| 研究生: |
張閎睿 Chang, Hung-Jui |
|---|---|
| 論文名稱: |
週期排列之圓形和圓球形兩相超材料 Two-phase metamaterials with periodic circular and spherical structures |
| 指導教授: |
陳東陽
Chen, Tung-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 地震超材料 、兩相超材料 、共振頻率 、帶隙寬度 |
| 外文關鍵詞: | seismic metamaterials, two-phase metamaterials, local resonance, bandwidth |
| 相關次數: | 點閱:36 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
地震超材料是一種新型的材料,藉由其獨特的微結構,使其擁有不同於自然材料的特殊物理性質,能夠引導和控制地震波在特定方向上傳播,將地震波轉化為無害的能量,以減輕對結構物和基礎設施造成的損害。本論文的核心概念為兩相超材料的探討,不同於過往由最外層的基材(matrix)、包覆層(cladding)和核心(core)所組成的三相超材料,兩相超材料沒有包覆層,只由基材和核心所組成。當地震波經過超材料時,基材和內核物之間會發生反向運動,產生局部共振現象,進而達成消能效果。本文藉由改變兩相超材料的材料性質,如基材和內核物的密度、體積、楊氏係數及柏松比,經由有限元素軟體的分析,找出能夠在較低頻率發生共振,並且產生較寬帶隙(band gap)範圍的材料尺寸模型,而本文除了利用有限元素軟體分析二維和三維模型在不同模態下的共振頻率和帶隙外,也有針對不同的內核物顆數及間距進行討論,最後利用半全域模擬,成功找出P波和SH波所對應的消能模態。而從初步的分析中發現,隨著內核物顆數的提高,雖然第一共振頻率會上升,但帶隙寬度會增加,因此可以獲得更大的消能範圍,然而隨著內核物彼此間的間距擴大,則會導致帶隙範圍縮小,不利於阻隔地震波的傳遞。
Seismic metamaterials are innovative materials with unique microstructures that can guide and control seismic waves, converting them into harmless energy. This paper focuses on two-phase metamaterials, which are composed of the matrix and core. When seismic waves pass through the metamaterial, reverse motion occurs between the matrix and core, creating local resonance and resulting in energy dissipation. This thesis uses finite element method to analyze the model. We modify material properties such as the density, volume, Young's modulus and Poisson's ratio of the matrix and core to identify suitable material properties and model sizes that can achieve lower resonant frequency and wider band gap. Furthermore, this thesis explores the effect of core number and spacing between the cores. It reveals that increasing the number of cores widens the bandwidth, while increasing the spacing between the cores narrows the bandwidth. Finally, this thesis successfully uncovers the reasons for the decay of P-wave and SH-wave energy.
Achaoui, Y., Antonakakis, T., Brûlé, S., Craster, R. V., Enoch, S., & Guenneau, S., Clamped seismic metamaterials: ultra-low frequency stop bands. New Journal of Physics 19, 063022 (2017).
Achaoui, Y., Ungureanu, B., Enoch, S., Brûlé, S., & Guenneau, S., Seismic waves damping with arrays of inertial resonators. Extreme Mechanics Letters 8, 30-37 (2016).
Achenbach, J., Wave Propagation in Elastic Solids, Elsevier (1973).
Ashcroft, N., Mermin, N., & Smoluchowski, R., Solid State Physics. Physics Today 30, 61-65 (1977).
Bowles, J. E., & Guo, Y., Foundation analysis and design. (New York: McGraw-hill, 1996).
Brûlé, S., Enoch, S., & Guenneau, S., Emergence of seismic metamaterials: Current state and future perspectives. Physics Letters A 384, 126034 (2020).
Brûlé, S., Javelaud, E., Enoch, S., & Guenneau, S., Experiments on seismic metamaterials: molding surface waves. Physical Review Letters 112, 133901 (2014).
Casolo, S., Macroscopic modelling of structured materials: Relationship between orthotropic Cosserat continuum and rigid elements. International Journal of Solids and Structures 43, 475-496 (2006).
Du, Q., Zeng, Y., Huang, G. and Yang, H., Elastic metamaterial-based seismic shield for both Lamb and surface waves, AIP Advances 7, 075015 (2017).
Du, Q., Zeng, Y., Xu, Y., Yang, H., & Zeng, Z., H-fractal seismic metamaterial with broadband low-frequency bandgaps. Journal of Physics D: Applied Physics, 51, 105104 (2018).
Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C., & Zhang, X., Ultrasonic metamaterials with negative modulus. Nature Materials 5, 452-456 (2006).
Favier, E., Nemati, N., & Perrot, C., Two-component versus three-component metasolids. The Journal of the Acoustical Society of America 148, 3065-3074 (2020).
Favier, E., Nemati, N., Perrot, C., & He, Q.C., Generalized analytic model for rotational and anisotropic metasolids. Journal of Physics Communications 2, 035035 (2018).
Graff, K. F., Wave Motion in Elastic Solids. (Courier Corporation, 2012).
Hill, R., Elastic properties of reinforced solids: some theoretical principles. Journal of the Mechanics and Physics of Solids 11, 357-372 (1963).
Huang, H. H., & Sun, C. T., Anomalous wave propagation in a one-dimensional acoustic metamaterial having simultaneously negative mass density and Young’s modulus. The Journal of the Acoustical Society of America 132, 2887-2895 (2012).
Huang, H. H., & Sun, C. T., Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density. New Journal of Physics 11, 013003 (2009).
Huang, H. H., Sun, C. T., & Huang, G. L., On the negative effective mass density in acoustic metamaterials. International Journal of Engineering Science 47, 610-617 (2009).
Huang, H., & Sun, C., Locally resonant acoustic metamaterials with 2D anisotropic effective mass density. Philosophical Magazine 91, 981-996 (2011).
Kittel, C., Introduction to Solid State Physics. (2005).
Krödel, S., Thomé, N. and Daraio, C., Wide band-gap seismic metastructures, Extreme Mechanics Letters 4, 111-117 (2015).
Kushwaha, M. S., Halevi, P., Martinez, G., Dobrzynski, L., & Djafari-Rouhani, B., Theory of acoustic band structure of periodic elastic composites. Physical Review B 49, 2313 (1994).
Lai, Y., & Zhang, Z. Q., Large band gaps in elastic phononic crystals with air inclusions. Applied physics letters 83, 3900-3902 (2003).
Lai, Y., Wu, Y., Sheng, P., & Zhang, Z. Q., Hybrid elastic solids. Nature materials 10, 620-624 (2011).
Lee, S. H., Park, C. M., Seo, Y. M., Wang, Z. G., & Kim, C. K., Composite acoustic medium with simultaneously negative density and modulus. Physical Review Letters 104, 054301 (2010).
Liu, X. N., Hu, G. K., Huang, G. L., & Sun, C. T., An elastic metamaterial with simultaneously negative mass density and bulk modulus. Applied physics letters 98, 251907 (2011).
Liu, Z., Chan, C. T., & Sheng, P., Analytic model of phononic crystals with local resonances. Physical Review B 71, 014103 (2005).
Liu, Z., Zhang, X., Mao, Y., Zhu, Y. Y., Yang, Z., Chan, C. T., & Sheng, P., Locally resonant sonic materials. Science 289, 1734-1736 (2000).
Miniaci, M., Krushynska, A., Bosia, F., & Pugno, N. M., Large scale mechanical metamaterials as seismic shields. New Journal of Physics 18, 083041 (2016).
Palermo, A., Krödel, S., Marzani, A., & Daraio, C., Engineered metabarrier as shield from seismic surface waves. Scientific reports 6, 1-10 (2016).
Ru, C. Q., A simple model for elastic wave propagation in hard sphere-filled random composites. The Journal of the Acoustical Society of America 152, 1595-1604 (2022).
Ru, C. Q.,On local resonance of fiber-reinforced elastic metacomposites. Extreme Mechanics Letters 56, 101851 (2022).
Shen, X., Chen, M., Lu, W., & Li, L., Using P wave modulus to estimate the mechanical parameters of rock mass. Bulletin of Engineering Geology and the Environment 76, 1461-1470 (2017).
Sun, C.T., & Vaidya, R. S., Prediction of composite properties from a representative volume element. Composites science and Technology 56, 171-179 (1996).
Veselago, V. G., Electrodynamics of substances with simultaneously negative and.Usp. Fiz. Nauk 92, 517 (1967).
Wang, Y. Z., Li, F. M., Huang, W. H., & Wang, Y. S., Effects of inclusion shapes on the band gaps in two-dimensional piezoelectric phononic crystals. Journal of Physics: Condensed Matter 19, 496204 (2007).
Wu, Y., Lai, Y., & Zhang, Z.-Q., Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Physical Review Letters 107, 105506 (2011).
Zhang, P., Lee, H., & Lee, D., Calculation of degenerated eigenmodes with modified power method. Nuclear Engineering and Technology 49, 17-28 (2017).
李冠慧,地震超材料設計之減震模擬及效益評估,成功大學土木工程學系碩士論文 (2019)。
林宗穎,週期排列之橢圓及粽子結構超材料之共振帶隙與消能機制,成功大學土木工程學系碩士論文 (2023)。
彭昱翔,週期性微極彈性材料之等效參數數值模擬,成功大學土木工程學系碩士論文 (2014)。
熊雲嵋,淺基礎彈性沉陷量之分析方法,中國土木水利學刊10,429-437 (1998)。
寧彥傑,具負等效質量慣性矩之微極彈性模型設計,成功大學土木工程學系碩士論文 (2016)。
簡廷宇、黃瑜琛、吳逸軒、李冠慧、翁崇寧、陳東陽,新型態外部隔減震技術—地震超材料之設計與分析,中國土木水利工程學刊 31,395-410 (2019)。