簡易檢索 / 詳目顯示

研究生: 莊大賢
Chuang, Ta-Hsien
論文名稱: 異喹啉酮的合成及其在天然物和有機發光材料的應用
Synthesis of Isoquinolinones and their Applications in Natural Products and Organic Light-Emitting Materials
指導教授: 吳培琳
Wu, Pei-Lin
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 162
中文關鍵詞: 異氰酸苯基異喹啉泰洛弗啉異喹啉酮疊氮化合物
外文關鍵詞: isocyanate, azide, tylophorine, phenylisoquinoline
相關次數: 點閱:85下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 異喹啉酮化合物一直是許多藥理學家及有機合成家非常感興趣的骨架之一,目前被廣泛應用於藥物及合成化學的領域。在藥理學方面,異喹啉酮類骨架被證實具有很強的生物活性,已被用於疾病的治療上。而在有機合成方面,異喹啉酮衍生物亦是合成許多生物鹼的重要中間體。最近,異喹啉酮化合物更被應用於有機發光二極體,當作合成紅色磷光摻雜材料中異喹啉配位子的前驅物。
    由於異喹啉酮化合物在許多領域皆有相當重要的應用,因此,針對異喹啉酮化合物的合成我們開發出一有效率的催化劑,有效地催化苯乙烯異氰酸化合物進行環化重排反應生成異喹啉酮化合物,成功地在一個反應步驟中,將含有各式取代基 (包含強推電子基 OCH3 與強拉電子基 NO2) 的肉桂醯基疊氮化合物轉變為異喹啉酮化合物。另外,我們更將此一結果應用在有機發光材料及天然物的合成上。
    在天然物的全合成應用方面,自從1935年泰洛弗啉首次被單離出來後,此種含有五環結構的生物鹼,由於可抑制蛋白質的合成及當作胸腺嘧啶核酸合的抑制劑,所以展現了很強的細胞毒活性,因此合成這類型的生物鹼一直吸引許多有機合成家的注意。而我們也成功地將合成異喹啉酮化合物的方法應用到泰洛弗啉和菲并喹啉啶生物鹼的合成上,提供了一種建立此類特殊骨架的新合成方法,並且將所合成之生物鹼分別進行人類乳癌細胞 (MCF-7) 、肺癌細胞 (NCI-H460) 及中樞神經癌細胞 (SF-268) 的抗癌活性研究,進而探討此類型生物鹼的結構與抗癌活性的關係。
    另外,在有機發光材料的應用方面,我們將所合成的異喹啉酮化合物進一步氯化後再與格林納試劑反應,合成出有機發光二極體中紅光摻雜材料所需的苯基異喹啉配位子,並將所合成之一系列異喹啉化合物與銥金屬配位形成錯合物,目前已發現一具有飽和色純度且有好的發光強度與效率的紅光摻雜材料。

    For many years isoquinolinones have been an interesting structural class of compounds, which have found many uses in the fields of medicinal and synthetic chemistry. Isoquinolinones constitute the framework of many biologically active alkaloids targeted towards various therapeutic endpoints in pharmaceuticals. In addition, the isoquinolinone derivatives were served as intermediates in synthesis of many alkaloids. Recently, they could be used as precursors of isoquinoline ligands in organic light-emitting diodes.
    Due to its wide application, this group of compounds has attracted our attention. We developed an efficient catalyst to promote the cyclization of styryl isocyanate to isoquinolinone. A series of isoquinolinones were synthesized by one-pot Curtius rearrangement and cyclization of the corresponding cinnamoyl azides. A wide variety of azides bearing different types of substituents, including strong electron-donating OCH3 and electron-withdrawing NO2, were employed in this process affording the desired isoquinolinones. Then, we also applied this method to the synthesis of natural products and red organic light-emitting matter.
    Since the first isolation of tylophorine in 1935, the alkaloid and related analogous, due to inhibition of protein and nucleic acid synthesis, were well known for their cytotoxic activity. Because these alkaloids exhibited a range of physiological activities, the pentacyclic skeleton was responsible for considerable synthetic attention. We successfully applied our synthetic method in isoquinolinones to the synthesis of tylophorine and phenanthroquinolizidine alkaloids. This method was a convenient route to construct the indolizidine and quinolizidine nuclei of the pentacyclic alkaloids by double cyclizations. These alkaloids and synthetic intermediates would be conducted for the preliminary screening tests for their anticancer activities against human cancer cell lines including breast carcinoma (MCF-7), lung carcinoma (NCI-H460) and central nervous system carcinoma (SF-268). The structure-activity relations were also discussed.
    In organic light-emitting matters, the 1-phenylisoquinoline ligands were synthesized by the corresponding isoquinolinones via chlorination followed by palladium-catalyzed cross-coupling reaction with aryl Grignard reagents. Subsequently, a series of red phosphorescent materials based on iridium complexes with these isoquinolines were synthesized. We had found an efficient red organic light-emitting material.

    中文摘要.......................................Ⅰ 英文摘要.......................................II 誌謝.......................................... IV 第一章 簡介....................................1 一、親核性加成反應.............................4 (1) 與醇類、磺酸類或胺類的反應.................4 (2) 與苯環的Friedel-Crafts反應.................5 (3) 與ylides的反應.............................5 (4) 與二甲基亞碸及二甲基碸的反應...............6 (5) 與縮醛的反應...............................7 二、與雙鍵的環化加成反應.......................8 (1) 與C=C雙鍵的 [2+2] 環化反應.................8 (2) 與C=O雙鍵的 [2+2] 環化反應.................9 第二章 異喹啉酮的合成研究.....................12 一、前言......................................12 (1) 經由C1-C9鍵的形成.........................13 (2) 經由C1-C9鍵與C1-N2鍵的形成................14 (3) 經由C1-N2鍵的形成.........................14 (4) 經由C1-N2鍵與C3-C4鍵的形成................15 (5) 經由N2-C3鍵的形成.........................16 (6) 經由N2-C3鍵與C3-C4鍵的形成................17 (7) 經由C3-C4鍵的形成.........................17 (8) 經由C4-C10鍵成............................18 二、結果與討論................................21 (1) 肉桂醯基疊氮化合物的合成..................21 (2) 肉桂醯基疊氮化合物的環化反應..............23 (3) 反應機構的探討............................30 (4) 溶劑效應..................................33 (5) 細胞毒活性評估............................43 三、結論......................................44 第三章 異喹啉酮在天然物菲并吲哚啶和菲并喹啉啶合成 上的應用................................45 一、前言......................................45 (1) 經由生合成的途徑..........................47 (2) 經由氨基酸的分子內Friedel-Crafts醯化反應..48 (3) 經由環亞甲基化反應的途徑..................49 (4) 經由環節化反應來建立吲哚啶的雙環結構......50 二、結果與討論................................56 (1) 泰洛弗啉及其相關生物鹼的合成..............56 (2) 生理活性評估..............................68 三、結論......................................70 第四章 異喹啉酮在有機發光材料上的應用.........71 一、前言......................................71 (1) 經由C9-C1鍵的形成.........................73 (2) 經由C1-N2鍵的形成.........................74 (3) 經由N2-C3鍵的形成.........................74 (4) 經由C1-N2與C3-C4鍵的形成..................76 (5) 經由C9-C1與N2-C3鍵的形成..................77 二、結果與討論................................79 (1) 1-苯基異喹啉配位子的合成..................79 (2) 銥金屬錯合物的合成與OLED元件的裝置........82 三、結論......................................85 第五章 實驗部分...............................86 一、本實驗所使用之儀器........................86 二、化合物合成方法............................87 (1) 肉桂醯基疊氮化合物的一般製法..............87 (2) 異喹啉酮化合物的一般製法..................91 (3) N-苯乙烯胺甲醯基異喹啉酮的一般單離方......96 (4) 肉桂醯基疊氮化合物之酸催化反應的一般反應步驟 ..........................................98 (5) 2,3-bis-(3,4-dimethoxy-phenyl)-acrylonitrile 的合成....................................99 (6) 2,3,6,7-tetramethoxy-9-cyanophenanthrene 的合 成.......................................100 (7) 2,3,6,7-tetramethoxyphenanthrene-9- carbaldehyde的合成.......................101 (8) 3-(phenanthren-9-yl)acrylic acid的一般製法 .........................................101 (9) 3-(phenanthren-9-yl)acryloyl azide的一般製法 .........................................103 (10) 2H-2-Aza-triphenylen-1-one的一般製法....103 (11) 鹵烷化合物的一般製法....................104 (12) 鹵烷化合物的轉鹵化反應之一般反應步驟....107 (13) 鹵烷化合物的自由基環化反應之一般反應步驟... ........................................108 (14) 菲并吲哚啶和菲并喹啉啶生物鹼的一般製法..111 (15) 脫氫四級銨鹽化合物的一般製法............113 (16) 1-氯異喹啉化合物化合物的一般製法........114 (17) 1-苯基異喹啉化合物化合物的一般製法......116 三、細胞毒殺活性試驗.........................121 參考文獻.....................................122 附錄.........................................130

