簡易檢索 / 詳目顯示

研究生: 林道遠
Lin, Tao-yuan
論文名稱: 製作於矽酸鹽與磷酸鹽玻璃基板之光波導元件
Silicate and Phosphate Glass-Based Photonic Devices
指導教授: 莊文魁
Chuang, Ricky W.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 149
中文關鍵詞: 積體光學光波導離子交換技術
外文關鍵詞: optical waveguide, ion-exchange technique, integrated optic
相關次數: 點閱:110下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,利用離子交換技術成功地製作可靠度高及造價相對低廉的積體光波導元件,並將其建構於矽酸鹽和磷酸鹽玻璃基板之中,相關元件的工作波段為632.8nm和1550nm。 首先,利用混合熔融鹽離子交換技術製作光波導於矽酸鹽玻璃(N-BK7)之中,透過完整且有系統性的分析,獲得離子交換過程後之波導折射率分佈符合高斯函數形式,從而建立波導特性與離子交換過程參數,如玻璃表層最大折射率改變量,以及鈉離子於玻璃中的擴散係數等等。利用此分析結果,於360°C和300分鐘條件之下製作直線型光波導,採用混合熔融鹽的配方是 AgNO3 : NaNO3 (摩爾比為0.02:1)。舉例來說,於製作過程中,擴散窗口寬度為2μm的單模波導,經由觀察和測試得到離子交換後波導的大小為8μm × 5μm,於1550nm工作波長,元件長度為1.5公分之條件下,存在約莫1 dB/cm的傳輸損耗。
    接著,利用上述離子交換技術並搭配光束傳播法(BPM)的光學模擬方式,成功的製作出1 × 8 和 1 × 16多模干涉分光器,標準化的光相對強度分別約為0.85至1和0.79至1,而光功率強度分佈的均勻性分別為0.74和1.04dB。 另一種有效率的離子交換方式為利用電場輔助的電遷移乾式離子交換法,分別於不同組成成份的矽酸鹽玻璃基板(N-BK7和 Borofloat),利用此方式成功地製作出如上述的1 × 8 和 1 × 16多模干涉分光器。相較於濕式熱擴散離子交換方式,乾式離子交換法需預先蒸鍍好金屬薄膜於玻璃表面,並提供一相對高的電場(∼715 V/mm),因高溫高壓而離子化的金屬原子,受到電場驅動與玻璃之中的納離子產生離子交換反應,此種方式的最大好處是可以避免於離子交換過程中玻璃表面受到高溫混合熔融鹽的微侵蝕。
    利用濕式離子交換技術製作光波導於共摻Er-Yb的磷酸鹽玻璃(IOG-1)之中,相關的光譜性質與插入損耗均完整的探討與量測。舉例來說,於製作過程中,擴散窗口寬度為3μm的光波導,經由觀察和測試得到離子交換後於1550nm工作波長,元件長度為1.2公分之條件下,存在約莫1.1 dB/cm的傳輸損耗。透過進一步的設計研究與製作,期許具備光訊號放大功能的光波導放大器於不久的將來實現。

    In this thesis, ion-exchange technology in glass has been successfully used to realize dependable and low-cost integrated optic devices in silicate and phosphate glasses for λ = 632.8nm as well as for the optical telecommunication window at λ = 1550nm.
    First of all, the waveguides are fabricated via a binary ion-exchange in silicate glass (N-BK7 form Schott Inc). A complete study of the silver ion diffusion in this glass matrix has been performed in order to determine silver and sodium ion diffusion coefficients as well as the maximum refractive index changes. Specifically, an ion-exchange process involving the use of AgNO3:NaNO3 molten salt with a mole ratio of 0.02:1 was conducted at a temperature of 360°C and with a duration of 300 min to realize the channel waveguides operating at λ = 1550 nm.

    After ionic diffusion, the cross-sectional size of the waveguide has been measured to be 8μm × 5μm and with propagation loss of ~1 dB/cm for a 1.5 cm long device. Next, the integrated 1-to-8 and 1-to-16 multimode interference (MMI) power beam splitters were designed and fabricated based on the numerical simulation using beam propagation method (BPM). The normalized light intensities varied from ~0.85 to 1 and from ~0.79 to 1 for symmetrical 1 × 8 and 1 × 16 devices, corresponding to the maximum power imbalances of 0.74 and 1.04 dB, respectively. In addition, an efficient dry silver ion-exchange electromigration technique was developed to fabricate multimode interference (MMI) optical beam splitters in two different kinds of glass substrates (N-BK7 and Borofloat form Schott Inc). In contrast to an ion exchange process based on thermal diffusion as mentioned, a relatively high electric field (~715 V/mm) was applied to the glass to accelerate the field-driven ion exchange process by expeditiously replacing host sodium ions in the glass with silver ions. Wet Ag+-Na+ ion exchange process was also utilized to fabricate Er-Yb codoped waveguide amplifiers in phosphate glass (IOG-1 form Schott Inc). The spectroscopic properties and insertion losses were also characterized successfully. With a 3μm diffusion window width, a channel waveguide with propagation loss of ~1.1 dB/cm was obtained for a 1.2 cm long device operating at 1550nm. Relevant results obtained will be carrying over to the design and fabrication of waveguide amplifiers in a near future.

    Abstract (In Chinese)……I Abstract (In English…III Acknowledgements……V Table of Contents…VII List of Tables……XI List of Figures… XII Chapter 1 – Introduction 1.1 An overview of optical communications…1 1.2 Integrated optics in optical communications…4 1.3 Outline of thesis…6 1.4 References……8 Chapter 2 – Ion Exchange Technique 2.1 Introduction…10 2.1.1 Advantages of ion-exchanged glass waveguide technology…10 2.2 Substrates for ion exchange…13 2.2.1 Schott N-BK7 glass…14 2.2.2 Schott Borofloat glass…15 2.2.3 Schott IOG-1 glass…15 2.3 Molten salt ion exchange process…16 2.4 Dry silver thin film ion exchange based on electromigration…19 2.5 References…21 Chapter 3 – Multimode Interference Theory 3.1 Introduction…25 3.2 Multimode waveguide…26 3.2.1 Guided-mode propagation analysis…29 3.3 General Interference…32 3.3.1 Single Images…32 3.3.2 Multiple Images…33 3.3.2.1 Position of two-fold images…33 3.3.2.2 Position of multi-fold images…34 3.4 Restricted Interference…37 3.4.1 Paired Interference (2 × N MMI)…37 3.4.2 Symmetric Interference (1 × N MMI)…39 3.5 References…43 Chapter 4 – Measurement of Optical Waveguide Parameters 4.1 Introduction…45 4.2 Coupling of light into optical waveguide…46 4.2.1 Prism coupling…46 4.2.2 End-fire coupling…48 4.3 Mode effective index…50 4.4 Refractive index profile…51 4.5 Insertion loss…52 4.5.1 Propagation loss…52 4.5.1.1 Cut-back method…52 4.5.2 Coupling loss…53 4.6 References…54 Chapter 5 – Ag+-Na+ Ion-Exchanged Glass Waveguide by Molten Salt Ion-Source in N-BK7 Glass 5.1 Introduction…55 5.2 Planar waveguides…56 5.3 Channel waveguides…66 5.4 1×N MMI optical beam-splitting devices…80 5.4.1 Experimental procedure…80 5.4.2 Results and discussion…81 5.5 Summary…92 5.6 References…93 Chapter 6 – Dry Thin Silver Film Electromigration Process for Optical Glass Waveguide Fabrication 6.1Introduction…95 6.2 N-BK7…96 6.2.1 Experimental procedure…96 6.2.2 Results and discussion…100 6.3 Borofloat glass…105 6.3.1 Experimental procedure…105 6.3.2 Results and discussion…105 6.4 Summary…115 6.5 References…116 Chapter 7 – Erbium-Ytterbium Co-doped Phosphate Glass Waveguide Amplifier 7.1 Introduction…117 7.2 Properties of phosphate glasses…119 7.2.1 Erbium ions as the active elements…119 7.2.2 Spectroscopic measurements…122 7.2.2.1 Measurement of transmittance and absorbance spectrum…122 7.2.2.2 Measurement of reflectivity spectrum…124 7.2.2.3 Measurement of photoluminescence spectrum…125 7.3 Planar waveguides…128 7.4 Channel waveguides…133 7.5 Summary…139 7.6 References…140 Chapter 8 – Conclusions and Future Work 8.1 Conclusions…143 8.2 Future work…145 8.3 References…149

    Chapter 1
    [1] R. J. Bates, “Optical Switching and Networking Handbook,” McGraw-Hill, New York, 2001.
    [2] K. C. Kao and G. A. Hockham, “ Dielectric - fibre surface waveguides for optical frequencies,” Proc. IEE, vol. 133, pp. 1151-1158, 1966.
    [3] J. Hecht., “City of Light: The Story of Fiber Optics,” New York: Oxford University Press, 1999.
    [4] T. Kimura and K. Daikoku, “A proposal on optical fiber transmission systems in a low-loss 1.0-1.4 μm wavelength region,” Opt. Quantum. Electron., vol. 9, no. 1, pp. 33-42, 1977.
    [5] Gregory H. Olsen, “InGaAsP laser diodes,” Opt. Eng., vol. 20, no. 3, pp. 440-445, 1981.
    [6] R. H. Saul, “Recent advances in the performance and reliability of InGaAsP LED’s for lightwave communication systems,” IEEE Trans. Electron Dev., vol. ED-30, no. 4, pp. 285-295, 1982.
    [7] Prentice Hall, and P. Kaiser, “Vibrational mode assignments,” Appl. Phys. Lett., vol.23, pp.45, 1973. Computer Networks, 3rd ed. by Andrew S. Tanenbaum, 1996. [8] Tetsuo Miya, Toshihito Hosaka, Yukio Terunuma and Tadashi Miyashita, “ Ultra low loss single-mode fibers at 1.55 μm,” Rev. Electrical Commun. Lab., vol. 27, no. 7-8, pp. 497-506, 1979.
    [9] R. J. Mears, L. Reekie, I. M. Jauncey and D. N. Payne, “ Low-noise erbium-doped fiber amplifier operating at 1.54μm,” Electron. Lett., vol. 23, no. 19, pp. 1026-1028, 1987.
    [10] I. Toshiharu, Optical Fiber Communication Conference and Exhibit (OFC’04), Paper ThE2, 2004.
    [11] S.E. Miller, “Integrated optics: An introduction,” Bell Syst. Tech. J., vol. 48, pp. 2059-2069, 1969.
    [12] C.W. Pitt, “Sputtered glass optical waveguides,” Electron. Lett., vol. 9, pp. 401-403, 1973.
    [13] G. H. Chartier, P. Jaussaud, A. D. de Oliveira, and O. Parriaux, “ Optical waveguides fabricated by electric-field controlled ion exchange in glass,” Electron. Lett., vol. 14, no. 5, pp. 132-134, 1978.
    [14] http://www.color-chip.com/

    Chapter 2
    [1] Mool C. Gupta and John Ballato, “ The handbook of photonics 2nd ed.,” CRC/Taylor & Francis, 2007.
    [2] R.H. Doremus, “ Exchange and Diffusion of Ions in Glass,” J.Phys.Chem., vol. 68, pp. 2212-2218, 1964.
    [3] R. V. Ramaswamy and R. Srivastava, “ Ion-exchanged glass waveguides: A review,” J. Lightwave Technol., vol. 6, no. 6, pp. 984-1002, 1988.
    [4] C.A. Millar and R.H. Hutchins, “ Manufacturing tolerances for silver-sodium ion-exchange planar optical waveguides,” J.Phys. D, Appl Phys., vol. 11, pp.1567-1576, 1978.
    [5] R. Doremus, “ Glass Science,” pp 310-315, Wiley & Sons, New York, 1973.
    [6] Akira Himeno, Kuniharu Kato and Tetsuo Miya, “ Silica-based planar lightwave circuits,” IEEE J. Selected Topics Quant. Electron., vol. 4, no. 6, pp. 913-924, 1998.
    [7] Ming Zhou, “ Low-loss polymeric materials for passive waveguide components in fiber optical telecommunication,” Opt. Eng., vol. 41, no. 7, pp. 1631-1643, 2002.
    [8] Louay Eldada, “ Polymer integrated optics: Promise vs. practicality,” Proc. SPIE, vol. 4642, pp. 11-22, 2002.
    [9] Sean M. Garner and Steve Caracci, “ Variable optical attenuator for large-scale integration,” IEEE Photon. Technol. Lett., vol. 14, no. 11, pp. 1560-1562, 2002.
    [10] Hyun-Chae Song, et al., “ Flexible low-voltage electro-optic polymer modulators,” Appl. Phys. Lett., vol. 82, no. 25, pp. 4432-4434, 2003.
    [11] Hong Ma, Alex K. Y. Jen, and Larry R. Dalton, “ Polymer-based optical waveguides: Materials, processing, and devices,” Advanced Materials, vol. 14, no. 19, pp. 1339-1365, 2002.
    [12] J. Albert, “ Ion exchange from salt melts,” in Introduction to Glass Integrated Optics, S. I. Najafi, ed., pp. 7-38, Artech House, Boston, 1992.
    [13] S.I. Najafi, T. Touam, R. Sara, M.P. Andrews and M.A. Fardad, “ Sol-gel glass waveguide and grating on silicon,” J. Lightwave Technol., vol. 16 , pp. 1640-1646, 1998.
    [14] Y. Okamura, S. Yoshinaka and S. Yamamoto, “ Measuring mode propagation losses of integrated optical waveguides - A simple method,” Appl. Optics., vol. 22, pp. 3892, 1983.
    [15] K. Shuto, K. Hattori, T. Kitagawa, Y. Ohmori and M. Horiguchi, “ Erbium-doped phosphosilicate glass waveguide amplifier fabricated by PECVD,” Elect. Lett., vol. 29 , pp. 139-141, 1993.
    [16] Feng Chen, Ke-Ming Wang and Xue-Lin Wang, “ Monomode, nonleaky planar waveguides in a Nd3+- doped silicate glass produced by silicon ion implantation at low doses ,” J. Appl. Phys., vol. 92, no. 6, pp. 2959, 2002. [17] Advanced Optics, Schott North America, Inc. “Optical Glass Data Sheets,” 2008(http: //www.us.schott.com).
    [18] Borofloat Division, Schott AG, Mainz, Germany. ”Borofloat Data Sheet,” (http: //www.schott.com/borofloat).
    [19] D. L. Veasey, D. S. Funk, P. M. Peters, N. A. Sanford, G. E. Obarski, N. Fontaine, M. Young, A. P.Peskin, W.-C. L. S. N. Houde-Walter, and J. S. Hayden, “ Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass,” J. Non-Cryst. Solids., vol. 263&264, pp. 369-381, 2000.
    [20] P. C. Becker, N. A. Olsson, and J. R. Simpson, “ Erbium-Doped Fiber amplifiers: Fundamentals and Technology,” Academic Press, San Diego, USA, 1999.
    [21] T. Izawa and H. Nakagome, “ Optical waveguide formed by electrically induced migration of ions in glass plates,” Appl. Phys. Lett., vol. 21, no. 12, pp. 584-586, 1972.
    [22] J.L. Jackel, “ Glass waveguides made using low melting point nitrate mixtures,” Appl. Opt. vol. 27, pp. 472, 1988.
    [23] J. E. Broquin, “ Ion-exchanged integrated devices,” Proc. SPIE, vol. 4277, pp. 105 , 2001.
    [24] R. W. Laity, “ Fused salt concentration cells with transference. Activity coefficients in the system silver nitrate-sodium nitrate,” J. Am. Chem. Soc., vol. 79, pp. 1849-1851, 1957.
    [25] G. Steward and P.J.R. Laybourn, “ Fabrication of ion-exchanged optical waveguides from dilute silver nitrate melts,” IEEE J. Quantum Electr., vol. QE-14, no. 12, pp. 930- 934, 1978.
    [26] C. A. Millar and R. H. Hutchins, ” Manufacturing tolerances for silver sodium ion-exchanged planar optical waveguides,” J. Phys. D., vol. 11, pp. 1567, 1978.
    [27] Katherine Forrest, Stephen J. Pagano, and Walter Viehmann, “ Channel waveguides in glass via silver-sodium field-assisted ion exchange,” J. Lightwave Technol., vol. LT-4, no. 2, pp. 140-150, 1986.
    [28] S. Honkanen and A. Tervonen, “ Experimental analysis of Ag+-Na+ exchange in glass with Ag film ion sources for planar optical waveguide fabrication,” J. Appl. Phys., vol. 63, no. 3, pp. 634-639, 1988.
    [29] A. Belkhir, “ A comparative study of silver diffusion in a glass substrate for optical waveguide applications,” IEEE J. Quantum Electron., vol. 35, no. 3, pp. 306-311, 1999.
    [30] S. Iraj Najafi, Paul G. Suchoski, Jr., and Ramu V. Ramaswamy, “ Silver film-diffused glass waveguides: diffusion process and optical properties,” IEEE J. Quantum Electron., vol. QE-22, no. 12, pp. 2213-2218, 1986.
    [31] A. Tervonen, S. Honkanen, and M. Leppihalme, “ Control of ion-exchanged waveguide profiles with Ag thin-film sources,” J. Appl. Phys., vol. 62, no. 3, pp. 759-763, 1987.

    Chapter 3
    [1] O. Bryngdahl, “ Image formation using self-imaging techniques” J. Opt. Soc. Am., vol. 63, pp. 416-419, 1973. [2] R. Uleich and G. Ankele,“ Self-imaging in homogenoous planar optical waveguides,” Appl. Phys.Lett., vol. 27, no. 6, pp. 337-339, 1975.
    [3] Lucas B. Soldano and Eric C. M. Pennings, “ Optical multi-mode interference devices based on self-imaging: principles and applications,” J.Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995.
    [4] Ricky W. Chuang, Zhen-Liang Liao, and Chih-Kai Chang,” Integrated optical beam splitters employing symmetric mode mixing in SiO2/SiON/SiO2 multimode interference waveguides,” Japan. J. Appl. Phys., vol. 46, no. 4B, pp. 2440-2444, 2007.
    [5] D. C. Chang and E. F. Kuester, “ A hybrid method for paraxial beam propagation in multimode optical waveguides,” Trans. Microwave Theory Tech., vol. MTT-29, no. 9, pp. 923-933, 1981.
    [6] R. Uleich, “ Light-propagation and imaging in planar optical waveguides,” Nouv. Rev. Optique., vol. 6, no. 5, pp. 253-262, 1975.
    [7] M. Bachmann, P.A.Besse, and H. Melchior, “ General self-imaging properties in N×N multi-mode interference couplers including phase relations,” Appl. Opt., vol. 33, no. 17, pp. 3905-3911, 1994.
    [8] M.P. Earnshaw, J.B. Soole, M. Cappuzzo, L. Gomez, E. Laskowski, and A. Paunescu, “ Compact, low-loss 4 × 4 optical switch matrix using multimode interference” Electron. Lett., vol. 37, no. 2, pp.115-116, 2001.
    [9] R. M. Jenkins, R.W. J. Deveraux, and J. M. Heaton, “Waveguide beam splitters and recombiners based on multimode propagation phenomena,” Opt. Lett., vol. 17, no. 14, pp. 991-993, 1992.
    [10] J. M. Heaton, R. M. Jenkins, D. R. Wight, J. T. Parker, “A novel waveguide Mach-Zehnder interferometer based on multimode interference phenomena,” Optics Commun., vol. 109, pp. 410-424, 1994.
    [11] R. Ulrich, “ An investivation of the model coupling of simple branching semiconductor ring lasers,” Nouv. Rev., vol. 6, pp. 253, 1975.
    [12] Wei chih-chang, “The study of various taper structures based on multimode interference” Department of Electrical Engineering, Tamkang University, Taipei, Taiwan, 2002.

    Chapter 4
    [1] S. I. Najafi, “Introduction to Glass Integrated Optics,” Artech House, Boston, 1992.
    [2] R. G. Hunsperger, “Integrated Optics: Theory and Technology,” Springer-Verlag, Berlin, 2002.
    [3] T. Tamir, “Integrated Optics,” Springer-Verlag, Berlin, 1982.
    [4] A. Gedeon., “ Comparison between rigorous theory and WKB- analysis of modes in graded-index waveguides,” Optics Commun., vol. 12, no. 3, pp. 329-332, 1974.
    [5] Najafi S.I., R. Srivastava and R.V. Ramaswamy, “ Wavelength- dependent propagation characteristics of Ag+-Na+ exchanged planar glass waveguides,” Appl. Opt., vol. 25, no. 11, pp. 1840-1843, 1986.
    [6] J.M. White and P.F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt., vol. 15, no. 1, pp. 151-155, 1976.
    [7] P. Hertel and H. P. Menzler, “Improved inverse WKB procedure to reconstruct refractive index profiles of dielectric planar waveguides,” Appl. Phys., vol. B, no. 44, pp. 75-80, 1987.
    [8] K.S. Chiang, “Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol., vol. LT-3, no. 2, pp. 385-391, 1985.

    Chapter 5
    [1] T. Tamir, “ Integrated Optics,” Springer-Verlag, Berlin, 1982.
    [2] Lee, D., “ Electromagnetic Principles of Integrated Optics”, Wiley, New York, 1986.
    [3] J. M. White and P.F. Heidrich, “ Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt., vol. 15, no. 1, pp. 151-155, 1976.
    [4] S. I. Najafi, “ Introduction to Glass Integrated Optics,” Artech House, Boston, 1992.
    [5] Ricky W. Chuang, Zhen-Liang Liao, and Chih-Kai Chang, “ Integrated optical beam splitters employing symmetric mode mixing in SiO2/SiON/SiO2 multimode interference waveguides,” Japan. J. Appl. Phys., vol. 46, no. 4B, pp. 2440-2444, 2007.
    [6] A. A. Muhammad and G.I. Aziz, “ 2D Single Mode Channel Waveguide and MMI Beam Splitter Fabrication and Characterization,” IEEE MELECON 2004, Dubrovnik, Croatia, May12-15, 2004.
    [7] Zigang Zhou and Xumei Duan, “ Integrated waveguide splitter fabricated by Cs+-Na+ ion-exchange,” Opt. Commun., vol. 266, no. 1, pp. 129-131, 2006.
    [8] K.S. Chiang, “ Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol., vol. LT-3, no. 2, pp. 385-391, 1985.
    [9] J. E. Gortych and D. G. Hall, “ Fabrication of Planar Optical Waveguides by K+ Ion-Exchange in BK7 and Pyrex Glass,” IEEE J. Quantum Electron., vol. QE-22, no. 6, 1986.
    [10] Roman Rogozinski, “ Investigation of birefringence in planar waveguides produced by ion exchange K+-Na+ in glass BK-7,” Proc. SPIE, vol. 5576, pp. 213-218, 2004. [11] Jing Yuan, Fengguang Luo, Mingcui Cao and Wenmin Chen, “ MMI splitter by ion exchange on K9,” Proc. SPIE, vol. 6019, 60193V, 2005.
    [12] Zigang Zhou, Desen Liu, “ 1 × 4 buried optical power splitter fabricated by Tl+-Na+ ion-exchange,” Chin. Opt. Lett., vol. 1, no. 11, 2003.

    Chapter 6
    [1] T. Izawa and H. Nakagome, “ Optical waveguide formed by electrically induced migration of ions in glass plates,” Appl. Phys. Lett., vol. 21, pp. 584, 1972.
