簡易檢索 / 詳目顯示

研究生: 王偉仲
Wang, Wei-Chung
論文名稱: 應用模糊類神經網路於無速度感測器之感應馬達控制系統之研究
Study of Speed Sensorless Control of Induction Motor Using Fuzzy Neural Network
指導教授: 陳添智
Chen, Tien-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 114
中文關鍵詞: 模糊類神經網路感應馬達無速度感測器之控制
外文關鍵詞: speed sensorless control, fuzzy neural network, induction motor
相關次數: 點閱:125下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在過去,電壓/頻率(V/f)控制被應用於感應馬達之開迴路速度控制。電壓/頻率控制方法是相當容易去實現的,電壓主要是根據電器頻率之命令來做調整。然而,因為定子阻抗之影響和需要轉子滑差去產生轉矩之因素,此控制方法在低轉速之應用仍然是件艱鉅的工作。本論文提出間接磁場導向控制(Field-oriented control)將會解決上面之問題。
    為了達到速度回授的閉迴路控制,精確的轉子速度對於感應馬達之控制是相當重要的。在過去,編碼器廣泛的被用來做為量取感應馬達速度之感測器。然而,使用速度感測器將會提高整個系統之費用和降低系統之可靠度。除此之外,對於高轉速馬達驅動之情況下,在安裝速度感測器時將會遇到很大的困難。無速度感測器之控制方法將可解決以上提到之問題。
    本論文提出一個新式自動調整的模糊類神經網路演算法應用於感應馬達之速度估測。速度估測主要是依據轉子磁通和估測轉子磁通之推導得到,轉子磁通是由感應馬達之動態系統推導而來,而估測轉子磁通則是由模糊類神經網路計算出來。模糊類神經網路包括了四層架構,以轉子磁通和估測轉子磁通之誤差,並利用最深梯度法和倒傳遞法去調整模糊類神經網路之參數,使得轉子磁通和估測轉子磁通之間的誤差減到最小,這樣一來就可以應用於精確的轉子速度之估測。Lyapunov’s的穩定度推導和模糊類神經網路之收斂性將會被證明,並由此可以確定此系統是穩定的。

    In the past, Voltage/frequency (V/f) control was used in open loop speed control for the induction motor. The V/f control is simple to implement. The voltage (V) is adjusted proportionally to frequency (f) command. However, its application is still challenging at low frequency due to the influence of the stator resistance and the necessary rotor slip to produce torque. The foregoing problem can be solved by using the field-oriented control.
    In order to achieve the speed loop feedback control, precise rotor speed information is important for induction motor control. In the past, encoder was widely used to obtain the speed information of induction motor. However, speed sensor would increase the cost of entire system and reduce the system reliability. In addition, for some special applications such as very high speed motor drives, some difficulties are encountered in mounting these speed sensors. The speed sensorless control would overcome these problems mentioned above.
    This thesis proposes a novel self-tuning fuzzy neural network algorithm for speed sensorless induction motor drives. The speed estimation is based on the deduction of rotor flux and estimated rotor flux. The rotor flux is derived from the dynamic model of the induction motor. The estimated rotor flux is calculated by fuzzy neural network. The fuzzy neural network includes a four-layer network. The gradient descent and back-propagation are used to adjust the parameters of fuzzy neural network in order to minimize the error between the rotor flux and the estimated rotor flux, which is implied to enable precise estimation of the rotor speed. Finally, the Lyapunov’s stability theorem and convergence of the fuzzy neural network used to prove that the system is stable.

    Chinese Abstract I Abstract II Acknowledgements III Content IV List of Tables VI List of Figures VII Symbols IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Structure of the Thesis 6 Chapter 2 Speed Sensorless Control for the Induction Motor Drives 7 2.1 The Dynamic Model of Induction Motor 7 2.2 The Proposed Self-tuning Fuzzy Neural Network Speed Estimation 9 2.3 The Principle of Speed Estimation 10 2.4 The Design of Self-tuning Fuzzy Neural Network 14 2.4.1 Description of Fuzzy Neural Network: 14 2.4.2 Training Algorithm for Self-tuning Fuzzy Neural Network 15 2.6 The Stability Deduction 17 2.7 FOC Architecture 20 2.8 Adaptive Current Controller 22 Chapter 3 Simulation Results 23 3.1 Comparisons of Different Speed Commands with Free Loading 24 3.2 Comparisons of Different Speed Commands with Loading of 1 N-m 40 Chapter 4 Software and Hardware Configuration 56 4.1 The Equipment Block 56 4.2 The Software Configuration 57 4.3 The Hardware Configuration Block 60 4.3.1 The Feature of TMS320F2808 Experiment Board 60 4.3.2 TMS320F2808 Experiment Board Connector Positions 61 4.3.3 Boot Mode Select 65 4.4 Functions of TMS320F2808 DSP 66 4.4.1 TMS320F2808 ADC module 67 4.4.2 TMS320F2808 GPIO Function 69 4.4.3 TMS320F2808 QEP Circuit 70 4.4.4 Digital to Analog Converter (DAC) with Serial Peripheral Interface (SPI) Module 70 4.5 The Motor Driver Circuit 72 Chapter 5 Experimental Results 79 5.1 Comparisons of Different Speed Commands with Free Loading 79 5.2 Comparisons of Different Speed Commands with Loading of 1 N-m 96 Chapter 6 Conclusions 108 6.1 Conclusions 108 6.2 Suggestion for Future Research 109 Reference 110 Vita 114

