簡易檢索 / 詳目顯示

研究生: 江毓民
Chiang, Yu-Min
論文名稱: 應用Laplace Adomian分解法於螺旋鰭片之週期性溫度邊界的熱傳遞分析
Laplace Adomian Decomposition Method for Analyses of Heat Transfer with the Periodic Base Temperature in Spiral Fin
指導教授: 陳朝光
Chen, Cha'o-Kuang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 57
中文關鍵詞: Laplace Adomian分解法暫態熱傳遞非線性問題螺旋鰭片
外文關鍵詞: Laplace Adomian Decomposition Method(LADM), transient heat transfer, non-linear problem, spiral fin
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I Extended Abstract II 誌謝 X 目錄 XI 表目錄 XIV 圖目錄 XV 符號說明 XVII 第一章 緒論 1 1-1 研究動機與背景 1 1-2 文獻回顧 2 1-2-1 非線性熱傳系統 2 1-2-2 Adomian分解法 3 1-3 本文架構 5 第二章 數值方法 6 2-1 Adomian分解法 6 2-2 Adomian多項式 12 2-3 修正Adomian分解法(MADM) 14 2-3-1 修正Adomian分解法(一) 15 2-3-2 修正Adomian分解法(二) 17 2-4 Laplace Adomian分解法(LADM) 19 2-5 Padé近似(Padé Approximant) 20 第三章 螺旋鰭片之週期性溫度邊界熱傳 24 3-1 模型建立 24 3-2 LADM分析 28 3-3 熱傳效率分析 32 第四章 週期性溫度邊界熱傳分析與討論 33 4-1 溫度分布圖 34 4-1-1 熱對流參數影響 34 4-1-2 熱輻射參數影響 36 4-1-3 環境溫度影響 38 4-1-4 螺紋截距影響 40 4-2 鰭片熱傳量分析 41 4-2-1 熱對流參數影響 41 4-2-2 熱輻射參數影響 42 4-2-3 環境溫度影響 42 4-2-4 螺紋截距影響 43 4-3 鰭片效率分析 45 4-3-1 熱對流參數關係 45 4-3-2 熱輻射參數關係 47 第五章 總結與未來展望 49 5-1 LADM收斂性總結 49 5-2 參數對溫度分布總結 49 5-3 參數對熱傳量總結 50 5-4 參數對鰭片效率總結 50 5-5 未來展望 51 參考文獻 52