    1. Wurtz, A. Justus Liebigs Ann. Chem. 1849, 71, 326.
    2. Hentschel, W. Ber. 1884, 17, 1284.
    3. Smith, Jr., J.; Brotherton, T. K.; Lymm, J. W. J. Org. Chem. 1965, 30, 1260.
    4. Curtiud, T. Ber. 1890, 23, 3023.
    5. Heyden, S.; Wilbert, G. Chem. Ind. (London) 1967, 33, 1406.
    6. Lossen, W. Ann. 1872, 161, 347.
    7. Daniher, F. A. J. Org. Chem. 1969, 34, 2908.
    8. Arnold, R. G.; Nelson, J. A.; Verbanc, J. J. Chem. Rev. 1957, 57, 47.
    9. Soulier, J. L.; Yang, D.; Brémont, B.; Croci, T.; Guzzi, U.; Langlois, M. J. Med. Chem. 1997, 40, 1755.
    10. Ozaki, S.; Shimada, S. Nippon Kagaku Zasshi 1959, 80, 430; Chem. Abstr. 1961, 55, 4396i.
    11. Ong, W.; McCarley, R. L. Org. Lett. 2005, 7, 1287.
    12. Ozaki, S. Chem. Rev. 1972, 72, 457.
    13. Bondinellm W. E.; Chapin, F. W.; Girard, G. R.; Kaiser, C.; Krog, A. J.; Pavioff, A. M.; Schwartz, M. S.; Silvestri, J. S.; Vaidya, P. D. J. Med. Chem. 1980, 23, 506.
    14. Rittle, K. E.; Barrow, J. C.; Cutrona, K. J.; Glass, K. L.; Krueger, J. A.; Kuo, L. C.; Lewis, S. D.; Lucas, B. J.; McMasters, D. R.; Morrissette, M. M.; Nantermet, P. G.; Newton, C. L.; Sanders, W. M.; Yan, Y.; Vacca, J. Bioorg. Med. Chem. Lett. 2003, 13, 3477.
    15. Saikachi, H.; Takei, K. Yakugaku Zasshi 1969, 89, 1401; Chem. Abstr. 1970, 72, 12452y.
    16. Meervelt, L. V.; Smolii, O. B.; Mishchenko, N. I.; Shakhnin, D. B.; Romanenko, E. A.; Drach, B. S. Tetrahedron 1996, 52, 8835.
    17. Wanner, M. J.; Koomen, G. J. Tetrahedron Lett. 1992, 33, 1513.
    18. Strandtmann, M.; Klutchko, S.; Connor, D.; Shavel, Jr., J. J. Org. Chem. 1971, 36, 1742.
    19. Brachel, H.; Merten, R. Angew. Chem. 1962, 74, 872.
    20. Schoen, W. R.; Pisano, J. M.; Prendergast, K.; Wyvratt, Jr., M. J.; Fisher, M. H.; Cheng, K.; Chan, W. W.-S.; Butler, B.; Smith, R. G.; Ball, R. G. J. Med. Chem. 1994, 37, 897.
    21. Forró, E.; Fülöp, F. Tetrahedron: Asymmetry 2001, 12, 2351.
    22. Lysek, R.; Grzeszczyk, B.; Furman, B.; Chmielewski, M. Eur. J. Org. Chem. 2004, 4177.
    23. Lysek, B.; Furman, B.; Kaluza, Z.; Frelek, J.; Suwinska, K.; Urbanczyk- Lipkowska Z.; Chmielewski, M. Eur. J. Org. Chem. 2005, 429.
    24. Schaumann, E.; Möller, M.; Adiwidjaja, G. Chem. Ber. 1988, 121, 689.
    25. Nisole, C.; Uriac, P.; Huet, J.; Toupet, L. J. Chem. Res. 1991, 8, 1914.
    26. Weiner, M. L. J. Org. Chem. 1960, 25, 2245.
    27. Cava, M. P.; Bessho, K. Tetrahedron Lett. 1966, 8, 4279.
    28. Gharbo, S. A.; Beal, J. L.; Schlessinger, R. H.; Cava, M. P.; Svoboda, G. H. Lloydia 1965, 28, 237.
    29. Matsui, T.; Sugiura, T.; Nakui, H.; Iguch, S.; Shigeoka, S.; Tukedu, H.; Odagaki, T.; Ushio, Y.; Ohmoto, K.; Iwamani, M.; Yamazaki, S.; Arai, T.; Kawamura, M. J. Med. Chem. 1992, 35, 3307.
    30. Lin, S. W.; Nair, M. G.; Edwards, D. M.; Kisliuk, R. L.; Gaumont, Y.; Dev, I. K.; Duch, D. S.; Humphreys, J.; Smith, G. K.; Ferone, R. J. Med. Chem. 1991, 34, 2746.
    31. Chao, Q.; Deng, L.; Shih, H.; Leoni, L. M.; Genini, D.; Carson, D. A.; Cottam, H. B. J. Med. Chem. 1999, 42, 3860.
    32. Eloy, F.; Deryckere, A. Helv. Chim. Acta. 1969, 52, 1755.
    33. Cámpora, J.; Gutiérrez, E.; Monge, A.; Poveda, M. L.; Ruiz, C.; Carmona, E. Organometallics 1993, 12, 4025.
    34. Hickey, D. M. B.; MacKenzie, R.; Moody, C. J.; Rees, C. W. J. Chem. Soc. Perkin Trans 1 1987, 921.
    35. Yamaguchi, S.; Yoshida, M.; Miyajima, I.; Araki, T.; Hirai, Y. J. Heterocyclic Chem. 1995, 32, 1517.
    36. Wu, M. J.; Chang, L. J.; Wei, L. M.; Lin, C. F. Tetrahedron 1999, 55, 13193.
    37. Poindexter, G. S. J. Org. Chem. 1982, 47, 3787.
    38. Couture, A.; Deniau, E.; Grandclaudon, P.; Woisel, P. Tetrahedron 1996, 52, 4433.
    39. Lee, A. W. M.; Chan, W. H.; Chan, E. T. T. J. Chem. Soc. Perkin Trans 1 1992, 309.
    40. Watkinson, J. J. Chem. Soc. 1958, 4064.
    41. Hermecz, I.; Horvarth, A.; Meszaros, Z.; Vos, C.; De Rodriguez, L. J. Med. Chem. 1984, 27, 1253.
    42. Mikol, G. J.; Boyer, J. H. J. Org. Chem. 1972, 37, 724.
    43. Ajao, J. F.; Bird, C. W. J. Heterocycl. Chem. 1985, 22, 329.
    44. Showalter, H. D. H.; Sercel, A. D.; Stier, M. A.; Turner, W. R. J. Heterocycl. Chem. 2001, 38, 961.
    45. New, J. S.; Christopher, W. L.; Yevich, J. P.; Buttler, R.; Schlemmer, F. R. J. Med. Chem. 1989, 32, 1147.
    46. Wu, P. L.; Chuang, T. H.; Chou, Y. J. Org. Chem. 2001, 66, 6585.
    47. Wehner, V.; Blum, B.; Kirz, M.; Stilz, H. U. Synthesis 2002, 2023.
    48. Vallgårda, J.; Hacksell, U. Tetrahedron Lett. 1991, 32, 5625.
    49. Berry, J. M.; Watson, C. Y.; Whish, W. J. D.; Threadgill, M. D. J. Chem. Soc. Perkin Trans 1 1997, 1147.
    50. Wu, P. L.; Su, C. H.; Gu, Y. J. J. Chin. Chem. Soc. 2000, 47, 271.
    51. Martín, R.; Islas, G.; Moyano, A.; Pericàs, M. A.; Riera, A. Tetrahedron 2001, 57, 6367.
    52. Upadhya, T. T.; Sudalai, A. Tatrahedron: Asymmetry 1997, 8, 3685.
    53. Uemura, T.; Zhang, X; Matsumura, K.; Sayo, N.; Kumobayashi, H.; Ohta, T.; Nozaki, K.; Takaya, H. J. Org. Chem. 1996, 61, 5510.
    54. Masuno, M. N.; Molinski, T. F. Tetrahedron Lett. 2001, 42, 8263.
    55. Miller, D. B.; Flanagan, P. W.; Shechter, H. J. Org. Chem. 1976, 41, 2112.
    56. Cristol, S. J.; Perry, Jr., J. S.; Beckley, R. S.; J. Org. Chem. 1976, 41, 1912.
    57. Fry, A. J. Am. Chem. Soc. 1953, 75, 2686.
    58. Lenz, G. R. Synthesis 1978, 489.
    59. Abdulla, R. F.; Fuhr, K. H. J. Med. Chem. 1975, 18, 625.
    60. Pritykin, L. M. J. Org. Chem. USSR (Engl. Transl.) 1971, 7, 938.
    61. Ulrich, H. Accounts Chem. Res. 1969, 2, 186.
    62. Tišler, M.; Stanovnik, B. J. Chem. Soc., Chem. Comm. 1980, 313.
    63. Folkers, K.; Johnson, T. B. J. Am. Chem. Soc. 1933, 55, 3361.
    64. Komatsu, M.; Takamatsu, S.; Uesaka, M.; Yamamoto, S.; Ohshiro, Y. J. Org. Chem. 1984, 49, 2691.
    65. Komatsu, M.; Ohgishi, H.; Takamatsu, S.; Ohshiro, Y.; Agawa, T. Angew. Chem., Int. Ed. Engl. 1982, 21, 213.
    66. Ratnagiriswaran, A. N.; Venkatachalam, K. Indian J. Med. Res. 1935, 22, 433.
    67. Li, Z.; Jin, Z.; Huang, R. Synthesis 2001, 2365.
    68. Donaldson, G. R.; Atkinson, M. R.; Murray, A. W. Biochem. Biophys. Res. Commun. 1968, 31, 104.
    69. Gupta, R. S.; Siminovitch, L. Biochemistry 1977, 16, 3209.
    70. Govindachari, T. R.; Viswanathan, N. Heterocycles 1978, 11, 587.
    71. Rao, K. N.; Bhattacharya, R. K.; Venkatachalam, S. R. Cancer Lett. 1998, 128, 183.
    72. Gellert, E.; Rudzats, R. J. Med. Chem. 1964, 7, 361.
    73. Pettit, G. R.; Goswami, A.; Cragg, G. M.; Schmidt, J. M.; Zou, J. C. J. Nat. Prod. 1984, 47, 913.
    74. Abe, F.; Hirokawa, M.; Yamauchi, T.; Honda, K.; Hayashi, N.; Ishii, M.; Imagawa, S.; Iwahana, M. Chem. Pharm. Bull. 1998, 46, 767.
    75. Stærk, D.; Christensen, J.; Lemmich, E.; Duus, J. Ø.; Olsen, C. E.; Jaroszewski, J. W. J. Nat. Prod. 2000, 63, 1584.
    76. Bhutani, K. K.; Sharma, G. L.; Ali, M. Planta Med. 1987, 53, 532.
    77. Baumgartner, B.; Erdelmeier, C. A. J.; Wright, A. D.; Rali, T.; Sticher, O. Phytochemistry 1990, 29, 3327.
    78. Bradsher, C. K.; Berger, H. J. Am. Chem. Soc. 1958, 80, 930.
    79. Govindachari, T. R.; Lakshmikantham, M. V.; Rajaddura, S. Tetrahedron 1961, 14, 284.
    80. Herbert, R. B. J. Chem. Soc. Chem. Commun. 1978, 794.
    81. Chauncy, B.; Gellert, E. Aust. J. Chem. 1970, 23, 2503.
    82. Buckley, T. F. III.; Rapoport, H. J. Org. Chem. 1983, 48, 4222.
    83. Nordlander, J. E.; Njoroge, F. G. J. Org. Chem. 1987, 52, 1627.
    84. Khatri, N. A.; Schmitthenner, H. F.; Shringarpure, J.; Weinreb, S. M. J. Am. Chem. Soc. 1981, 103, 6387.
    85. Ihara, M.; Tsuruta, M.; Fukumoto, K.; Kametani, T. J. Chem. Soc. Chem. Commun. 1985, 1159.
    86. Pearson, W. H.; Walavalkar, R. Tetrahedron 1994, 50, 12293.
    87. Belletire, J. L.; Spletzer, E. G.; Pinhas, A. R. Tetrahedron Lett. 1984, 25, 5969.
    88. Wu, P. L.; Rao, K. V.; Su, C. H.; Kuoh, C. S.; Wu, T. S. Heterocycles 2002, 57, 2401.
    89. Damu, A. G.; Kuo, P. C.; Shi, L. S.; Li, C. Y.; Kuoh, C. S.; Wu, P. L.; Wu, T. S. J. Nat. Prod. 2005, 68, 1071.
    90. Govindachari, R. T.; Viswanathan, N.; Radhakrishnan, J.; Charubala, R.; Rao, N. N.; Pai, B. R. Indian J. Chem. 1973, 11, 1215.
    91. Osornio, Y. M.; Miranda, L. D.; Cruz-Almanza, R.; Muchowski, J. M. Tetrahedron lett. 2004, 45, 2855.
    92. Jin, Z.; Wang, Q.; Huang, R. Synth. Commun. 2004, 34, 119.
    93. Beckwith, A. L. J.; Schiesser, C. H. Tetrahedron 1985, 41, 3925.
    94. Rao, K. V.; Kapicak, L. S. J. Heterocyclic Chem. 1976, 13, 1073.
    95. Hoogewerif, S.; Dorp, W. A. V. Rec. Pays Bas 1885, 4, 125.
    96. Croisy-Delcey, M; Croisy, A.; Carrez, D.; Huel, C.; Chiaroni, A.; Ducrot, P.; Bisagni, E.; Jin, L.; Leclercq, G. Bioorg. Med. Chem. 2000, 8, 2629.
    97. Muijwijk-Koezen, J. E. van; Timmerman, H.; Goot, H. van der; Menge, W. M. P. B.; Künzel, J. F. von D.; Groote, M. de; Ijzerman, A. P. J. Med. Chem. 2000, 43, 2227.
    98. Linden, J.; Taylor, H. E.; Robeva, A. S.; Tucker, A. L.; Stehle, J. H.; Rivkees, S. A.; Fink, J. S.; Reppert, S. M. Mol. Pharmacol. 1993, 44, 524; Chem. Abstr. 1994, 120, 125921d.
    99. Ramkumar, V.; Stiles, G. L.; Beaven, M. A.; Ali, H. J. Biol. Chem. 1993, 268, 16887; Chem. Abstr. 1993, 119, 158159u.
    100. Knight, D.; Zheng, X. Y.; Rocchini, C.; Jacobson, M.; Bai, T.; Walker, B. J. Leuk. Biol. 1997, 62, 465; Chem. Abstr. 1997, 127, 345216n.
    101. Lubitz, D. K. J. E. von; Lin, R. C. S.; Jacobson, K. A. Soc. Neurosci. Abstr. 1997, 23, 1924.
    102. Su, Y. J.; Huang, H. L.; Li, C. L.; Chien, C. H.; Chou, P. T.; Datta, S.; Liu, R. S. Adv. Mater. 2003, 15, 884.
    103. Yang, C. H.; Tai, C. C.; Sun, I. W. J. Mater. Chem. 2004, 14, 947.
    104. Okada, S.; Okinaka, K.; Iwawaki, H.; Furugori, M.; Hashimoto, M.; Mukaid, T.; Kamatani, J.; Igawa, S.; Tsuboyama, A.; Takiguchi, T.; Ueno, K. Dalton Trans. 2005, 1583.
    105. Kim, D. U.; Paik, S. H.; Kim, S. H.; Tak, Y. H.; Kim, S. D.; Kim, K. D.; Kim, K. H.; Jung, Y. C.; Park, L. S. Mol. Cryst. Liq. Cryst. 2005, 443, 79.
    106. Rho, H. H.; Park, Y. H.; Lee, Y. H.; Park, N. G.; Ha, Y.; Kim, Y. S. Mol. Cryst. Liq. Cryst. 2006, 444, 145.
    107. Rayabarapu, D. K.; Paulose, B. M. J. S.; Duan, J. P.; Cheng, C. H. Adv. Mater. 2005, 17, 349.
    108. Hartung, W. H.; Whaley, W. M. J. Org. Chem. 1949, 14, 650.
    109. Krabbe, W.; Eisenlohr, W.; Schöne, H. Ber. 1940, 73, 656.
    110. Palacios, F.; Alonso, C.; Rubiales, G. J. Org. Chem. 1997, 62, 1146.
    111. Hickey, D. M. B.; Mackenzie, A. R.; Moody, C. J.; Rees, C. W. J. Chem. Soc. Chem. Commun. 1984, 776.
    112. Brovchenko, V. G.; Paidak, B. B.; Kuznetsov, E. V. Chem. Heterocycl. Compd. 1988, 24, 114.
    113. Narashimhan, N. S.; Mali, R. S. Synthesis 1983, 957.
    114. Kobayashi, K.; Shiokawa, T.; Morikawa, O.; Konishi, H. Chem. Lett. 2004, 33, 236.
    115. Kitamura, T.; Kobayashi, S.; Taniguchi, H. Chem. Lett. 1984, 1351.
    116. Mataka, S.; Takahashi, K.; Tsuda, Y.; Tashiro, M. Heterocycles 1980, 14, 789.
    117. Hirao, K. I.; Tsuchiya, R.; Yano, Y.; Tsue, H. Heterocycles, 1996, 42, 415.
    118. Noerenberg, A.; Haber, S.; Meudt, A. United States Patent 6248892.
    119. Jung, J. C.; Jung, Y. J.; Park, O. S. Synth. Commun. 2001, 31, 2507.
    120. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304.
    121. Izumi, T.; Nishimoto, Y.; Kohei, K.; Kasahara, A. J. Heterocycl. Chem. 1990, 27, 1419.
    122. Tsue, H.; Fujinami, H.; Itakura, T.; Tsuchiya, R.; Kobayashi, K.; Takahashi, H.; Hirao, K. J. Chem. Soc. Perkin Trans. Ⅰ 1999, 24, 3677.
    123. Sugimoto, A.; Shinba-Tanaka, H.; Ishikawa, M. Synthesis 1995, 431.
    124. Jones, G. J. Chem. Soc. 1960, 1896.
    125. Farley, C. P.; Eliel, E. L. J. Am. Chem. Soc. 1956, 78, 3477.
    126. Ono, S.; Uehara, M. Bull. Univ. Osaka Prefect., Ser. A. 1958, 6, 167.
    127. Jorina, D. M.; Smith, J. R. L. J. Chem. Soc. Perkin Trans 1, 1974, 1702.
    128. Iida, H.; Watanabe, Y.; Tanaka, M.; Kibayashi, C. J. Org. Chem. 1984, 49, 2412-2418.
    129. Shah, D. O.; Trivedi, K. N. India J. Chem. Sect. B: Org. Chem. Incl. Med. Chem. 1977, 15, 599.
    130. Gellert, E.; Govindachari, T. R.; Lakshmikantham, M. V.; Ragade, I. S.; Rudzats, R.; Viswanathan, N. J. Chem. Soc. 1962, 1008.
    131. Robinson, R. A. J. Am. Chem. Soc. 1947, 69, 1939.
    132. Moriconi, E. J.; Creegan, F. J. J. Org. Chem. 1966, 31, 2090.
    133. Rodionov, V. M.; Alekseeva, E. N.; Vleduts, G. Zh. Obshch. Khim. 1957, 27, 734.
    134. Goszczynski, S.; Kopczynski, T. J. Org. Chem. 1973, 38, 1245.
    135. Kopczynski, T. Pol. J. Chem. 1985, 59, 375.
    136. Kopczynski, T. Pol. J. Chem. 1994, 68, 73.
    137. Liou, J. P.; Chang, Y. L.; Kuo, F. M.; Chang, C. W.; Tseng, H. Y.; Wang, C. C.; Yang, Y. N.; Chang, J. Y.; Lee, S. J.; Hsieh, H. P. J. Med. Chem. 2004, 47, 4247.

    下載圖示 校內:2007-07-13公開
    校外:2009-07-13公開
    QR CODE