloz R., J. Geophys. Res. 86, 11773 (1981)
Schock R. N. and Jamieson J. C., J. Phys. Chem. Solids 30, 1527 (1969)
Shannon R. D. and Prewitt C. T., Acta Crystallogr. B 25, 925 (1969)
Shim S. H., Duffy T. S., and Takemura K., Earth Planet. Sci. Lett. 203, 729 (2002)
Singh B. P., Baghel V. S., and Baghel K. S., Ind. J. Pure Appl. Phys. 47, 793 (2009)
Slykhouse T. E. and Drickamer H. G., J. Phys. Chem. Solids 7, 207 (1958)
Stokes H. T. and Hatch D. M., Phys. Rev. B 65 144114 (2002)
Teichert W. and Klemm W., Z. anorg. U. allgem. Chem. 243, 138 (1939)
Toledano P., Knorr K., Ehm L., and Depmeier W., Phys. Rev. B 67, 144106 (2003)
Tonkov E. Y., High Pressure Phase Transformations, a Handbook (London: Gordon and Breach)(1992)
Uludogan M., Cagin T., Strachan A., and Goddard Ⅲ W. A., J. Comp. Aid. Mat. Design. 8, 193 (2001)
Wyckoff R. W. G., Crystal Structures (Wiley, New York, 1963)
Yagi T., Suzuki T., Akimoto S., J. Phys. Chem. Solids 44, 135 (1983)
Yamanaka T., Kittaka K., and Nagai T., J. Mineral. Petrol. Sci. 97, 144 (2002)
Zhang S. and Chen N. X., Philosophical Magazine, 83, 12, 1451-1461 (2003)