    [1] Harper W. P., Brown D. R., Mathematical Equations for Heat Conduction in the Fins of Air-Cooled Engines, NACA Report, No.158, 1922
    [2] Chambers R. L., Somers E. V., Radiation Fin Efficiency for One-Dimensional Heat Flow in a Circular Fin, Journal of Heat Transfer, Vol.81, No.4, pp. 327-329, 1959
    [3] Crank J., Parker I.B., Approximate methods for two-dimensional problems in heat flow, The Quarterly Journal of Mechanics and Applied Mathematics, Vol.19, No.2, pp. 167-181, 1966
    [4] Hung H.M., Appl F.C., Heat transfer of thin fins with temperature dependent thermal properties and internal heat generation, ASME Journal of Heat Transfer, Vol.89, No.2, pp.155-161, 1967
    [5] Sikka S., Iqbal M., Temperature Distribution and Effectiveness of a Two-Dimensional Radiating and Convecting Circular Fin, AIAA Journal, Vol.8, No.1, pp. 101-106, 1970
    [6] Aziz A., Periodic Heat Transfer In Annular Fins, Journal of Heat Transfer, Vol.97, No.2, pp. 302-303, 1975
    [7] Chu H.S., Chen C.K. and Weng C.I., Applications of Fourier series technique to transient heat transfer problem, Chemical Engineering Communications, Vol.16, No.1, pp. 215– 225, 1982
    [8] Chu H.S., Chen C.K. and Weng C.I., Transient response of circular pins, Journal of Heat Transfer, Vol.105, No.1, pp. 205– 208, 1983
    [9] Ullmann A., Kalman H., Efficiency and optimized dimensions of annular fins of different cross-section shapes, International Journal of Heat and Mass Transfer, Vol.32, No.6, pp. 1105-1110, 1989
    [10] Laor K., Kalman H., The effect of tip convection on the performance and optimum dimensions of cooling fins, International Communications in Heat and Mass Transfer, Vol.19, No.4, pp. 569-584, 1992
    [11] Campo A., Stuffle R. E., Symbolic mathematics for the calculation of thermal efficiencies and tip temperatures in annular fins of uniform thickness, Vol.40, No.2, pp. 490-492, 1997
    [12] Cheng C.Y., Chen C.K., Transient response of annular fins of various shapes subjected to constant base heat fluxes, Journal of Physics D: Applied Physics, Vol.27, No.11, pp. 2302-2306, 1994
    [13] Cheng C.Y., Chen C.K., Transient response of annular fins subjected to constant base temperatures, International Communications in Heat and Mass Transfer, Vol.25, No.6, pp. 775-785, 1998
    [14] Yu L.T., Chen C.K., Application of Taylor transformation to optimize rectangular fins with variable thermal parameters, Applied Mathematical Modelling, Vol.22, No.1-2, pp.11-21, 1998
    [15] Yu L.T., Chen C.K., Optimization of circular fins with variable thermal parameters, Journal of the Franklin Institute, Vol.336, No.1, pp.77-95, 1999
    [16] Mokheimer, E.M.A., Performance of annual fins with differential profiles subject to variable heat transfer coefficient, International Journal of Heat and Mass Transfer, Vol.45, No.17, pp. 3631-3642, 2002
    [17] Chiu C.H., Chen C.K., A decomposition method for solving the convective longitudinal fins with variable thermal conductivity, International Journal of Heat and Mass Transfer, Vol.45, No.10, pp.2067-2075, 2002
    [18] Chiu C.H., Chen C.K., Application of the decomposition method to thermal stresses in isotropic circular fins with temperature-dependent thermal conductivity, Acta Mechanica, Vol.157, pp.147-158, 2002
    [19] Wu W.J., Chen C.K., Transient response of a spiral fin with its base subjected to a sinusoidal form in temperature, Computers & Structures, Vol.34, No.1, pp.161-169, 1990
    [20] Wang J.S., Luo W.J., Hsu S.P., Transient Response of a Spiral Fin with its Base Subjected to the Variation of Heat Flux, Journal of Applied Sciences, Vol.8, No.10, pp. 1798-1811, 2008
    [21] Lee S.Y., Chou L.K., Chen C.K., Transient Heat Transfer of a Spiral Fin, International Journal of Mechanical and Mechatronics Engineering, Vol.10, No.7, 2016
    [22] Tsai K.T., Lai H.Y., Chien S.K., Chen C.K., Nonlinear Heat Transfer of a Spiral Fin with Periodic Base Temperature, Journal of the Chinese Society of Mechanical Engineers, Vol.38, No.5, pp.445-451, 2017
    [23] Adomian G., Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Boston, 1994
    [24] Adomian G., Delayed nonlinear dynamical system, Mathematical and Computer Modelling, Vol.22, No.3, pp.77-79, 1995
    [25] Adomian G., Fisher-Kolmogorov equation, Applied Mathematics Letters, Vol.8, No.2, pp. 51-52, 1995
    [26] Adomian G., Nonlinear Klein-Gordan equation, Applied Mathematics Letters, Vol.9, No.3, pp.9-10, 1996
    [27] Adomian G., Solution of coupled nonlinear partial differential equations by decomposition, Computer & Mathematics with Application, Vol.31, No.6, pp. 117-120, 1996
    [28] Adomian G., The fifth-order Kortewed-de Vries equation, International Journal of Mathematics and Mathematical Science, Vol.19, No.2, pp.415, 1996
    [29] Biazara J., Babolianb E., Islam R., Solution of the system of ordinary differential equations by Adomian decomposition method, Applied Mathematics and Computation, Vol.147, No.3, pp. 713-719, 2004
    [30] Chen W.H., Lu Z.Y., An algorithm for Adomian decomposition method, Applied Mathematics and Computation, Vol.159, No.1, pp. 221-235, 2004
    [31] Momani S., Odibat Z., Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition method, Applied Mathematics and Computation, Vol.177, No.2, pp.488-494, 2006
    [32] Yang Y.T., Chien S.K., Chen C.K., A double decomposition method for solving the periodic base temperature in convective longitudinal fins, Energy Conversion and Management , Vol.49, No.10, pp.2910-2916, 2008
    [33] Yang Y.T., Chang C.C., Chen C.K., A Double Decomposition Method for Solving the Annular Hyperbolic Profile Fins With Variable Thermal Conductivity, Heat Transfer Engineering, Vol.31, No.44, pp.1165-1172, 2010
    [34] Wazwaz A.M., A reliable modification of Adomian decomposition method, Applied Mathematics and Computation, Vol.102, No.1, pp. 77-86, 1999
    [35] Wazwaz A.M., El-Sayed S.M., A new modification of the Adomian decomposition method for linear and nonlinear operators, Applied Mathematics and Computation, Vol.122, No.3, pp. 393-405, 2001
    [36] Wazwaz A.M., Gorguis A., An analytic study of Fisher's equation by using Adomian decomposition method, Applied Mathematics and Computation, Vol.154, No.3, pp.609-620, 2004
    [37] Wazwaz A.M., Adomian decomposition method for a reliable treatment of the Bratu-type equations, Applied Mathematics and Computation, Vol.166, No.3, pp.652-663, 2005
    [38] Abbasbandy S., Improving Newton–Raphson method for nonlinear equations by modified Adomian decomposition method, Applied Mathematics and Computation, Vol.145, No.2-3, pp.887-893, 2003
    [39] Khuri S.A., A Laplace decomposition algorithm applied to a class of nonlinear differential equation, Journal of Applied Mathematics, Vol.1, No.4, pp. 41-55, 2001
    [40] Tsai P.Y., Chen C.K., Free vibration of the nonlinear pendulum using hybrid Laplace Adomian decomposition method, International Journal for Numerical Methods in Biomedical Engineering, Vol.27, No.2, pp. 262-272, 2011
    [41] Ongun M.Y., The Laplace Adomian Decomposition Method for solving a model for HIV infection of cells, Mathematical and Computer Modelling, Vol.53, No.5-6, pp. 597-603, 2011
    [42] Manafianheris J., Solving the Integro-Differential Equations Using the Modified Laplace Adomian Decomposition Method, Journal of Mathematical Extension, Vol.6, No.1, pp. 41-55, 2012
    [43] Naghipour A., Manafian J., Application of the Laplace Adomian decomposition and implicit methods for solving Burgers’ equation, TWMS Journal of Pure and Applied Mathematics, Vol.6, No.1, pp. 68-77, 2015
    [44] 張又升, Laplace Adomian混合分解法應用於非線性熱傳問題之研究, 國立成功大學機械工程學系碩士班論文, 2014
    [45] 陳郁婷, 應用Laplace Adomian分解法於變化輪廓環形鰭片之週期性溫度邊界的熱傳遞與熱應力分析, 國立成功大學機械工程學系碩士班論文, 2016
    [46] 曾嘉祥, 應用Laplace Adomian分解法於非線性樑之振動與大撓度問題研究, 國立成功大學機械工程學系碩士班論文, 2019

    無法下載圖示 校內:2026-07-21公開
    校外:2026-07-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE