簡易檢索 / 詳目顯示

研究生: 鄧喬乙
Teng, Chiao-Yi
論文名稱: 氧化石墨烯奈米粒子之光致螢光機制探討
Studies on the Mechanism of Photoluminescence in Graphene Oxide Dots
指導教授: 鄧熙聖
Teng, Hsisheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 179
中文關鍵詞: 石墨烯氧化石墨烯粒子氮官能基混成軌域
外文關鍵詞: Graphene oxide dots, Photoluminescence, Nitrogen functionalities, Orbital conjugation
相關次數: 點閱:70下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由碳、氫、氧元素所組成的石墨烯螢光材料,是具有優異物理與化學特性的半導體。將石墨烯轉變成氧化石墨烯粒子,使其周圍生成親水官能基並且更容易被有機分子、高分子或生物性物質修飾。更重要的是,氧化石墨烯粒子能藉由改變結晶結構、尺寸大小和表面化學官能基修飾,進一步調控螢光性質。此外,相較於有機螢光染料和傳統半導體量子點,氧化石墨烯粒子不只具備光學穩定性,更有低毒性與高生物相容性的優點。綜合以上特性,氧化石墨烯粒子應用在生物螢光標定和發光元件將會有相當高的潛力。
    本論文分為三個主題: 1.製備具有激發波長非依賴性螢光且高發光量子效率的氧化石墨烯奈米粒子;2. 氮官能基在增強激發波長非依賴性之綠色螢光石墨烯奈米粒子中所扮演的角色;3. 氧與氮官能基對高亮度綠色螢光氧化石墨烯奈米粒子之競爭作用。
    第一部分,我們合成出具有在530 nm發光之非激發波長依賴性螢光之氧化石墨烯奈米粒子(Graphene oxide dots, GODs)。本團隊以較溫和之超音波氧化法縮減熱還原氧化石墨烯的尺寸,使製備出的GODs有良好的尺寸均一性與結晶性。GODs在470 nm波長藍光照射下,發出螢光量子效率(QY) 16 %之螢光。該螢光的來源可視為電子於GODs表面氧原子之未鍵結電子能態(n),受光照激發而躍遷至石墨烯之反鍵結軌域,接著弛豫回到n能態所釋放之光能。氮參雜氧化石墨烯粒子(Nitrogen-doped graphene oxide dots, NGODs)之氮原子具有修復石墨烯空缺的功能,並貢獻電子進而補償受氧之拉電子效應而未達電化學平衡之GODs,使其達到電化學平衡之穩定狀態,造成螢光QY增加至22 %。更進一步,將GODs和NGODs分散於tetrahydrofuran中,以浸潤式液態電漿將石墨烯周圍之電子傳遞官能基(carbonyl)轉化,分別增強螢光QY至42 %和50 %。本團隊將此高QY的綠色螢光GODs以紫外光激發,綠色螢光與紫外光可混色形成白光,顯示GODs具有作為白光LED螢光粉應用之潛力。
    在第二部分中,我們分別以高溫煅燒和氨水水熱兩種方式,參雜氮原子或接氮官能基於GODs,探討氮原子如何影響石墨烯材料的螢光性質。氨水水熱法傾向於在石墨烯結構中形成pyridinic結構的參雜和在邊緣接上amino官能基,相反的,高溫鍛燒形成較多的pyrrolic和amide。實驗結果顯示,氮原子以pyridinic和amino兩種形式存在經過水熱處理的GODs (A-GODs)結構中,將與碳原子的π軌域有極佳的共軛效果,除了在XPS C1s圖譜中出現激振伴峰,也造成氮原子的未鍵結電子在石墨烯電子組態中引入氮的未鍵結能態(nN2p),並且較氧原子的未鍵結能態(nO2p)抬高了0.3 eV的能量差。而此nN2p能態導致受激發的電子弛豫時無須經過π*➝nO2p所需的solvent relaxation,使π*➝nN2p 電子電洞直接的在結合,減少了能量損失,增加了螢光的強度。GODs和A-GODs之PL QY分別是12%和63%,證明了π*➝nN2p直接再結合的電子弛豫機制,也許是貢獻於螢光大幅增強的來源。
    第三部分,我們以不同溫度、濃度、溶劑等條件,比較氨水水熱GODs對螢光和電子結構的影響。實驗結果顯示,0.1mg GODs在140℃的水熱溫度下有最佳的螢光強度。此條件所生成pyridinic和amino的氮原子比例最高,相較其他水熱條件顯示出更強的激振伴峰(shake-up satellite peak),證明此類氮原子更能夠與碳原子軌域高度混成,貢獻最多電子至π軌域,使激發光源的能量有更高的機率與軌域電子作用而產生電子躍遷。然而,水熱溫度提高至180℃時,在GODs結構表面形成pyridine-N-oxide與C-NO2之拉電子官能基,同時激振伴峰和PL的強度皆下降,證明拉電子官能基的形成降低了π軌域電子被激發的機率。而從PL excitation spectra (PLE) 可觀察到, C-NO2在GODs形成後於nO2p➝π*與π➝π* 躍遷之間引入一個能態,產生nO2p-1➝π*。A-GODs和A180-GODs之PL QY分別為63%和54%,並且A180-GODs在460nm出現激發波長依賴性螢光,說明π*➝nO2p-1相較於π*➝nO2p有更強的solvent relaxation.

    Graphene-based photoluminescence materials, consisting of C, H, O, and N elements, have attracted considerable interest because of their novel physical chemistry properties. Converting graphene into graphene oxide dots (GODs) usually possess numerous functional groups on their surface, which give rise to their high hydrophilicity and readiness for functionalization with various organic, polymer, or biological species. Specially, GODs exhibit unique optical properties such as highly tunable photoluminescence depending on their crystal structure, size, and chemical functionalization. Moreover, compared to organic dyes and traditional semiconductor quantum dots, not only are GODs advantageous in terms of photostability against photobleaching and blinking, they also have lower toxicity and better biocompatibility. These properties make GODs potential candidates for bioimaging and optoelectronic applications.