    [1] R. J. Storey, T. A. Coombs, A. M. K. Campbell, R. A. Weller, and D. A. Cardwell, “Development of Superconducting DC Machines Using Bulk YBCO,” IEEE Transactions on Applied Superconductivity, Vol. 9, No. 2, pp. 1253-1256, 1999.
    [2] A. Pagel, A. S. Meyer, and C. F. Landy, “The Design of Equalizer Windings for Lap-Wound DC Machines,” IEEE Transactions on Industry Applications, Vol. 37, No. 2, pp. 1000-1011, 2000.
    [3] Stephen J. Chapman, Electric Machinery Fundamentals, 3rd, McGraw-Hill, New York, 1999.
    [4] H. J. Kim, H. D. Lee, and S. K. Sul, “A New PWM Strategy for Common-Mode Voltage Reduction in Neutral-Point-Clamped Inverter-Fed AC Motor Drives,” IEEE Transactions on Industry Applications, Vol. 37, No. 6, pp. 1840-1845, 2001.
    [5] C. D. Angelo, G. Bossio, J. Solsona, G. O. Garcia, and M. I. Valla, “Mechanical Sensorless Speed Control of Permanent-Magnet AC motors Driving an Unknown Load,” IEEE Transactions on Industrial Electronics, Vol. 53, No. 2, pp. 406-414, 2006.
    [6] A. M. Garcıa, T. A. Lipo, and D. W. Novotny, “A New Induction Motor V/f Control Method Capable of High-Performance Regulation at Low Speeds,” IEEE Transactions on Industry Applications, Vol. 34, No. 4, pp. 813-821, 1998.
    [7] P. D. C. Perera, F. Blaabjerg, J. K. Pedersen, and P. Thogersen, “A Sensorless Stable V/f Control Method for Permanent-Magnet Synchronous Motor Drives,” IEEE Transactions on Industry Applications, Vol. 39, No. 3, pp. 783-791, 2003.
    [8] G. K. Singh, D. K. P. Singh, K. Nam, and S. K. Lim, “A Simple Indirect Field-Oriented Control Scheme for Multiconverter-Fed Induction Motor,” IEEE Transactions on Industrial Electronics, Vol. 52, No.6, pp. 1653-1659, 2005.
    [9] A. S. Bazzanella and R. Reginatto, “Robustness Margins for Indirect Field-Oriented Control of Induction Motor,” IEEE Transactions on Automatic Control, Vol. 45, No. 6, pp. 1226-1231, 2000.
    [10] G. W. Chang, G. Espinoza-Perez, E. Mendes, and R. Ortega, “Tuning Rules for the PI Gains of Field-Oriented Controllers of Induction Motors,” IEEE Transactions on Industrial Electronics, Vol. 47, No. 3, pp. 592-602, 2000.
    [11] M. M. Bech, J. K. Pedersen, and F. Blaabjerg, “Field-Oriented Control of an Induction Motor Using Random Pulse-Width Modulation,” IEEE Transactions on Industry Applications, Vol. 37, No. 6, pp. 1777-1785, 2001.
    [12] A. Consoli, G. Scarcella, and A. Testa, “Slip-Frequency Detection for Indirect Field-Oriented Control Drives,” IEEE Transactions on Industry Applications, Vol. 40, No. 1, pp. 194-201, 2004.
    [13] G. Diana and R.G. Harley, “An Aid for Teaching Field Oriented Control Applied to Induction Machines,” IEEE Transactions on Power System, Vol. 4, No. 3, pp. 1258-1286, 1989.
    [14] J. Guzinski, H. Abu-Rub, and H. A. Toliyat, “An Advanced Low-Cost Sensorless Induction Motor Drive,” IEEE Transactions on Industry Applications, Vol. 39, No. 6, pp. 1757-1764, 2003.
    [15] K. A. Corzine, “A Hysteresis Current-Regulated Control for Multi-Level Drives,” IEEE Transactions on Energy Conversion, Vol. 15, No. 2, pp. 169-175, 2000.
    [16] B. Mwinyiwiwa, Z. Wolanski, and O. Boon-Teck, “Microprocessor Implemented SPWM for Multiconverters with Phase-Shifted Triangle Carriers,” IEEE Transactions on Industry Applications, Vo.34, No. 3, pp. 487-494, 1998.
    [17] Z. C. Zhang and B. T. Ooi, “Multimodular Current-Source SPWM Converters for a Superconducting Magnetic Energy Storage System,” IEEE Transactions on Power Electronics, Vol. 8, No. 3, pp. 250-256, 1993.
    [18] Y. A. Kwon and S. H. Kim, “A New Scheme for Speed-Sensorless Control of Induction Motor,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 3, 2004.
    [19] J. Salomaki, M. Hinkkanen, and J. Luomi, “Sensorless Control of Induction Motor Drives Equipped with Inverter Output Filter,” IEEE Transactions on Industrial Electronics, Vol. 53, No. 4, 2006.
    [20] M. H. Ho, D. S. Hyun, S. B. Cho, and S. Y. Choe, “An Improved Stator Flux Estimation for Speed Sensorless Stator Flux Orientation Control of Induction Motors,” IEEE Transactions on Power Electronics, Vol. 15, No. 2, 2000.
    [21] T. S. Kwon, M. H. Shin, and D. S. Hyun, “Speed Sensorless Stator Flux-Oriented Control of Induction Motor in the Field Weakening Region Using Luenberger Observer,” IEEE Transactions on Power Electronics, Vol. 20, No. 4, pp.864-869, 2005.
    [22] Y. A. Kwon and S. H. Kim, “A New Scheme for Speed-Sensorless Control of Induction Motor,” IEEE Transactions on Industrial Electronics, Vol. 51, No. 3, pp. 545-550, 2004.
    [23] M. Saejia and S. Sanwongwanich, “Averaging Analysis Approach for Stability Analysis of Speed-Sensorless Induction Motor Drives With Stator Resistance Estimation,’’ IEEE Transactions on Industrial Electronics, Vol. 53, No. 1, pp. 162-177, 2006.
    [24] Y. R. Kim, S. K. Sul, and M. H. Park, “Speed Sensorless Vector Control of Induction Motor Using Extended Kalman Filter,” IEEE Transactions on Industry Applications, Vol. 30, No. 5, pp. 1125-1233, 1994.
    [25] L. Zhen and L. Xu, “Sensorless Field Orientation Control of Induction Machines Based on a Mutual MRAS Scheme,” IEEE Transactions on Industrial Electronics, Vol. 45, No. 5, pp. 824-831, 1998.
    [26] C. Lascu, I. Boldea, and F. Blaabjerg, “Direct Torque Control of Sensorless Induction Motor Drives: a Sliding-Mode Approach,” IEEE Transactions on Industry Applications, Vol. 40, No. 2, pp. 582-590, 2004.
    [27] S. H. Kim, T. S. Park, J. Y. Yoo, and G. T. Park, “Speed-Sensorless Vector Control of an Induction Motor Using Neural Network Speed Estimation,” IEEE Transaction on Industrial Electronics, Vol. 48, No. 3, pp. 609-614, 2001.
    [28] K. Uehara and M. Fujise, “Multistage Fuzzy Inference Formulated as Linguistic-Truth-Value Propagation and Its Learning Algorithm Based on Back-Propagating Error Information,” IEEE Transactions on Fuzzy System, Vol. 1, No. 3, pp. 205-221, 1993.
    [29] B. K. Bose, Power Electronics and Ac Drives, Prentice-Hall, Englewood Cliffs, 1986.

    下載圖示 校內:2009-07-25公開
    校外:2009-07-25公開
    QR CODE