簡易檢索 / 詳目顯示

研究生: 吳盈佑
Wu, Ying-Yu
論文名稱: 含氯廢棄物在超臨界流體中合成奈米鑽石 之研究
Synthesis of Nano-crystalline diamonds with chlorinated wastes in supercritical fluids
指導教授: 王鴻博
Wang, Hong-Paul
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 104
中文關鍵詞: 奈米鑽石類鑽碳超臨界水超臨界四氯化碳
外文關鍵詞: supercritical CCl4, DLCs, diamond like carbons, nanocrystalline diamonds, supercritical water
相關次數: 點閱:79下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   CCl4不僅會嚴重破壞臭氧層,亦會造成人體肝、腎的損壞及引發致癌的危險,雖然CCl4在高溫氧化下可被完全分解,但冷卻過程可能會產生有毒之副產物例如戴奧辛等。超臨界流體的低介電常數使得鹽類溶解度大幅降低,CCl4具與鑽石相同的sp3結構,因此在超臨界流體中,鹼金屬離子(如Na+)可使CCl4的C-Cl鍵分離形成鹽類沈澱,而C原子聚集並且維持sp3結構而終形成鑽石。
      密度泛涵理論計算結果顯示,鹼金屬離子(Li+, Na+, and K+) 可促使CCl4的C-Cl鍵分離,鑽石則可能經由中間產物C2Cl6而生長。在超臨界(SC) CCl4中,Na2C2O4與SC-CCl4反應之主要產物為氯化鈉、二氧化碳及碳粒。碳粒的結構以類鑽碳為主及少量石墨與晶粒大小約1-2奈米之奈米鑽石。在623-673 K,反應12-24小時後,Na2C2O4消耗量高達87-100 %,然而拉曼光譜分析顯示碳粒中sp2結構之含量隨著反應溫度及時間而增加。Na2C2O4表面之鈉離子有助於SC-CCl4之碳氯鍵分離並形成氯化鈉沉積,Na2C2O4表面也可能進行重組過程使Na2C2O4與SC-CCl4可以繼續反應,而奈米鑽石及類鑽碳則在Na2C2O4表面生長。另外,在SC-CCl4中,不同金屬陽離子(Na+, K+ and Ca2+)也有利於碳氯鍵分離並形成氯鹽。
      另也,添加觸媒(鐵粉及鎳粉)也可縮短反應時間並提碳粒的生成量,實驗結果顯示,溫度573-673 K反應1小時後,Na2C2O4消耗量為51-95 %,碳粒中sp3結構之含量亦增加,顯示觸媒不僅可以提高碳之生成量亦有利於sp3結構的生成。
      在超臨界水(SCW)中,CCl4在673-773 K及25-27 MPa反應1小時生成大量類鑽碳及少部分石墨及鑽石,其中鑽石晶粒大小約1-2 nm。在673-773 K及25-27 MPa之SCW中,鹽類的低溶解度及水的低介電常數(1.7-2.8)使鈉離子與CCl4之氯原子間的作用力提高,因此鈉離子會抓取氯原子而形成氯化鈉沈澱,Na2C2O4則轉移電子至CCl4。氯離子及超臨界水中產生的氫氣有助於碳原子形成鑽石。

      CCl4 may cause catalytically depletion of ozone in the stratosphere. CCl4 may lead to kidney and liver damage, and is possibly carcinogenic to humans. Chlorine-containing wastes may be decomposed completely via high-temperature thermal oxidation. Undesirable by-products such as dioxins may be formed especially during cooling of the flue gases. Because of low dielectric constants, metal salts may possess low solubility of metal salts in SCFs (supercritical fluids). Chlorine in CCl4 may be abstracted by alkali cations due to formation of low solubility alkali salts in SCFs. As Cl in CCl4 is abstracted by alkali cations in SCFs, C atoms may be aggregated and form sp3 diamond carbons.