    This dissertation includes three parts: 1. Synthesis of Graphene Oxide Dots for Excitation-Wavelength Independent Photoluminescence at High Quantum Yields. 2. Roles of Nitrogen Functionalities in Enhancing the Excitation-Independent Green-Color Photoluminescence of Graphene Oxide Dots. 3. Competing Effect of Oxygen and Nitrogen Functionalities for Strong Green-Color Photoluminescence mechanism of Graphene Oxide Dots
    In the first part, we synthesizes graphene oxide dots (GODs, 2.5~0.5 nm) exhibiting excitation-wavelength independent photoluminescence (PL) at 530 nm. The GODs, which are of high uniformity and crystallinity, are produced by mildly oxidizing thermally-reduced GO sheets under sonication. The GOD aqueous suspension yields a maximal PL quantum yield (QY) of 16 % under excitation at 470 nm. This PL can be ascribed to the irradiative excitation of electrons from the non-bonding oxygen (n) states to the graphene anti-bonding π orbital with subsequent relaxation of the electrons to the n ground states. Nitrogen-doping reduces vacancy defects and donates electrons to compensate for the unbalanced charge in p-type GODs, thereby increasing the PL QY to 22 % for the nitrogen-doped GODs (NGODs). Treating the unadorned GODs and NGODs with submerged liquid plasma in tetrahydrofuran suppresses charge leakage from the carbonyl groups on the graphene periphery and increases the QY to 42 % and 50 %, respectively. The GODs could be used as a phosphor for the generation of white light by combining green emissions (530 nm) with violet light used for excitation. The present study demonstrates facile synthesis of high-quality green-emitting GODs and an effective method for the repair of vacancy defects and the stabilization of oxygen functionalities to enhance PL emission from GODs.
    In the second part, we employs annealing and hydrothermal ammonia treatments at 500 and 140 ℃, respectively, to introduce nitrogen functionalities on GODs for enhancing their green-color PL emissions. The hydrothermal treatment preferentially produces pyridinic and amino groups, whereas the annealing treatment produces pyrrolic and amide groups. The hydrothermally treated GODs (A-GODs) present a high conjugation of the nitrogen nonbonding electrons in pyridinic and amino groups with the aromatic π orbital. The conjugation introduces a nitrogen nonbonding (nN2p) state 0.3 eV above the oxygen nonbonding state (nO2p state; the valence band maximum of the GODs). The GODs exhibit excitation-independent green-PL emissions at 530 nm with a maximum quantum yield (QY) of 12% at 470 nm excitation, whereas the A-GODs exhibit a maximum QY of 63%. The transformation of the solvent relaxation-governed π*➝nO2p transition in the GODs to the direct π*➝nN2p transition in the A-GODs possibly accounts for the substantial QY enhancement in PL emissions. This paper elucidates the role of nitrogen functionalities in the PL emissions of graphitic materials and proposes a strategy for electronic structure design to promote PL performance.
    In the third part, we designed a series of simple and effective hydrothermal conditions to introduce nitrogen functionalities on GODs for enhancing their green-color PL emissions. The 140 ℃ hydrothermal treated (A-GODs) preferentially produces pyridinic and amino groups, whereas the 180 ℃ treated GODs (A180-GODs) produces pyridine-N-oxide and C-NO2 groups. The A-GODs enhanced the integrity of hybridization degree between nitrogen and carbon, result in excitations interact strongly with high probability of electron transition, which exhibits a strong shake-up satellite peak at XPS C1s spectra. The conjugation introduces a nitrogen nonbonding (nN2p) state 0.3 eV above the oxygen nonbonding state (nO2p state). Moreover, the energy gap of nO2p➝π* transition at 470 nm in PLE spectra corresponding with the energy difference of shake-up peak and O-C=O position (2.8 eV) in XPS results, further demonstrates the dominants energy transition is nO2p➝π*. By contrast, the A180-GODs simultaneously induces nN2p and nO2p-1 states to complicate the emission transition. The A-GODs exhibit excitation-independent green-PL emissions at 520 nm with a maximum quantum yield (QY) of 63% at 470 nm excitation, whereas the A180-GODs exhibit a maximum QY of 54%. This paper elucidates the role of nitrogen functionalities in the PL emissions of graphitic materials and proposes a strategy for electronic structure design to promote PL performance.

    中文摘要 I Abstract III Acknowledgement VI Content VIII List of Figures XI List of Tables XXIII Abbreviation XXV Chapter 1 Introduction 1 1-1 Overview 1 1-2 Fluorescent 5 1-2-1 Absorption and emission of light 5 1-2-2 Electronic Transitions 8 1-2-3 Radiative and Non-radiative Transitions between Electronic States 10 1-3 Specific Motives and Objectives 17 Chapter 2 Literature Review 19 2-1 Graphene 19 2-1-1 Basic properties of graphene and graphene oxide 19 2-1-2 Electronic structure of graphene and graphene oxide 20 2-1-3 Electronic structure modulation of GO 23 2-2 Photoluminescence of graphene oxide 24 2-2-1 PL emission of GO sheet 25 2-2-2 PL emission modulation of surface treated GO sheet 29 2-2-3 Electronic structure of GO sheet for PL emission 33 2-3 Graphene oxide quantum dots 39 2-3-1 Advantages of graphene quantum dot 40 2-3-2 Synthesis routes of GQDs 42 2-3-3 PL mechanism of GQDs 44 2-3-4 Light Emitting Diode of GQDs 50 Chapter 3 Synthesis of Graphene Oxide Dots for Excitation-Wavelength Independent Photoluminescence at High Quantum Yields 55 3-1 Introduction 55 3-2 Experimental 57 3-2-1 Preparation of Materials 57 3-2-2 Methods of Analysis and Measurements 59 3-3 Results and discussion 60 3-3-1 Physical and Chemical Characteristics of GODs 60 3-3-2 Influence of Doping and SLP Treatment on Optical Properties of GODs 67 3-3-3 Charge-Transfer Mechanism Underlying the PL in GODs 77 3-3-4 GODs as white-emitting phosphors 78 3-4 Conclusions 80 Chapter 4 Roles of Nitrogen Functionalities in Enhancing the Excitation-Independent Green-Color Photoluminescence of Graphene Oxide Dots 81 4-1 Introduction 81 4-2 Experimental Section 87 4-2-1 Preparation of Materials 87 4-2-2 Analysis and Measurements 88 4-3 Results and Discussion 89 4-3-1 Physical and Chemical Characteristics of GO-Based Dots 89 4-3-2 Optical Properties of GO-Based Dots 99 4-3-3 Charge Transfer Mechanism Underlying PL Emissions 106 4-4 Conclusion 115 Chapter 5 Competing Effect of Oxygen and Nitrogen Functionalities for Strong Green-Color Photoluminescence mechanism of Graphene Oxide Dots 116 5-1 Introduction 116 5-2 Experimental 119 5-2-1 Preparation of Materials 119 5-2-2 Methods of Analysis and Measurements 121 5-3 Results and discussion 122 5-3-1 Physical and Chemical Characteristics of GODs 122 5-3-2 Optical properties of GO-Based Dots 137 5-3-3 Charge-Transfer Mechanism Underlying the PL Emissions 144 5-4 Conclusions 155 Chapter 6 Overall Conclusions 157 Chapter 7 Reference 160 Curriculum Vitae 177

    [1] C. Zhang, J. Lin, Chem. Soc. Rev. 2012, 41, 7938.
    [2] S. Empedocles, M. Bawendi, Acc. Chem. Res. 1999, 32, 389.
    [3] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir, S. Weiss, Science 2005, 307, 538.
    [4] H. Zhang, J. Han, B. Yang, Adv. Funct. Mater. 2010, 20, 1533.
    [5] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, Nature 1999, 397, 121.
    [6] G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. Int. Ed. 2008, 47, 1184.
    [7] S. Zhu, S. Tang, J. Zhang, B. Yang, Chem. Commun. 2012, 48, 4527.
    [8] M. A. Baldo, M. E. Thompson, S. R. Forrest, Nature 2000, 403, 750.
    [9] W. Yu, H. Zhang, Z. Fan, J. Zhang, H. Wei, D. Zhou, B. Xu, F. Li, W. Tian, B. Yang, Energy Environ. Sci. 2011, 4, 2831.
    [10] I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat Mater 2005, 4, 435.
    [11] B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, R. Y. Tsien, Science 2006, 312, 217.
    [12] Y. Jiao, B. Zhu, J. Chen, X. Duan, Theranostics 2015, 5, 173.
    [13] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Springer US, 2007.
    [14] V. Ntziachristos, Annual Review of Biomedical Engineering 2006, 8, 1.
    [15] P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, V. Bulović, Nano Lett. 2009, 9, 2532.
    [16] D. Bera, L. Qian, T.-K. Tseng, P. H. Holloway, Materials 2010, 3, 2260.
    [17] C. A. J. Lin, T. Liedl, R. A. Sperling, M. T. Fernandez-Arguelles, J. M. Costa-Fernandez, R. Pereiro, A. Sanz-Medel, W. H. Chang, W. J. Parak, J. Mater. Chem. 2007, 17, 1343.
    [18] K. Welsher, Z. Liu, S. P. Sherlock, J. T. Robinson, Z. Chen, D. Daranciang, H. Dai, Nat Nano 2009, 4, 773.
    [19] G. Hong, S. M. Tabakman, K. Welsher, H. Wang, X. Wang, H. Dai, J. Am. Chem. Soc. 2010, 132, 15920.
    [20] J. Jeong, M. Cho, Y. T. Lim, N. W. Song, B. H. Chung, Angew. Chem. Int. Ed. 2009, 48, 5296.
    [21] H. Li, Y. Zhang, Y. Luo, X. Sun, Small 2011, 7, 1562.
    [22] S. N. Baker, G. A. Baker, Angew. Chem. Int. Ed. 2010, 49, 6726.
    [23] Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. S. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, S. Y. Xie, J. Am. Chem. Soc. 2006, 128, 7756.
    [24] A. Krueger, Adv. Mater. 2008, 20, 2445.
    [25] D. M. Jang, Y. Myung, H. S. Im, Y. S. Seo, Y. J. Cho, C. W. Lee, J. Park, A. Y. Jee, M. Lee, Chem. Commun. 2012, 48, 696.
    [26] T. F. Yeh, W. L. Huang, C. J. Chung, I. T. Chiang, L. C. Chen, H. Y. Chang, W. C. Su, C. Cheng, S. J. Chen, H. Teng, J. Phys. Chem. Lett. 2016, 7, 2087.
    [27] C. Y. Teng, T. F. Yeh, K. I. Lin, S. J. Chen, M. Yoshimura, H. Teng, J. Mater. Chem. C 2015, 3, 4553.
    [28] W. R. Algar, K. Susumu, J. B. Delehanty, I. L. Medintz, Anal. Chem. 2011, 83, 8826.
    [29] O. Kanoun, C. Müller, A. Benchirouf, A. Sanli, A. Bouhamed, A. Al-Hamry, L. Bu.
    [30] K. Hola, Y. Zhang, Y. Wang, E. P. Giannelis, R. Zboril, A. L. Rogach, Nano Today 2014, 9, 590.
    [31] F. Yuan, S. Li, Z. Fan, X. Meng, L. Fan, S. Yang, Nano Today 2016, 11, 565.
    [32] B. Valeur, Molecular Fluorescence, Wiley-VCH Verlag GmbH, 2001, 3.
    [33] M. Sauer, J. Hofkens, J. Enderlein, in Handbook of Fluorescence Spectroscopy and Imaging, Wiley-VCH Verlag GmbH & Co. KGaA, 2011, 1.
    [34] J. R. Bolton, I. Mayor-Smith, K. G. Linden, Photochem. Photobiol. 2015, 91, 1252.
    [35] S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, Nano Research 2015, 8, 355.
    [36] L. Cao, M. J. Meziani, S. Sahu, Y.-P. Sun, Acc. Chem. Res. 2013, 46, 171.
    [37] X. Li, S. Zhang, S. A. Kulinich, Y. Liu, H. Zeng, 2014, 4, 4976.
    [38] M. A. Reed, J. N. Randall, R. J. Aggarwal, R. J. Matyi, T. M. Moore, A. E. Wetsel, Phys. Rev. Lett. 1988, 60, 535.
    [39] A. Cayuela, M. L. Soriano, C. Carrillo-Carrion, M. Valcarcel, Chem. Commun. 2016, 52, 1311.
    [40] M. J. Krysmann, A. Kelarakis, P. Dallas, E. P. Giannelis, J. Am. Chem. Soc. 2012, 134, 747.
    [41] M. O. Dekaliuk, O. Viagin, Y. V. Malyukin, A. P. Demchenko, Phys. Chem. Chem. Phys. 2014, 16, 16075.
    [42] O. Kozák, M. Sudolská, G. Pramanik, P. Cígler, M. Otyepka, R. Zbořil, Chem. Mater. 2016, 28, 4085.
    [43] Ç. Ö. Girit, J. C. Meyer, R. Erni, M. D. Rossell, C. Kisielowski, L. Yang, C. H. Park, M. F. Crommie, M. L. Cohen, S. G. Louie, A. Zettl, Science 2009, 323, 1705.
    [44] K. A. Ritter, J. W. Lyding, Nat Mater 2009, 8, 235.
    [45] J. Shen, Y. Zhu, X. Yang, C. Li, Chem. Commun. 2012, 48, 3686.
    [46] C. R. Bagshaw, D. Cherny, Biochem. Soc. Trans. 2006, 34, 979.
    [47] M. Barua, M. B. Sreedhara, K. Pramoda, C. N. R. Rao, Chem. Phys. Lett.
    [48] C. M. Luk, L. B. Tang, W. F. Zhang, S. F. Yu, K. S. Teng, S. P. Lau, J. Mater. Chem. 2012, 22, 22378.
    [49] S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, X. Wang, H. Sun, B. Yang, Adv. Funct. Mater. 2012, 22, 4732.
    [50] X. T. Zheng, A. Than, A. Ananthanaraya, D. H. Kim, P. Chen, ACS Nano 2013, 7, 6278.
    [51] K. P. Loh, Q. Bao, G. Eda, M. Chhowalla, Nat. Chem. 2010, 2, 1015.
    [52] L. L. Li, J. Ji, R. Fei, C. Z. Wang, Q. Lu, J. R. Zhang, L. P. Jiang, J. J. Zhu, Adv. Funct. Mater. 2012, 22, 2971.
    [53] D. Qu, M. Zheng, L. Zhang, H. Zhao, Z. Xie, X. Jing, R. E. Haddad, H. Fan, Z. Sun, Sci. Rep. 2014, 4, 5294.
    [54] J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang, C. Li, New J. Chem. 2012, 36, 97.
    [55] A. K. Geim, K. S. Novoselov, Nat Mater 2007, 6, 183.
    [56] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
    [57] X. Xu, R. Ray, Y. Gu, H. J. Ploehn, L. Gearheart, K. Raker, W. A. Scrivens, J. Am. Chem. Soc. 2004, 126, 12736.
    [58] Y. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai, P. J. Ferreira, A. Pirkle, R. M. Wallace, K. A. Cychosz, M. Thommes, D. Su, E. A. Stach, R. S. Ruoff, Science 2011, 332, 1537.
    [59] S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima, Nat Nano 2010, 5, 574.
    [60] M. J. Allen, V. C. Tung, R. B. Kaner, Chem. Rev. 2010, 110, 132.
    [61] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, A. K. Geim, Science 2008, 320, 1308.
    [62] A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, A. Rousset, Carbon 2001, 39, 507.
    [63] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, A. K. Geim, Phys. Rev. Lett. 2008, 100, 016602.
    [64] Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, R. S. Ruoff, Adv. Mater. 2010, 22, 3906.
    [65] X. Wang, L. Zhi, K. Müllen, Nano Lett. 2008, 8, 323.
    [66] H. C. Huang, C. W. Huang, C. T. Hsieh, P. L. Kuo, J. M. Ting, H. Teng, J. Phys. Chem. C 2011, 115, 20689.
    [67] Y. Liu, J. S. Xue, T. Zheng, J. R. Dahn, Carbon 1996, 34, 193.
    [68] J. K. Wassei, R. B. Kaner, Acc. Chem. Res. 2013, 46, 2244.
    [69] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, A. K. Geim, Rev. Mod. Phys. 2009, 81, 109.
    [70] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 2005, 438, 197.
    [71] P. Avouris, Nano Lett. 2010, 10, 4285.
    [72] W. Cai, R. D. Piner, F. J. Stadermann, S. Park, M. A. Shaibat, Y. Ishii, D. Yang, A. Velamakanni, S. J. An, M. Stoller, J. An, D. Chen, R. S. Ruoff, Science 2008, 321, 1815.
    [73] W. Gao, L. B. Alemany, L. Ci, P. M. Ajayan, Nat Chem 2009, 1, 403.
    [74] J. Ito, J. Nakamura, A. Natori, J. Appl. Phys. 2008, 103, 113712.
    [75] H. X. Wang, Q. Wang, K. G. Zhou, H. L. Zhang, Small 2013, 9, 1266.
    [76] K. P. Loh, Q. Bao, P. K. Ang, J. Yang, J. Mater. Chem. 2010, 20, 2277.
    [77] H. Liu, Y. Liu, D. Zhu, J. Mater. Chem. 2011, 21, 3335.
    [78] X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, H. Dai, Science 2009, 324, 768.
    [79] A. L. E. and, M. Rosen, Annu. Rev. Mater. Sci. 2000, 30, 475.
    [80] L. S. Li, X. Yan, J. Phys. Chem. Lett. 2010, 1, 2572.
    [81] L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, A. K. Geim, Science 2008, 320, 356.
    [82] G. Eda, Y. Y. Lin, C. Mattevi, H. Yamaguchi, H. A. Chen, I. S. Chen, C. W. Chen, M. Chhowalla, Adv. Mater. 2010, 22, 505.
    [83] H. Tetsuka, R. Asahi, A. Nagoya, K. Okamoto, I. Tajima, R. Ohta, A. Okamoto, Adv. Mater. 2012, 24, 5333.
    [84] S. H. Jin, D. H. Kim, G. H. Jun, S. H. Hong, S. Jeon, ACS Nano 2013, 7, 1239.
    [85] G. Lu, K. Yu, Z. Wen, J. Chen, Nanoscale 2013, 5, 1353.
    [86] K. Nakada, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 1996, 54, 17954.
    [87] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
    [88] C. T. Chien, S. S. Li, W. J. Lai, Y. C. Yeh, H. A. Chen, I. S. Chen, L. C. Chen, K. H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, C. W. Chen, Angew. Chem. Int. Ed. 2012, 51, 6662.
    [89] D. Pan, J. Zhang, Z. Li, M. Wu, Adv. Mater. 2010, 22, 734.
    [90] S. Zhu, J. Zhang, C. Qiao, S. Tang, Y. Li, W. Yuan, B. Li, L. Tian, F. Liu, R. Hu, H. Gao, H. Wei, H. Zhang, H. Sun, B. Yang, Chem. Commun. 2011, 47, 6858.
    [91] S. Zhuo, M. Shao, S. T. Lee, ACS Nano 2012, 6, 1059.
    [92] Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, J. Am. Chem. Soc. 2012, 134, 15.
    [93] X. Yan, X. Cui, L.-s. Li, J. Am. Chem. Soc. 2010, 132, 5944.
    [94] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K. S. Teng, C. M. Luk, S. Zeng, J. Hao, S. P. Lau, ACS Nano 2012, 6, 5102.
    [95] X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nano Research 2008, 1, 203.
    [96] Z. Luo, P. M. Vora, E. J. Mele, A. T. C. Johnson, J. M. Kikkawa, Appl. Phys. Lett. 2009, 94, 111909.
    [97] T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, A. Hartschuh, ACS Nano 2009, 3, 3963.
    [98] T. V. Cuong, V. H. Pham, E. W. Shin, J. S. Chung, S. H. Hur, E. J. Kim, Q. T. Tran, H. H. Nguyen, P. A. Kohl, Appl. Phys. Lett. 2011, 99, 041905.
    [99] Z. Gan, S. Xiong, X. Wu, T. Xu, X. Zhu, X. Gan, J. Guo, J. Shen, L. Sun, P. K. Chu, Adv. Opt. Mater. 2013, 1, 926.
    [100] N. Amirhasan, C. Mirco, V. Tom, P. Geoffrey, C. Francesca, H. v. d. V. Marleen, H. Johan, M. H. Marc, G. Stefan De, F. S. Bert, Nanotechnology 2010, 21, 435203.
    [101] C. Galande, A. D. Mohite, A. V. Naumov, W. Gao, L. Ci, A. Ajayan, H. Gao, A. Srivastava, R. B. Weisman, P. M. Ajayan, 2011, 1, 85.
    [102] D. W. Boukhvalov, M. I. Katsnelson, J. Am. Chem. Soc. 2008, 130, 10697.
    [103] P. V. Kumar, M. Bernardi, J. C. Grossman, ACS Nano 2013, 7, 1638.
    [104] P. Gong, J. Wang, W. Sun, D. Wu, Z. Wang, Z. Fan, H. Wang, X. Han, S. Yang, Nanoscale 2014, 6, 3316.
    [105] Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang, Z. Zhang, Chem. Commun. 2010, 46, 7319.
    [106] X. Li, H. Wang, J. T. Robinson, H. Sanchez, G. Diankov, H. Dai, J. Am. Chem. Soc. 2009, 131, 15939.
    [107] M. Li, Z. Wu, W. Ren, H. Cheng, N. Tang, W. Wu, W. Zhong, Y. Du, Carbon 2012, 50, 5286.
    [108] F. Liu, N. Tang, T. Tang, Y. Liu, Q. Feng, W. Zhong, Y. Du, Appl. Phys. Lett. 2013, 103, 123108.
    [109] T. Van Khai, H. G. Na, D. S. Kwak, Y. J. Kwon, H. Ham, K. B. Shim, H. W. Kim, Carbon 2012, 50, 3799.
    [110] S. Fujii, T. Enoki, J. Am. Chem. Soc. 2010, 132, 10034.
    [111] J. Shang, L. Ma, J. Li, W. Ai, T. Yu, G. G. Gurzadyan, Sci. Rep. 2012, 2, 792.
    [112] M. Li, S. K. Cushing, X. Zhou, S. Guo, N. Wu, J. Mater. Chem. 2012, 22, 23374.
    [113] A. Öhrn, G. Karlström, J. Phys. Chem. A 2006, 110, 1934.
    [114] J. W. Chiou, S. C. Ray, S. I. Peng, C. H. Chuang, B. Y. Wang, H. M. Tsai, C. W. Pao, H. J. Lin, Y. C. Shao, Y. F. Wang, S. C. Chen, W. F. Pong, Y. C. Yeh, C. W. Chen, L. C. Chen, K. H. Chen, M. H. Tsai, A. Kumar, A. Ganguly, P. Papakonstantinou, H. Yamane, N. Kosugi, T. Regier, L. Liu, T. K. Sham, J. Phys. Chem. C 2012, 116, 16251.
    [115] Y. Xing, L. Dai, Nanomedicine 2009, 4, 207.
    [116] M. Nurunnabi, Z. Khatun, K. M. Huh, S. Y. Park, D. Y. Lee, K. J. Cho, Y.-k. Lee, ACS Nano 2013, 7, 6858.
    [117] S. Zhu, J. Shao, Y. Song, X. Zhao, J. Du, L. Wang, H. Wang, K. Zhang, J. Zhang, B. Yang, Nanoscale 2015, 7, 7927.
    [118] X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo, J. Zhang, ACS Nano 2012, 6, 6592.
    [119] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, Adv. Mater. 2011, 23, 776.
    [120] L. Lin, S. Zhang, Chem. Commun. 2012, 48, 10177.
    [121] R. Liu, D. Wu, X. Feng, K. Müllen, J. Am. Chem. Soc. 2011, 133, 15221.
    [122] S. Zhu, Y. Song, J. Wang, H. Wan, Y. Zhang, Y. Ning, B. Yang, Nano Today 2017, 13, 10.
    [123] K. Habiba, V. I. Makarov, B. R. Weiner, G. Morell, Manufacturing Nanostructures, One Central Press, Manchester, UK 2014.
    [124] G. Rajender, P. K. Giri, J. Mater. Chem. C 2016, 4, 10852.
    [125] S. Zhu, X. Zhao, Y. Song, B. Li, J. Zhang, B. Yang, in Graphene Science Handbook, CRC Press, 2016, 163.
    [126] S. Kim, S. W. Hwang, M. K. Kim, D. Y. Shin, D. H. Shin, C. O. Kim, S. B. Yang, J. H. Park, E. Hwang, S. H. Choi, G. Ko, S. Sim, C. Sone, H. J. Choi, S. Bae, B. H. Hong, ACS Nano 2012, 6, 8203.
    [127] S. Zhu, L. Wang, B. Li, Y. Song, X. Zhao, G. Zhang, S. Zhang, S. Lu, J. Zhang, H. Wang, H. Sun, B. Yang, Carbon 2014, 77, 462.
    [128] J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, P. M. Ajayan, Nano Lett. 2012, 12, 844.
    [129] Y. Dong, C. Chen, X. Zheng, L. Gao, Z. Cui, H. Yang, C. Guo, Y. Chi, C. M. Li, J. Mater. Chem. 2012, 22, 8764.
    [130] D. B. Shinde, V. K. Pillai, Chemistry – A European Journal 2012, 18, 12522.
    [131] Q. Xu, Q. Zhou, Z. Hua, Q. Xue, C. Zhang, X. Wang, D. Pan, M. Xiao, ACS Nano 2013, 7, 10654.
    [132] X. Li, M. Rui, J. Song, Z. Shen, H. Zeng, Adv. Funct. Mater. 2015, 25, 4929.
    [133] Z. Fan, Y. Li, X. Li, L. Fan, S. Zhou, D. Fang, S. Yang, Carbon 2014, 70, 149.
    [134] C. Shen, J. Wang, Y. Cao, Y. Lu, J. Mater. Chem. C 2015, 3, 6668.
    [135] M. Sun, S. Qu, Z. Hao, W. Ji, P. Jing, H. Zhang, L. Zhang, J. Zhao, D. Shen, Nanoscale 2014, 6, 13076.
    [136] H. Tetsuka, A. Nagoya, R. Asahi, J. Mater. Chem. C 2015, 3, 3536.
    [137] W. Zhang, S. F. Yu, L. Fei, L. Jin, S. Pan, P. Lin, Carbon 2015, 85, 344.