    [2] G. Stewart and P. J. R. Laybourn, “ Fabrication of ion-exchanged optical waveguides form dilute silver nitrate melts,” IEEE J. Quantum Electron., vol. QE-14, pp. 930-934, Dec. 1972.
    [3] R.W. Chuang and C.C. Lee, “ Low-loss deep glass waveguides produced with dry silver electromigration process,” IEEE J. Lightwave Technol., vol. 20, no. 8, pp. 1590-1597, 2002.
    [4] Chin C. Lee and Ricky W. Chuang, “ A dry electromigration process for fabricating deep optical channel waveguides on glass and their characterization, ” Mater. Sci. Eng., vol. B, no. 111, pp. 40-48, 2004.
    [5] Zhen-Liang Liao, Ricky W. Chuang, Tao-Yuan Lin and Min-Hang Weng, “ Optical glass-based channel/rib waveguides and multimode interference (MMI) power splitters produced with dry silver ion-exchange electromigration process,” Symposium on Nano Device Technology (SNDT), May 9-15, 2007. (2007奈米元件技術研討會)
    [6] Ricky W. Chuang, Zhen-Liang Liao and Tao-Yuan Lin, “ A dry silver electromigration process for fabricating integrated multimode interference optical beam splitters on n-BK7 substrates,” 5th Workshop on Fibres and Optical Passive Components (IEEE/LEOS WFOPC’07), paper no.THP-24, Taipei, Taiwan, 2007.

    Chapter 7
    [1] A. Lidgaid, J.R. Simpson, P.C. Becker, “ Output saturation characteristics of erbium-doped fiber amplifiers pumped at 975 nm,” Appl. Phys. Lett., vol. 56, no. 26, pp. 2607-2609, 1990.
    [2] E. Desurvire, J.R. Simpson, P.C. Becker, “ High-gain erbium-doped traveling-wave fiber amplifier,” Opt. Lett., vol. 12, no. 11, pp. 888-890, 1987.
    [3] I. B. Sohn and J.W. Song, “ Gain flattened and improved double-pass two-stage EDFA using microbending long-period fiber gratings,” Opt. Commun., vol. 236, no. 1-3, pp. 141-144, June 2004.
    [4] J. J. Pan, K. Guan, X. Qiu, W. Wang, M. Zhang, J. Jiang, E. Zhang and F.Q. Zhou, “ Advantages of low-cost, miniature, intelligent EDFAs for next-generation dynamic metro/access networks,” Opt. Fiber Technol., vol. 9, no. 2, pp. 80-94, April 2003.
    [5] P. Blixt, J. Nilsson, T. Carlnäs and B. Jaskorzynska, “ Concentration dependent upconversion in Er3+-doped fiber amplifiers: Experiments and modeling,” IEEE Photon.Technol. Lett., vol. 3, no. 1, pp. 996-998, Nov. 1991.
    [6] V. P. Gapontsev, S. M. Matitsin, A. A. Isineer and V. B. Kravchenko, “ Erbium glass lasers and their applications,” Opt. Laser Technol. vol. 14, no. 4, pp. 189-196, 1982.
    [7] D. Barbier, M. Rattay, F. Saint Andre, G. Clauss, M. Trouillon, A. Kevorkian, J.M.P. Delavaux and E. Murphy, “ Amplifying four-wavelength combiner, based on erbium/ytterbium-doped waveguide amplifiers and integrated splitters,” IEEE Photon.Technol. Lett., vol. 9, no. 3, pp. 315-317, 1997.
    [8] J. Hubner, S. Guldberg-Kjar, M. Dyngaard, Y. Shen, C. L. Thomsen, S. Balslev, C. Zauner and T. Feuchter, “ Planar Er- and Yb-doped amplifiers and lasers,” Appl. Phys.B, vol. 73, no. 5-6, pp. 435-438, 2001.
    [9] Giancarlo C. Righini, Michele A. Forastiere, Massimo Guglielmi and Alessandro Martucci, “ Rare-earth-doped sol-gel waveguides: a review,” Proceedings of SPIE, vol. 3280, pp. 57-66, April 1998.
    [10] G. C. Righini, S. Pelli, M. Ferrari, C. Armellini, L.Zampedri, C. Tosello, S. Ronchin, R. Rolli, E. Moser, M. Montagna, A. Chiasera and S. J. L. Ribeiro, “ Er-doped silica-based waveguides prepared by different techniques: RF-sputtering, sol-gel and ion-exchange,” Optical and Quantum Electronics., vol. 34, no. 12, pp. 1151-1166, 2002.
    [11] G. N. van de Hoven, R.J.L.M. Koper, A. Polman, C.van. Dam, J.W.M. van Uffelen and M.K. Smit, “ Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon,” Appl. Phys. Lett., vol. 68, no. 14 pp. 1886-1888, April 1996.
    [12] N. Grote and H. Venghaus, “ Fiber Optic Communication Devices,” Springer-Verlag, New York, 2001. [13] K. Hirao, T. Mitsuyu, J. Si, and J. Qiu, “ Active Glasses for Photonic Devices: Photoinduced Structures and Their Applications,” Springer-Verlag, New York, 2001.
    [14] Jonathan M. Ward, Danny G. O'Shea, Brian J. Shortt and Síle Nic Chormaic ,“ Optical bistability in Er-Yb co-doped phosphate glass microspheres at room temperature,” J. Appl. Phys., vol. 102, no. 2, pp. 0231041, 2007.
    [15] Juan A. Vallés, Miguel A. Rebolledo, and Jesús Cortés, “ Full Characterization of Packaged Er-Yb Co-doped Phosphate Glass Waveguides,” IEEE J. Quantum Electron., vol. 42, no. 2, pp. 152-159, 2006.
    [16] S. Yliniemi, Q. Wang, J. Albert and S. Honkanen, “ Studies on passive and active silver-sodium ion-exchanged glass waveguides and devices,” Mater. Sci. Eng. B, vol. 149, no. 2, pp. 152-158, Mar. 2008.
    [17] R. Francini, F. Giovenale, U.M. Grassano, P. Laporta and S. Taccheo, “ Spectroscopy of Er and Er-Yb-doped phosphate glasses,” Opt. Mater., vol. 13, no. 4, pp. 417-425, Jan. 2000.
    [18] D. K. Schroder, “ Semiconductor material and device characterization,” Wiley, New York, 2005.
    [19] K. S. Chiang, “ Construction of refractive-index profiles of planar dielectric waveguides from the distribution of effective indexes,” J. Lightwave Technol., vol. LT-3, No. 2, pp. 385-391, 1985.
    [20] F. Gan and L. Xu, “ Photonic Glasses,” World Scientific Publishing Co., 2006.
    [21] Ke Liu and Edwin Y.B. Pun, “ Modeling and experiments of packaged Er3+–Yb3+ co-doped glass waveguide amplifiers,” Opt. Commun., vol. 273, no. 2, pp. 413-420, 2007.

    Chapter 8
    [1] C. R. Doerr and K. Okamoto, “ Advances in silica planar lightwave circuits,” J. Lightw. Technol., vol. 24, no. 12, pp. 4763-4789, Dec. 2006.
    [2] T. Hurvitz, S. Ruschin, D. Brooks, G. Hurvitz, and E. Arad, “ Variable optical attenuator based on ion-exchange technology in glass,” J. Lightwave Technol., vol. 23, no. 5, pp. 1918-1922, May 2005.
    [3] Milan L. Maˇsanovic´, Erik J. Skogen, Jonathon S. Barton, Joseph M. Sullivan, Daniel J. Blumenthal and Larry A. Coldren, “ Multimode Interference-Based Two-Stage 1 × 2 Light Splitter for Compact Photonic Integrated Circuits,” IEEE Photon. Technol. Lett., vol. 15, no. 5, pp. 706-708, May 2003.

    下載圖示 校內:2009-07-10公開
    校外:2009-07-10公開
    QR CODE