      The DFT calculations revealed that the alkali cations (Li+, Na+, and K+) may enhance the dissociation of C-Cl bonds of CCl4. The C2Cl6 intermediate may be yielded during formation of diamond. Experimentally, carbon, CO2 and NaCl were the main products in SC-CCl4 in the presence of Na2C2O4. A great quantity of DLCs and a small amount of diamond and graphite were found in the carbon products. The crystallite size of diamonds was about 1-2 nm. Disappearance of Na2C2O4 (87-100 %) were also found at 623-673 K for 12-24 hours. Nevertheless, a decrease of the sp3/sp2 ratios in carbon products was observed in Raman spectra. It seems that the sodium cations of Na2C2O4 may enhance the dissociation of C-Cl bonds in SC-CCl4 and form NaCl. Reconstruction on the surfaces of Na2C2O4 enables the reaction of Na2C2O4 with CCl4 to proceed. The growth of NCDs or DCLs may occur on the surface of Na2C2O4. In addition, different metal cations (Na+, K+ and Ca2+) were also proved to enhance the dissociation of C-Cl bonds in CCl4 and lead to the formation of metal halides. In addition, in the presence of catalysts such as iron or nickel powder, disappearance of Na2C2O4 (51-95 %) was enhanced at 573-673 K for one hour in SC-CCl4. The catalysts not only enhanced the dissociation of CCl4, but also reduce the activation energy for the formation of sp3 species of carbon.
      In supercritical water (SCW), at 673-773 K and 25-27 MPa for one hour, a large amount of DLCs and a small amount of diamond with 1-2 nm or graphite were observed in carbon products. Due to the low solubility of metal salts and low dielectric constants (1.7-2.8) in SCW at 673-773 K and 25-27 MPa, Na+ (Na2C2O4) in SCW may abstract Cl in CCl4 to form NaCl. Electron may transfer from oxalate to CCl4. Chlorine and high concentration of H2 may induce the aggregated C atoms to form diamond in SCW.

    摘要.......................................................................I Abstract.................................................................III 誌謝.......................................................................V Content...................................................................VI List of Figures.........................................................VIII List of Tables.............................................................X CHAPTER 1 INTRODUCTION......................................................1 CHAPTER 2 LITERATURE SURVEY.................................................3 2.1. Chlorinated organics..............................................3 2.2. Diamond and Nano-crystalline diamond..............................6 2.3. Synthesis of diamond..............................................7 2.4. Supercritical water...............................................9 2.4.1. Physical and chemical properties of supercritical water...........9 2.4.2. Applications of supercritical water..............................18 2.4.3. Corrosion in supercritical water.................................25 CHAPTER 3 EXPERIMENTAL METHODS.............................................33 3.1. Reaction systems.................................................33 3.2. The procedure of experiments.....................................36 3.3. Analyses of nano-crystalline diamonds............................39 CHAPTER 4 RESULTS AND DISCUSSION...........................................43 4.1. Density Functional Theory calculations for formation of diamonds or DLCs in supercritical fluids.............................................43 4.2. Synthesis of nanocrystalline diamonds in supercritical CCl4......49 4.3. Synthesis of nanocrystalline diamonds in SCW.....................70 CHAPTER 5 CONCLUTION.......................................................81 Reference.................................................................82

    1. Holbrook, M. T., "Chlorocarbons and chlorohydrocarbons: carbon tetrachloride". in: Kirk-Othmer encyclopedia of chemical technology, pp. 1062-1072, Vol.5, John Wiley and Sons, 1993.
    2. Lyons, E. H. and Dickinson, R. G., "The Photo-oxidation of Liquid Carbon Tetrachloride" J. Am. Chem. Soc. Vol.57, pp.443-446, 1935.
    3. Fouw, J. d., "Carbon tetrachloride", Geneva : World Health Organization, 1999.
    4. Burdeniuc, J. and Crabtree, R. H., "Mineralization of chlorofluorocarbons and aromatization of saturated fluorocarbons by a convenient thermal process" Science Vol.271, pp.340-341, 1996.
    5. Lin, K. S. and Wang, H. P., "Rate enhancement by cations in supercritical water oxidation of 2-chlorophenol" Environmental Science & Technology Vol.33, pp.3278-3280, 1999.
    6. Crummett, W. B. and Stenger, V. A., "Thermal Stability of Methyl Chloroform and Carbon Tetrachloride" Ind. Eng. Chem. Vol.48, pp.434-436, 1956.
    7. Singh, H. B., Fowler, D. P., and Peyton, T. O., "Atmospheric Carbon-Tetrachloride - Another Man-Made Pollutant" Science Vol.192, pp.1231-1234, 1976.
    8. Nicoll, G. and Francisco, J. S., "Heterogeneous degradation of carbon tetrachloride: Breaking the carbon-chlorine bond with activated carbon surfaces" Environ. Sci. Technol. Vol.33, pp.4102-4106, 1999.
    9. Foy, B. R., Waldthausen, K., Sedillo, M. A., and Buelow, S. J., "Hydrothermal processing of chlorinated hydrocarbons in a titanium reactor" Environ. Sci. Technol. Vol.30, pp.2790-2799, 1996.
    10. "Molecular Structure and Spectroscopy". in: CRC Handbook Chemistry and Physics, David R.Lide, ed., pp. 9-52-9-71, CRC Press, 2004.
    11. Vohs, J. K., Brege, J. J., Raymond, J. E., Brown, A. E., Williams, G. L., and Fahlman, B. D., "Low-temperature growth of carbon nanotubes from the catalytic decomposition of carbon tetrachloride" J. Am. Chem. Soc. Vol.126, pp.9936-9937, 2004.
    12. Robert DeVries Consultant, "Carbon: diamond, nature". in: Kirk-Othmer encyclopedia of chemical technology, pp. 1074-1082, Vol.4, John Wiley and Sons, 1993.
    13. Wentorf, R. H., "Carbon: diamond, synthetic". in: Kirk-Othmer encyclopedia of chemical technology, pp. 1082-1096, Vol.4, John Wiley and Sons, 1993.
    14. Gruen, D. M., "Nanocrystalline diamond films" Annu. Rev. Mater. Sci. Vol.29, pp.211-259, 1999.
    15. Hiraki, A., "Low-temperature (200 degrees C) growth of diamond on nano-seeded substrates" Appl. Surf. Sci. Vol.162, pp.326-331, 2000.
    16. Muranaka, Y., Yamashita, H., and Miyadera, H., "Worldwide status of low temperature growth of diamond" Diamond Relat. Mater. Vol.3, pp.313-318, 1994.
    17. Li, Y. D., Qian, Y. T., Liao, H. W., Ding, Y., Yang, L., Xu, C. Y., Li, F. Q., and Zhou, G., "A reduction-pyrolysis-catalysis synthesis of diamond" Science Vol.281, pp.246-247, 1998.
    18. Kumar, M. D. S., Akaishi, M., and Yamaoka, S., "Formation of diamond from supercritical H2O-CO2 fluid at high pressure and high temperature" J. Cryst. Growth Vol.213, pp.203-206, 2000.
    19. Roy, R., Ravichandran, D., Ravindranathan, P., and Badzian, A., "Evidence for hydrothermal growth of diamond in the C-H-O and C- H-O halogen system" J. Mater. Res. Vol.11, pp.1164-1168, 1996.
    20. Zhao, X. Z., Roy, R., Cherian, K. A., and Badzian, A., "Hydrothermal growth of diamond in metal-C-H2O systems" Nature Vol.385, pp.513-515, 1997.
    21. Hirose, Y., Amanuma, S., and Komaki, K., "The synthesis of high-quality diamond in combustion flames" J. Appl. Phys. Vol.68, pp.6401, 1990.
    22. Okada, M., Nishigawara, Y., and Kubomura, K., "A process for continuous manufacturing of diamond in atmosphere" Diamond Relat. Mater. Vol.11, pp.1479-1484, 2002.
    23. Lou, Z. S., Chen, Q. W., Wang, W., Qian, Y. T., and Zhang, Y. F., "Growth of large diamond crystals by reduction of magnesium carbonate with metallic sodium" Angew. Chem. Int. Edit. Vol.42, pp.4501-4503, 2003.
    24. Lou, Z. S., Chen, Q. W., Zhang, Y. F., Wang, W., and Qian, Y. T., "Diamond formation by reduction of carbon dioxide at low temperatures" J. Am. Chem. Soc. Vol.125, pp.9302-9303, 2003.
    25. Eckert, C. A., Knutson, B. L., and Debenedetti, P. G., "Supercritical fluids as solvents for chemical and materials processing" Nature Vol.383, pp.313-318, 1996.
    26. Clifford, T., "Fundamentals of supercritical fluids", Oxford University Press, Edition. 1, New York, 1999.
    27. Eckert, C. A. and Chandler, K., "Tuning fluid solvents for chemical reactions" J. Supercrit. Fluid. Vol.13, pp.187-195, 1998.
    28. Sato, H., Uematsu, M., and Watanabe, K., "New International Skeleton Tables for the Thermodynamic Properties of Ordinary Water Substance" J. Phys. Chem. Ref. Data Vol.17, pp.1439-1540, 1988.
    29. Ohtaki, H., Radnai, T., and Yamaguchi, T., "Structure of water under subcritical and supercritical conditions studied by solution X-ray diffraction" Chem. Soc. Rev. Vol.26, pp.41-51, 1997.
    30. Sato, H., Uematsu, M., and Watanabe, K., "New International Skeleton Tables for the Thermodynamic Properties of Ordinary Water Substance" J. Phys. Chem. Ref. Data Vol.17, pp.1439-1540, 1988.
    31. Broll, D., Kaul, C., Kramer, A., Krammer, P., Richter, T., Jung, M., Vogel, H., and Zehner, P., "Chemistry in supercritical water" Angew. Chem. Int Edit Vol.38, pp.2999-3014, 1999.
    32. Modell, M., "Supercritical water oxidation". in: Standard handbook of hazardous waste treatment and disposal, Freeman, H., ed., pp. 8.153-8.168, McGraw-Hill, New York, 1989.
    33. Ikushima, Y., Hatakeda, K., Saito, N., and Arai, M., "An in situ Raman spectroscopy study of subcritical and supercritical water: The peculiarity of hydrogen bonding near the critical point" J. Chem. Phys. Vol.108, pp.5855-5860, 1998.
    34. Gorbaty, Yu. E. and Kalinichev, A. G., "Hydrogen bonding in supercritical water. I. Experimental results" J. Phys. Chem. Vol.99, pp.5336-5340, 1995.
    35. Yamanaka, K., Yamaguchi, T., and Wakita, H., "Structure of water in the liquid and supercritical states by rapid x-ray diffractometry using an imaging plate detector" J. Chem. Phys. Vol.101, pp.9830-9836, 1994.
    36. Hoffmann, M. M. and Conradi, M. S., "Are there hydrogen bonds in supercritical water?" J. Am. Chem. Soc. Vol.119, pp.3811-3817, 1997.
    37. Chen, J. Y., Zheng, H. F., and Zeng, Y. S., "Recent progress in supercritical water theoretical research" Prog. Chem. Vol.14, pp.409-414, 2002.
    38. Kalinichev, A. G. and Bass, J. D., "Hydrogen-Bonding in Supercritical Water - A Monte-Carlo Simulation" Chem. Phys. Lett. Vol.231, pp.301-307, 1994.
    39. Kalinichev, A. G. and Churakov, S. V., "Thermodynamics and structure of molecular clusters in supercritical water" Fluid Phase Equilib. Vol.183, pp.271-278, 2001.
    40. Zhou, J., Lu, X. H., Wang, Y. R., and Shi, J., "Molecular dynamics simulation of supercritical water" Acta Physico-Chimica Sinica Vol.15, pp.1017-1022, 1999.
    41. Marti, J., "Analysis of the hydrogen bonding and vibrational spectra of supercritical model water by molecular dynamics simulations" J. Chem. Phys. Vol.110, pp.6876-6886, 1999.
    42. Gordillo, M. C. and Marti, J., "Hydrogen bond structure of liquid water confined in nanotubes" Chem. Phys. Lett. Vol.329, pp.341-345, 2000.
    43. Gordillo, M. C. and Marti, J., "Hydrogen bonding in supercritical water confined in carbon nanotubes" Chem. Phys. Lett. Vol.341, pp.250-254, 2001.
    44. Cochran, H. D., Cummings, P. T., and Karaborni, S., "Solvation in supercritical water" Fluid Phase Equilib. Vol.71, pp.1-16, 1992.
    45. Iijima, S., "Helical microtubules of graphitic carbon" Nature Vol.354, pp.56-58, 1991.
    46. Moreno, J. M. C. and Yoshimura, M., "Hydrothermal processing of high-quality multiwall nanotubes from amorphous carbon" J. Am. Chem. Soc. Vol.123, pp.741-742, 2001.
    47. Calderon-Moreno, J. M. and Yoshimura, M., "Hydrothermal processing of carbon nanotubes from dense fluids: Growth mechanism" Mater. Trans. Vol.42, pp.1681-1683, 2001.
    48. Motiei, M., Hacohen, Y. R., Calderon-Moreno, J., and Gedanken, A., "Preparing carbon nanotubes and nested fullerenes from supercritical CO2 by a chemical reaction" J. Am. Chem. Soc. Vol.123, pp.8624-8625, 2001.
    49. Chang, J. Y., Ghule, A., Chang, J. J., Tzing, S. H., and Ling, Y. C., "Opening and thinning of multiwall carbon nanotubes in supercritical water" Chem. Phys. Lett. Vol.363, pp.583-590, 2002.
    50. Holmes, J. D., Johnston, K. P., Doty, R. C., and Korgel, B. A., "Control of thickness and orientation of solution-grown silicon nanowires" Science Vol.287, pp.1471-1473, 2000.
    51. Chang, J. Y., Chang, J. J., Lo, B., Tzing, S. H., and Ling, Y. C., "Silver nanoparticles spontaneous organize into nanowires and nanobanners in supercritical water" Chem. Phys. Lett. Vol.379, pp.261-267, 2003.
    52. Chang, J. Y., Mai, F. D., Lo, B., Chang, J. J., Tzing, S. H., Ghule, A., and Ling, Y. C., "Transportation of silver nanopaticles in nanochannels of carbon nanotubes with supercritical water" Chem. Commun. pp.2362-2363, 2003.
    53. Tester, J. W., Holgate,H.R., Armellini,F.J., Webley,P.A., Killilea,W.R., Hong,G.T., and Barner,H.E., "Supercritical water oxidation technology: process development and fundamental research". in: Emerging technologies in hazardous waste management III, Tedder, D. W. and Pohland, F. G., eds. pp. 35-76, Vol.518, American Chemical Society, Washington,DC, 1993.
    54. Tester, J. W. and Cline, J. A., "Hydrolysis and oxidation in subcritical and supercritical water: Connecting process engineering science to molecular interactions" Corrosion Vol.55, pp.1088-1100, 1999.
    55. Griffith, J. W. and Raymond, D. H., "The first commercial supercritical water oxidation sludge processing plant" Waste. Manage. Vol.22, pp.453-459, 2002.
    56. Svanstrom, M., Froling, M., Modell, M., Peters, W. A., and Tester, J., "Environmental assessment of supercritical water oxidation of sewage sludge" Resour. Conserv. Recy. Vol.41, pp.321-338, 2004.
    57. Barner, H. E., Huang, C. Y., Johnson, T., Jacobs, G., Martch, M. A., and Killilea, W. R., "Supercritical water oxidation. An emerging technology" J. Hazard. Mater. Vol.31, pp.1-17, 1992.
    58. Ding, Z. Y., Frisch, M. A., Li, L. X., and Gloyna, E. F., "Catalytic oxidation in supercritical water" Ind. Eng. Chem. Res. Vol.35, pp.3257-3279, 1996.
    59. Krajnc, M. and Levec, J., "Catalytic oxidation of toxic organics in supercritical water" Appl. Catal. B:Environ. Vol.3, pp.L101-L107, 1994.
    60. Thornton, T. D. and Savage, P. E., "Phenol oxidation pathways in supercritical water" Ind. Eng. Chem. Res. Vol.31, pp.2451-2456, 1992.
    61. Ding, Z. Y., Sudhir, N. V., Aki, K., and Abraham, M. A., "Catalytic supercritical water oxidation: Phenol conversion and product selectivity" Environ. Sci. Technol. Vol.29, pp.2748-2753, 1995.
    62. Aki, S. N. V. K., Ding, Z. Y., and Abraham, M. A., "Catalytic supercritical water oxidation: stability of Cr2O3 catalyst" AICHE J. Vol.42, pp.1995-2004, 1996.
    63. Kruse, A. and Dinjus, E., "Hydrogen from methane and supercritical water" Angew. Chem. Int Edit Vol.42, pp.909-+, 2003.
    64. Sigoli, F. A., Kawano, Y., Davolos, M. R., and Jafelicci, M., "Phase separation in pyrex glass by hydrothermal treatment: Evidence from micro-Raman spectroscopy" J. Non-Cryst. Solids. Vol.284, pp.49-54, 2001.
    65. Sigoli, F. A., Feliciano, S., Giotto, M. V., Davolos, M. R., and Jafelicci, M., "Porous silica matrix obtained from pyrex class by hydrothermal treatment: Characterization and nature of the porosity" J. Am. Ceram. Soc. Vol.86, pp.1196-1201, 2003.
    66. Bell, W. C. and Myrick, M. L., "Preparation and characterization of nanoscale silver colloids by two novel synthetic routes" J. Colloid Interface Sci. Vol.242, pp.300-305, 2001.
    67. Lu, J., Wang, B., and Zhang, J., "Corrosion of stainless steels and Ni-base alloy in supercritical water oxidation system" Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research Vol.16, pp.41-45, 2002.
    68. Kritzer, P., "Corrosion in high-temperature and supercritical water and aqueous solutions: a review" J. Supercrit. Fluid. Vol.29, pp.1-29, 2004.
    69. Kritzer, P. and Dinjus, E., "An assessment of supercritical water oxidation (SCWO) - Existing problems, possible solutions and new reactor concepts" Chem. Eng. J. Vol.83, pp.207-214, 2001.
    70. Callister, W. D., "Materials science and engineering an introduction", John Wiley & Sons, Edition. 6, pp.569-610, 2003.
    71. Kritzer, P., Boukis, N., and Dinjus, E., "Factors controlling corrosion in high-temperature aqueous solutions: a contribution to the dissociation and solubility data influencing corrosion processes" J. Supercrit. Fluid. Vol.15, pp.205-227, 1999.
    72. Kritzer, P., Boukis, N., and Dinjus, E., "Corrosion of alloy 625 in aqueous solutions containing chloride and oxygen" Corrosion Vol.54, pp.824-834, 1998.
    73. Mitton, D. B., Yoon, J. H., Cline, J. A., Kim, H. S., Eliaz, N., and Latanision, R. M., "Corrosion behavior of nickel-based alloys in supercritical water oxidation systems" Ind. Eng. Chem. Res. Vol.39, pp.4689-4696, 2000.
    74. Zhang, L., Han, E. H., Zhang, Z. O., Guan, H., and Ke, W., "The corrosion of stainless steel and nickel base alloys in subcritical water condition" Acta. Metall. Sin. Vol.39, pp.649-654, 2003.
    75. Kim, Y. S., Mitton, D. B., and Latanision, R. M., "Corrosion resistance of stainless steels in chloride containing supercritical water oxidation system" Korean. J. Chem. Eng. Vol.17, pp.58-66, 2000.
    76. Konys, J., Fodi, S., Hausselt, J., Schmidt, H., and Casal, V., "Corrosion of high-temperature alloys in chloride-containing supercritical water oxidation systems" Corrosion Vol.55, pp.45-51, 1999.
    77. Kritzer, P., Boukis, N., and Dinjus, E., "Corrosion of alloy 625 in high-temperature, high-pressure sulfate solutions" Corrosion Vol.54, pp.689-699, 1998.
    78. Kane, R. D., "Pick the right materials for wet oxidation" Chem. Eng. Prog. Vol.95, pp.51-58, 1999.
    79. "Safety in the operation of Lab Reactors & Pressure Vessels", Parr Instrument, [230M], 2001.
    80. Han, E. H., "Supercritical water oxidation technology and its materials degradation" Rare Metal Mat. Eng. Vol.29, pp.45-48, 2000.
    81. Schacht, M., Boukis, N., and Dinjus, E., "Corrosion of alumina ceramics in acidic aqueous solutions at high temperatures and pressures" J. Mater. Sci. Vol.35, pp.6251-6258, 2000.
    82. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A. Gaussian 03. Revision B.03. 2003. Gaussian, Inc.: Pittsburgh PA.
    Ref Type: Computer Program
    83. Diaz, J., Paolicelli, G., Ferrer, S., and Comin, F., "Separation of the sp(3) and sp(2) components in the C1s photoemission spectra of amorphous carbon films" Physical Review B Vol.54, pp.8064-8069, 1996.
    84. Haerle, R., Riedo, E., Pasquarello, A., and Baldereschi, A., "sp(2)/sp(3) hybridization ratio in amorphous carbon from C 1s core-level shifts: X-ray photoelectron spectroscopy and first-principles calculation" Physical Review B Vol.65, 2002.
    85. Ferrari, A. C. and Robertson, J., "Interpretation of Raman spectra of disordered and amorphous carbon" Physical Review B Vol.61, pp.14095-14107, 2000.
    86. Ferrari, A. C., "Determination of bonding in diamond-like carbon by Raman spectroscopy" Diamond Relat. Mater. Vol.11, pp.1053-1061, 2002.
    87. Bundy, F. P., Bovenkerk, H. P., Strong, H. M., and Wentorf, R. H., Jr., "Diamond-graphite equilibrium line from growth and graphitization of diamond" J. Chem. Phys. Vol.35, pp.383-391, 1961.
    88. Ferro, S., "Synthesis of diamond" J. Mater. Chem. Vol.12, pp.2843-2855, 2002.
    89. Chien, Y. C., Wang, H. P., and Yang, Y. W., "Mineralization of CCl4 with copper oxide" Environmental Science & Technology Vol.35, pp.3259-3262, 2001.

    下載圖示 校內:2015-08-08公開
    校外:2015-08-08公開
    QR CODE