    [138] X. Li, Y. Liu, X. Song, H. Wang, H. Gu, H. Zeng, Angew. Chem. Int. Ed. 2015, 54, 1759.
    [139] Y. Chen, M. Zheng, Y. Xiao, H. Dong, H. Zhang, J. Zhuang, H. Hu, B. Lei, Y. Liu, Adv. Mater. 2016, 28, 312.
    [140] W. Kwon, S. Do, J. H. Kim, M. Seok Jeong, S. W. Rhee, Sci. Rep. 2015, 5, 12604.
    [141] V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj, S. Chand, J. Am. Chem. Soc. 2011, 133, 9960.
    [142] F. Wang, Y. H. Chen, C. Y. Liu, D. G. Ma, Chem. Commun. 2011, 47, 3502.
    [143] W. Kwon, Y. H. Kim, C. L. Lee, M. Lee, H. C. Choi, T. W. Lee, S. W. Rhee, Nano Lett. 2014, 14, 1306.
    [144] X. Zhang, Y. Zhang, Y. Wang, S. Kalytchuk, S. V. Kershaw, Y. Wang, P. Wang, T. Zhang, Y. Zhao, H. Zhang, T. Cui, Y. Wang, J. Zhao, W. W. Yu, A. L. Rogach, ACS Nano 2013, 7, 11234.
    [145] H. Li, Z. Kang, Y. Liu, S. T. Lee, J. Mater. Chem. 2012, 22, 24230.
    [146] Z. Liu, J. T. Robinson, X. Sun, H. Dai, J. Am. Chem. Soc. 2008, 130, 10876.
    [147] L. Cao, X. Wang, M. J. Meziani, F. Lu, H. Wang, P. G. Luo, Y. Lin, B. A. Harruff, L. M. Veca, D. Murray, S. Y. Xie, Y. P. Sun, J. Am. Chem. Soc. 2007, 129, 11318.
    [148] S. Chandra, P. Das, S. Bag, D. Laha, P. Pramanik, Nanoscale 2011, 3, 1533.
    [149] S. K. Das, Y. Liu, S. Yeom, D. Y. Kim, C. I. Richards, Nano Lett. 2014, 14, 620.
    [150] T. F. Yeh, J. Cihlář, C. Y. Chang, C. Cheng, H. Teng, Mater. Today 2013, 16, 78.
    [151] K. J. Jeon, Z. Lee, E. Pollak, L. Moreschini, A. Bostwick, C. M. Park, R. Mendelsberg, V. Radmilovic, R. Kostecki, T. J. Richardson, E. Rotenberg, ACS Nano 2011, 5, 1042.
    [152] D. Pan, L. Guo, J. Zhang, C. Xi, Q. Xue, H. Huang, J. Li, Z. Zhang, W. Yu, Z. Chen, Z. Li, M. Wu, J. Mater. Chem. 2012, 22, 3314.
    [153] J. L. Chen, X. P. Yan, K. Meng, S. F. Wang, Anal. Chem. 2011, 83, 8787.
    [154] X. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos, J. Am. Chem. Soc. 1997, 119, 7019.
    [155] Y. Shin, J. Lee, J. Yang, J. Park, K. Lee, S. Kim, Y. Park, H. Lee, Small 2014, 10, 866.
    [156] J. Shen, Y. Zhu, C. Chen, X. Yang, C. Li, Chem. Commun. 2011, 47, 2580.
    [157] F. Liu, M. H. Jang, H. D. Ha, J. H. Kim, Y. H. Cho, T. S. Seo, Adv. Mater. 2013, 25, 3657.
    [158] L. H. Mao, W. Q. Tang, Z. Y. Deng, S. S. Liu, C. F. Wang, S. Chen, Ind. Eng. Chem. Res. 2014, 53, 6417.
    [159] R. Sekiya, Y. Uemura, H. Murakami, T. Haino, Angew. Chem. 2014, 126, 5725.
    [160] K. Lingam, R. Podila, H. Qian, S. Serkiz, A. M. Rao, Adv. Funct. Mater. 2013, 23, 5062.
    [161] Q. Su, S. Pang, V. Alijani, C. Li, X. Feng, K. Müllen, Adv. Mater. 2009, 21, 3191.
    [162] G. Katsukis, J. Malig, C. Schulz-Drost, S. Leubner, N. Jux, D. M. Guldi, ACS Nano 2012, 6, 1915.
    [163] L. Wang, S. J. Zhu, H. Y. Wang, Y. F. Wang, Y. W. Hao, J. H. Zhang, Q. D. Chen, Y. L. Zhang, W. Han, B. Yang, H. B. Sun, Adv. Opt. Mater. 2013, 1, 264.
    [164] H. Wang, T. Maiyalagan, X. Wang, ACS Catalysis 2012, 2, 781.
    [165] T. F. Yeh, C. Y. Teng, S. J. Chen, H. Teng, Adv. Mater. 2014, 26, 3297.
    [166] M. Zhang, L. Bai, W. Shang, W. Xie, H. Ma, Y. Fu, D. Fang, H. Sun, L. Fan, M. Han, C. Liu, S. Yang, J. Mater. Chem. 2012, 22, 7461.
    [167] X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, N. Koshizaki, Chem. Commun. 2011, 47, 932.
    [168] L. Cao, P. Anilkumar, X. Wang, J.-H. Liu, S. Sahu, M. J. Meziani, E. Myers, Y.-P. Sun, Can. J. Chem. 2010, 89, 104.
    [169] J. Senthilnathan, K. S. Rao, M. Yoshimura, J. Mater. Chem. A 2014, 2, 3332.
    [170] J. Senthilnathan, Y.-F. Liu, K. S. Rao, M. Yoshimura, Sci. Rep. 2014, 4, 4395.
    [171] J. Senthilnathan, K. Sanjeeva Rao, W. H. Lin, J. D. Liao, M. Yoshimura, Carbon 2014, 78, 446.
    [172] J. Senthilnathan, C. C. Weng, J. D. Liao, M. Yoshimura, Sci. Rep. 2013, 3, 2414.
    [173] C. V. Pham, M. Krueger, M. Eck, S. Weber, E. Erdem, Appl. Phys. Lett. 2014, 104, 132102.
    [174] S. Zhu, H. Zhang, P. Chen, L. H. Nie, C. H. Li, S. K. Li, J. Mater. Chem. A 2015, 3, 1540.
    [175] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 2009, 323, 760.
    [176] C. Zhang, L. Fu, N. Liu, M. Liu, Y. Wang, Z. Liu, Adv. Mater. 2011, 23, 1020.
