簡易檢索 / 詳目顯示

研究生: 姜彥彰
Chiang, Yen-Chang
論文名稱: 晶圓尺度的單晶二硫化鎢薄膜合成及其結構和光學性質探討
Structural and Optical Properties of the Grown Wafer-Scale Monocrystalline Tungsten Disulfide Film
指導教授: 黃榮俊
Huang, Jung-Chun-Andrew
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 64
中文關鍵詞: 過渡金屬二硫化物薄膜可控層數大面積單一晶向
外文關鍵詞: Transition metal dichalcogenides, thin film, layer number controllability, large-area, monocrystalline
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們利用離子束濺射源系統先預濺鍍一層鎢薄膜在1公分*1公分的C軸藍寶石基板上,再將其硫化以合成二硫化鎢薄膜。以此方法可以合成出大面積且均勻的二硫化鎢薄膜,並可以進一步透過預濺鍍時間來控制二硫化鎢的層數。將薄膜進行光學量測,可以發現吸光範圍在可見光範圍內,且在厚度較薄的情況下近乎透明。此外,調整硫化環境可以變化薄膜的層狀堆疊情形,得到沿著(001)單一晶向堆疊的二硫化鎢薄膜。本論文亦報導了二硫化鎢薄膜的膜面型態,發現在較薄的膜面上會出現數奈米高的小丘,當薄膜厚度增長到一定程度後,膜面會漸趨平整。同時,我們也發現了:使用氧化鎢作為預鍍膜所合成出的二硫化鎢薄膜,其膜面會有凝聚的情形發生。

    In the study, we have demonstrated that the wafer-scale tungsten disulfide (WS2) film can be obtained on 1cm*1cm c-plane sapphire substrates by sulfurization of pre-deposited tungsten, which was sputtered by Ion Beam Sputtering (IBS) system. In this method, the film we synthesized was flat and the layer numbers of WS2 film could be controlled by pre-deposited time of tungsten film. On the optical properties of WS2, the absorption range was confirmed in the visible light spectrum, and it was almost transparent in the case of several layers. In addition, the grown WS2 film could be aligned along the (002)-plane by adjusting the synthesis conditions. The surface morphology of WS2 film with different pre-sputtering time was observed, and we found that there were mounds arrayed periodically in few pre-deposited time. Moreover, when the thickness of WS2 film was thick enough, the surface gradually flattened. Additionally, WS2 film which replaces tungsten with tungsten oxide as pre-deposited film would cause the film condensation.

    摘要 i Extended Abstract ii 誌謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 第一章 緒論 1 1-1. 二硫化鎢之特性簡介 2 1-1-1. 二硫化鎢之晶體結構 2 1-1-2. 二硫化鎢之能帶結構 3 1-1-3. 二硫化鎢之光學性質 4 1-1-4. 二硫化鎢之製備方法 5 1-2. 文獻回顧 6 1-2-1. 文獻一 6 1-2-2. 文獻二 8 1-3. 實驗動機 11 第二章 實驗相關理論 12 2-1. 薄膜成長模式 12 2-2. 光學繞射理論 14 第三章 實驗儀器與實驗流程 16 3-1. 實驗流程 16 3-1-1. 薄膜製程 16 3-1-2. 薄膜轉錄 17 3-2. 製程設備 18 3-2-1. 離子束濺射源系統(Ion Beam Sputtering System, IBS) 18 3-2-2. 管式高溫爐(Tube Furnace) 19 3-3. 分析儀器 20 3-3-1. 微拉曼光譜儀(Micro-Raman Spectrometer) 20 3-3-2. X射線繞射儀(X-ray Diffractometer, XRD) 21 3-3-3. 原子力顯微鏡(Atomic Force Microscopy, AFM) 22 第四章 實驗結果與討論 23 4-1. 實驗架構 23 4-2. 二硫化鎢薄膜之元素分析 24 4-2-1. 微拉曼光譜分析(micro-Raman) 24 4-2-2. X光光電子激發光譜分析(XPS) 27 4-2-3. X光近源結構吸收光譜分析(XANES) 29 4-3. 二硫化鎢薄膜之晶體結構 31 4-3-1. X光繞射光譜分析(XRD) 31 4-3-2. 穿透式電子顯微鏡(TEM) 38 4-4. 二硫化鎢薄膜之光學特性 41 4-4-1. 光學影像分析(Optical image) 41 4-4-2. 微光致發光光譜儀(micro-PL) 42 4-4-3. 紫外光-可見光-紅外光分光光譜儀 43 4-5. 二硫化鎢薄膜之表面形態 45 4-5-1. 原子力顯微鏡(AFM) 45 4-5-2. 掃瞄電子顯微鏡(SEM) 53 第五章 總結 55 參考文獻 57 附錄 60

    [1] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, no. 5696, pp. 666-9, Oct 22 2004.
    [2] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically thin MoS 2: a new direct-gap semiconductor," Physical review letters, vol. 105, no. 13, p. 136805, 2010.
    [3] 張煜偉, "大面積二硒化鉬之成長及元件應用," 碩士, 材料科學與工程學系, 國立東華大學, 花蓮縣, 2018.[online]. Available:https://hdl.handle.net/11296/c6q855
    [4] L. Liang and V. Meunier, "First-principles Raman spectra of MoS2, WS2 and their heterostructures," Nanoscale, vol. 6, no. 10, pp. 5394-401, May 21 2014.
    [5] K. D. Sattler, 21st Century Nanoscience–A Handbook: Design Strategies for Synthesis and Fabrication (Volume Two). CRC Press, 2019.
    [6] C. S. Rout et al., "Superior field emission properties of layered WS 2-RGO nanocomposites," Scientific reports, vol. 3, no. 1, pp. 1-8, 2013.
    [7] Q. Tang and D.-e. Jiang, "Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization," Chemistry of Materials, vol. 27, no. 10, pp. 3743-3748, 2015.
    [8] B. Mahler, V. Hoepfner, K. Liao, and G. A. Ozin, "Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution," Journal of the American Chemical Society, vol. 136, no. 40, pp. 14121-14127, 2014.
    [9] Shanghai Institute of Microsystem and Information Technology. "New Layered 2M Phase WS2 Superconductor: A Potential Topological Superconducting Material." http://english.sim.cas.cn/Event/201906/t20190620_211901.html (accessed.
    [10] H. Terrones, F. López-Urías, and M. Terrones, "Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides," Scientific reports, vol. 3, no. 1, pp. 1-7, 2013.
    [11] A. L. Elias et al., "Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers," ACS Nano, vol. 7, no. 6, pp. 5235-42, Jun 25 2013.
    [12] H. Zeng et al., "Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides," Sci Rep, vol. 3, p. 1608, 2013.
    [13] H. R. Gutierrez et al., "Extraordinary room-temperature photoluminescence in triangular WS2 monolayers," Nano Lett, vol. 13, no. 8, pp. 3447-54, Aug 14 2013.
    [14] 莊孟熹 et al., "二維半導體之合成及光電元件," 國家奈米元件實驗室奈米通訊, vol. 23, no. 2, pp. 9-16, 2016.
    [15] B. K. Miremadi and S. R. Morrison, "The intercalation and exfoliation of tungsten disulfide," Journal of applied physics, vol. 63, no. 10, pp. 4970-4974, 1988.
    [16] C. Cong et al., "Synthesis and optical properties of large‐area single‐crystalline 2D semiconductor WS2 monolayer from chemical vapor deposition," Advanced Optical Materials, vol. 2, no. 2, pp. 131-136, 2014.
    [17] Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, "Large-area vapor-phase growth and characterization of MoS(2) atomic layers on a SiO(2) substrate," Small, vol. 8, no. 7, pp. 966-71, Apr 10 2012.
    [18] K. Ellmer, S. Seeger, and R. Mientus, "Rapid crystallization of WS2films assisted by a thin nickel layer: Anin situenergy-dispersive X-ray diffraction study," physica status solidi (a), vol. 203, no. 10, pp. 2457-2462, 2006.
    [19] S. Hussain et al., "Sputtering and sulfurization-combined synthesis of a transparent WS2 counter electrode and its application to dye-sensitized solar cells," RSC Advances, vol. 5, no. 125, pp. 103567-103572, 2015.
    [20] N. Kaiser, "Review of the fundamentals of thin-film growth," Appl Opt, vol. 41, no. 16, pp. 3053-60, Jun 1 2002.
    [21] N. W. Ashcroft and N. D. Mermin, "Solid state physics [by] Neil W. Ashcroft [and] N. David Mermin," ed: New York: Holt, Rinehart and Winston, 1976.
    [22] C. D. N. Chan(cdang), "Diffusion rayleigh et diifraction," vol. 768*234 pixels, D. o. r. b. a. i. o. w. t. a. e. scattered, Ed., ed. WIKIMEDIA COMMONS, 2004.
    [23] C. Kittel and P. McEuen, Introduction to solid state physics. Wiley New York, 1976.
    [24] C. R. Wu, T. W. Chu, K. C. Chen, and S. Y. Lin, "Preparation of Large-area Vertical 2D Crystal Hetero-structures Through the Sulfurization of Transition Metal Films for Device Fabrication," J Vis Exp, no. 129, Nov 28 2017.
    [25] 李正中, "薄膜光學與鍍膜技術," ed: 第四版, 藝軒圖書出版社, 2004.
    [26] Y.-J. Chen, M.-H. Li, J.-Y. Liu, C.-W. Chong, and P. Chen, "Double-side operable perovskite photodetector using Cu/Cu 2 O as a hole transport layer," Optics express, vol. 27, no. 18, pp. 24900-24913, 2019.
    [27] 林宗謀, "磊晶拓樸絕緣體(Sb1-xBix)2Te3之費米能階調控與電性研究," 碩士, 物理學系, 國立成功大學, 台南市, 2019. [Online]. Available: https://hdl.handle.net/11296/876r9g
    [28] 微奈米中心. "微拉曼及微光激發螢光光譜儀(含低溫)." http://cmnst.ncku.edu.tw/p/405-1006-147019,c17606.php?Lang=zh-tw (accessed.
    [29] 楊仲準, "X 光繞射分析技術與應用," 科儀新知, no. 182, pp. 64-74, 2011.
    [30] 吳宗霖, 簡世森, and 果尚志, "以原子力顯微鏡製作奈米結構," 物理雙月刊, vol. 21, no. 4, 1999.
    [31] Database, "W4f," ed. thermo scientific XPS: Thermo Fisher Scientific Inc.
    [32] E. Prouzet, J. Heising, and M. G. Kanatzidis, "Structure of Restacked and Pillared WS2: An X-ray Absorption Study," Chemistry of Materials, vol. 15, no. 2, pp. 412-418, 2003.
    [33] K. Huang, Q. Pan, F. Yang, S. Ni, X. Wei, and D. He, "Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries," Journal of Physics D: Applied Physics, vol. 41, no. 15, p. 155417, 2008.
    [34] J. Lee and W. Choi, "Surface modification of sulfur cathodes with PEDOT: PSS conducting polymer in lithium-sulfur batteries," Journal of The Electrochemical Society, vol. 162, no. 6, p. A935, 2015.
    [35] M. Genut, L. Margulis, R. Tenne, and G. Hodes, "Effect of substrate on growth of WS2 thin films," Thin Solid Films, vol. 219, no. 1-2, pp. 30-36, 1992.
    [36] B. Mahler, V. Hoepfner, K. Liao, and G. A. Ozin, "Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution," J Am Chem Soc, vol. 136, no. 40, pp. 14121-7, Oct 8 2014.
    [37] X. Mao, Y. Xu, Q. Xue, W. Wang, and D. Gao, "Ferromagnetism in exfoliated tungsten disulfide nanosheets," Nanoscale research letters, vol. 8, no. 1, p. 430, 2013.
    [38] B. D. Viezbicke, S. Patel, B. E. Davis, and D. P. Birnie III, "Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system," physica status solidi (b), vol. 252, no. 8, pp. 1700-1710, 2015.
    [39] 羅聖全, "科學基礎研究之重要利器­-- 掃瞄式電子顯微鏡(SEM)," 科學研習, vol. 52, 2, 2013.
    [40] N. Gajić, Ž. Kamberović, Z. Anđić, J. Trpčevská, B. Plešingerova, and M. Korać, "Synthesis of tribological WS2 powder from WO3 prepared by ultrasonic spray pyrolysis (USP)," Metals, vol. 9, no. 3, p. 277, 2019.

    下載圖示 校內:2023-07-31公開
    校外:2025-07-31公開
    QR CODE