    [177] C. K. Chua, M. Pumera, Chem. Soc. Rev. 2014, 43, 291.
    [178] T. Yoshimitsu, M. Tsunoda, H. Nagaoka, Chem. Commun. 1999, 1745.
    [179] A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, C. Casiraghi, Nano Lett. 2012, 12, 3925.
    [180] B. Guo, Q. Liu, E. Chen, H. Zhu, L. Fang, J. R. Gong, Nano Lett. 2010, 10, 4975.
    [181] L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Phys. Rep. 2009, 473, 51.
    [182] D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, Nanoscale 2013, 5, 12272.
    [183] P. C. Hsu, Z. Y. Shih, C. H. Lee, H. T. Chang, Green Chemistry 2012, 14, 917.
    [184] C. Fan, J. Xu, W. Chen, B. Lu, H. Miao, C. Liu, G. Liu, J. Phys. Chem. C 2009, 113, 9900.
    [185] X. Wang, G. Sun, P. Routh, D.-H. Kim, W. Huang, P. Chen, Chem. Soc. Rev. 2014, 43, 7067.
    [186] J. Shang, L. Ma, J. Li, W. Ai, T. Yu, G. G. Gurzadyan, Sci. Rep. 2012, 2, 792.
    [187] B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer US, 2013.
    [188] C. T. Hsieh, H. Teng, Carbon 2002, 40, 667.
    [189] J. N. Demas, J. Phys. Chem. 1971, 75, 991.
    [190] R. E. Kellogg, R. G. Bennett, J. Chem. Phys. 1964, 41, 3042.
    [191] Q. Liu, B. Guo, Z. Rao, B. Zhang, J. R. Gong, Nano Lett. 2013, 13, 2436.
    [192] I. Al-Ogaidi, H. Gou, Z. P. Aguilar, S. Guo, A. K. Melconian, A. K. A. Al-kazaz, F. Meng, N. Wu, Chem. Commun. 2014, 50, 1344.
    [193] A. M. Smith, S. Nie, Acc. Chem. Res. 2010, 43, 190.
    [194] T. Ha, A. Y. Ting, J. Liang, D. S. Chemla, P. G. Schultz, S. Weiss, A. A. Deniz, Chem. Phys. 1999, 247, 107.
    [195] Y. Fan, X. Guo, Y. Zhang, Y. Lv, J. Zhao, X. Liu, ACS Appl. Mater. Interfaces 2016, 8, 31863.
    [196] X. Yan, X. Cui, B. Li, L. S. Li, Nano Lett. 2010, 10, 1869.
    [197] S. Neubeck, L. A. Ponomarenko, F. Freitag, A. J. M. Giesbers, U. Zeitler, S. V. Morozov, P. Blake, A. K. Geim, K. S. Novoselov, Small 2010, 6, 1469.
    [198] M. Li, W. Wu, W. Ren, H. M. Cheng, N. Tang, W. Zhong, Y. Du, Appl. Phys. Lett. 2012, 101, 103107.
    [199] L. Wang, H. Y. Wang, Y. Wang, S. J. Zhu, Y. L. Zhang, J. H. Zhang, Q. D. Chen, W. Han, H. L. Xu, B. Yang, H. B. Sun, Adv. Mater. 2013, 25, 6539.
    [200] J. Chan, S. C. Dodani, C. J. Chang, Nat. Chem. 2012, 4, 973.
    [201] S. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hu, B. Yang, RSC Adv. 2012, 2, 2717.
    [202] Y. Dai, H. Long, X. Wang, Y. Wang, Q. Gu, W. Jiang, Y. Wang, C. Li, T. H. Zeng, Y. Sun, J. Zeng, Part. Part. Syst. Charact. 2014, 31, 597.
    [203] L. Tang, R. Ji, X. Li, K. S. Teng, S. P. Lau, J. Mater. Chem. C 2013, 1, 4908.
    [204] T. F. Yeh, S. J. Chen, H. Teng, Nano Energy 2015, 12, 476.
    [205] F. Cervantes-Sodi, G. Csányi, S. Piscanec, A. C. Ferrari, Phys. Rev. B 2008, 77, 165427.
    [206] X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen, L. J. Li, Small 2009, 5, 1422.
    [207] B. Das, R. Voggu, C. S. Rout, C. N. R. Rao, Chem. Commun. 2008, 5155.
    [208] S. K. Cushing, M. Li, F. Huang, N. Wu, ACS Nano 2014, 8, 1002.
    [209] H. Tetsuka, A. Nagoya, T. Fukusumi, T. Matsui, Adv. Mater. 2016, 28, 4632.
    [210] Q. Xue, H. Huang, L. Wang, Z. Chen, M. Wu, Z. Li, D. Pan, Nanoscale 2013, 5, 12098.
    [211] J. Sun, S. Yang, Z. Wang, H. Shen, T. Xu, L. Sun, H. Li, W. Chen, X. Jiang, G. Ding, Z. Kang, X. Xie, M. Jiang, Part. Part. Syst. Charact. 2015, 32, 434.
    [212] C. Zhu, S. Yang, G. Wang, R. Mo, P. He, J. Sun, Z. Di, N. Yuan, J. Ding, G. Ding, X. Xie, J. Mater. Chem. C 2015, 3, 8810.
    [213] L. Song, J. Shi, J. Lu, C. Lu, Chem. Sci. 2015, 6, 4846.
    [214] X. Wu, F. Tian, W. Wang, J. Chen, M. Wu, J. X. Zhao, J. Mater. Chem. C 2013, 1, 4676.
    [215] Z. L. Wu, M. X. Gao, T. T. Wang, X. Y. Wan, L. L. Zheng, C. Z. Huang, Nanoscale 2014, 6, 3868.
    [216] L. Wang, Y. Wang, T. Xu, H. Liao, C. Yao, Y. Liu, Z. Li, Z. Chen, D. Pan, L. Sun, M. Wu, Nat. Comm. 2014, 5, 5357.
    [217] J. Gu, M. J. Hu, Q. Q. Guo, Z. F. Ding, X. L. Sun, J. Yang, RSC Adv. 2014, 4, 50141.
    [218] S. Bian, C. Shen, H. Hua, L. Zhou, H. Zhu, F. Xi, J. Liu, X. Dong, RSC Adv. 2016, 6, 69977.
    [219] L. Tian, S. Yang, Y. Yang, J. Li, Y. Deng, S. Tian, P. He, G. Ding, X. Xie, Z. Wang, RSC Adv. 2016, 6, 82648.
    [220] S. Liu, R. Liu, X. Xing, C. Yang, Y. Xu, D. Wu, RSC Adv. 2016, 6, 31884.
    [221] Y. Dong, H. Pang, H. B. Yang, C. Guo, J. Shao, Y. Chi, C. M. Li, T. Yu, Angew. Chem. Int. Ed. 2013, 52, 7800.
    [222] Y. Zhang, X. Liu, Y. Fan, X. Guo, L. Zhou, Y. Lv, J. Lin, Nanoscale 2016, 8, 15281.
    [223] B. Shi, Y. Su, L. Zhang, M. Huang, R. Liu, S. Zhao, ACS Appl. Mater. Interfaces 2016, 8, 10717.
    [224] F. Li, C. Liu, J. Yang, Z. Wang, W. Liu, F. Tian, RSC Adv. 2014, 4, 3201.
    [225] J. Liao, Z. Cheng, L. Zhou, ACS Sustain. Chem. Eng. 2016, 4, 3053.
    [226] Y. Choi, B. Kang, J. Lee, S. Kim, G. T. Kim, H. Kang, B. R. Lee, H. Kim, S. H. Shim, G. Lee, O. H. Kwon, B. S. Kim, Chem. Mater. 2016, 28, 6840.
    [227] Y. Song, S. Zhu, S. Zhang, Y. Fu, L. Wang, X. Zhao, B. Yang, J. Mater. Chem. C 2015, 3, 5976.
    [228] K. Jiang, S. Sun, L. Zhang, Y. Wang, C. Cai, H. Lin, ACS Appl. Mater. Interfaces 2015, 7, 23231.
    [229] L. Song, Y. Cui, C. Zhang, Z. Hu, X. Liu, RSC Adv. 2016, 6, 17704.
    [230] M. Barua, M. B. Sreedhara, K. Pramoda, C. N. R. Rao, Chem. Phys. Lett. 2017, 683, 459.
    [231] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Nano Lett. 2009, 9, 1752.
    [232] C. Zhang, R. Hao, H. Liao, Y. Hou, Nano Energy 2013, 2, 88.
    [233] M. Seredych, T. J. Bandosz, J. Phys. Chem. C 2007, 111, 15596.
    [234] T. F. Yeh, S. J. Chen, C. S. Yeh, H. Teng, J. Phys. Chem. C 2013, 117, 6516.
    [235] C. D. Wagner, G. E. Muilenberg, Handbook of x-ray photoelectron spectroscopy: a reference book of standard data for use in x-ray photoelectron spectroscopy, Physical Electronics Division, Perkin-Elmer Corp., 1979.
    [236] M. C. Hsiao, S. H. Liao, M. Y. Yen, C. C. Teng, S. H. Lee, N. W. Pu, C. A. Wang, Y. Sung, M. D. Ger, C. C. M. Ma, M. H. Hsiao, J. Mater. Chem. 2010, 20, 8496.
    [237] C. Hontoria-Lucas, A. J. López-Peinado, J. d. D. López-González, M. L. Rojas-Cervantes, R. M. Martín-Aranda, Carbon 1995, 33, 1585.
    [238] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano Lett. 2007, 7, 238.
    [239] A. T. R. Williams, S. A. Winfield, J. N. Miller, Analyst 1983, 108, 1067.
    [240] G. A. Crosby, J. N. Demas, J. Phys. Chem. 1971, 75, 991.
    [241] D. Magde, G. E. Rojas, P. G. Seybold, Photochem. Photobiol. 1999, 70, 737.
    [242] J. N. Nian, C. C. Tsai, P. C. Lin, H. Teng, J. Electrochem. Soc. 2009, 156, H567.
    [243] I. U. H. Toor, J. Electrochem. Soc. 2011, 158, C391.
    [244] D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, Cengage Learning, 2017.
    [245] D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Science 2016, 351, 361.
    [246] B. Kong, A. Zhu, C. Ding, X. Zhao, B. Li, Y. Tian, Adv. Mater. 2012, 24, 5844.
    [247] B. Kong, J. Tang, Y. Zhang, T. Jiang, X. Gong, C. Peng, J. Wei, J. Yang, Y. Wang, X. Wang, G. Zheng, C. Selomulya, D. Zhao, Nat Chem 2016, 8, 171.
    [248] S. Zhu, Y. Song, J. Shao, X. Zhao, B. Yang, Angew. Chem. Int. Ed. 2015, 54, 14626.
    [249] T. F. Yeh, C. Y. Teng, L. C. Chen, S. J. Chen, H. Teng, J. Mater. Chem. A 2016, 4, 2014.
    [250] Z. Xia, R. S. Liu, K. W. Huang, V. Drozd, J. Mater. Chem. 2012, 22, 15183.
    [251] X. Wang, L. Cao, S. T. Yang, F. Lu, M. J. Meziani, L. Tian, K. W. Sun, M. A. Bloodgood, Y. P. Sun, Angew. Chem. Int. Ed. 2010, 49, 5310.
    [252] L. Ottaviano, L. Lozzi, F. Ramondo, P. Picozzi, S. Santucci, J. Electron. Spectrosc. Relat. Phenom. 1999, 105, 145.
    [253] C. S. Lim, C. K. Chua, M. Pumera, Analyst 2014, 139, 1072.
    [254] L. Yang, W. Jiang, L. Qiu, X. Jiang, D. Zuo, D. Wang, L. Yang, Nanoscale 2015, 7, 6104.
    [255] Y. Wang, Y. Shao, D. W. Matson, J. Li, Y. Lin, ACS Nano 2010, 4, 1790.
    [256] R. K. Biroju, G. Rajender, P. K. Giri, Carbon 2015, 95, 228.
    [257] Q. Li, S. Zhang, L. Dai, L. S. Li, J. Am. Chem. Soc. 2012, 134, 18932.
    [258] Z. Qian, J. Ma, X. Shan, L. Shao, J. Zhou, J. Chen, H. Feng, RSC Adv. 2013, 3, 14571.
    [259] C. Y. Teng, B. S. Nguyen, T. F. Yeh, Y. L. Lee, S. J. Chen, H. Teng, Nanoscale 2017, 9, 8256.
    [260] J. R. Pels, F. Kapteijn, J. A. Moulijn, Q. Zhu, K. M. Thomas, Carbon 1995, 33, 1641.
    [261] J. A. Gardella, S. A. Ferguson, R. L. Chin, Appl. Spectrosc. 1986, 40, 224.
    [262] M. A. Brisk, A. D. Baker, J. Electron. Spectrosc. Relat. Phenom. 1975, 7, 197.
    [263] S. Wang, I. S. Cole, D. Zhao, Q. Li, Nanoscale 2016, 8, 7449.

    無法下載圖示 校內:2022-08-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE