簡易檢索 / 詳目顯示

研究生: 張勝琳
Chang, Shen-Lin
論文名稱: 奈米石墨帶: 幾何引起的豐富電子性質
Geometry-induced rich electronic properties in graphene nanoribbon
指導教授: 林明發
Lin, Ming-Fa
共同指導教授: 吳璧如
Wu, Bi-Ru
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 85
中文關鍵詞: 第一原理奈米石墨帶半導體電子自旋
外文關鍵詞: first-principles, nanoribbon, semiconductor, spin
相關次數: 點閱:79下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們是透過第一原理計算方法調查奈米石墨帶在不同幾何效應下引起的豐富電子性質。三種類型的奈米石墨帶(彎曲,雙層和折疊石墨烯納米帶)被探討,其中的基本物理性質將被詳加調查,例如:最佳幾何結構、基態能量、磁矩、能帶結構、能隙、態密度等。奈米石墨帶的電子性質主要依賴著曲率大小、堆疊形狀、邊緣原子之間相互作用、和自旋排列等。這些電子特性可以藉由調控曲率或堆疊結構,因而達到金屬-半導體轉換特徵。特別地,針對鋸齒形結構的奈米石墨帶,會有兩點有趣的性質:磁矩的產生和破壞、電子自旋簡併度。這種豐富和複雜的電子性質將可以反映在態密度中,而未來預期將被實驗量測到,包括峰的樣貌、數目、強度和相對位置。

    Geometry-induced rich electronic properties in graphene nanoribbon are investigated by the first-principles calculations. Three types of graphene nanoribbons (curved, bilayer and folding graphene nanoribbons) are revealed to display the fundamental properties, such as optimal structures, ground state energies, magnetic moments, band structures, band gaps, band-edge states and density of states. Their electronic properties are dominated by the curvature effect, stacking effect, edge-edge interaction, and spin arrangements, etc. These properties can be modulated by the curvatures or the stacking configurations, and thus the metal-semiconductor transitions can be characterized. Specifically, for the zigzag systems, interesting features are displayed: the destruction or generation of magnetism and the splitting of spin-up and spin-down states. Versatile and intricate structures are exhibited in the density of states, including their forms, peak number, intensity and energy.

    Chapter 1. Introduction........................... 3 References ....................................... 9 Chapter 2. Curvature e ffects on electronic properties of armchair graphene nanoribbons without passivation 2.1 Introduction ................................. 13 2.2 Theory and geometric structure ............... 15 2.3 Geometric and electric properties ............ 17 2.4 Concluding remarks ........................... 27 References ....................................... 30 Chapter 3. Con guration-dependent geometric and electronic properties of bilayer graphene nanoribbons 3.1 Introduction ................................. 33 3.2 Theory and geometric structure ............... 35 3.3 Optimal geometry and magnetic moments ........ 37 3.4 Electric properties .......................... 45 3.5 Concluding remarks ........................... 53 References ....................................... 55 Chapter 4. Geometric and electronic properties of folded graphene nanoribbons 4.1 Introduction ................................. 58 4.2 Theory and geometric structure ............... 61 4.3 Optimal geometry and electronic properties ... 63 4.4 Conclusion remarks ........................... 76 References ....................................... 79 Chapter 5. Summary and future research ........... 83

    Chapter 1.
    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
    I. V. Grigorieva, A. A. Firsov, Science 306, 666-669 (2004).
    [2] A. K. Geim, K. S. Novoselov, Nat. Mater. 6, 183 (2007).
    [3] D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001).
    [4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 438, 197-200 (2005).
    [5] Y. Zhang, J. W. Tan, H. L. Stormer, P. Kim, Nature, 438, 201-204 (2005).
    [6] M. F. Cracium, S. Russo, M. Yamamoto, S. Tarucha, Nano Today, 6, 42-60 (2011).
    [7] Y. Liu, R. F. Willis, K. V. Emtsev, T. Seyller, Phys. Rev. B 78, 201403 (2008)
    [8] J. H. Wong, B. R. Wu, M. F. Lin, The Journal of Physical Chemistry C 116, 8271 (2012).
    [9] W. Bao, F. Miao, Z. Chen, H. Zhang, W. Jang, C. Dames, C. N. Lau, Nature nanotechnology 4, 562-566 (2009).
    [10] E. V. Castro, et al., Phys. Rev. Lett. 99, 216802 (2007).
    [11] J. Yan, Y. Zhang, P. Kim, A. Pinczuk,. Phys. Rev. Lett. 98, 166802 (2007).
    [12] Y. Zhang, et al., Phys. Rev. Lett. 96, 136806.
    [13] Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, Nature, 438, 201-204 (2005).
    [14] S. L. Chang, B. R. Wu, P. H. Yang, M. F. Lin, Physical Chemistry Chemical Physics, 14, 16409-16414 (2012).
    [15] S. L. Chang, B. R. Wu, J. H. Wong, M. F. Lin, Carbon(2014).
    [16] J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, and J.-M. Zuo, Phys. Rev. Lett. 104, 166805 (2010).
    [17] X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100, 206803 (2008).
    [18] A. Reina, et al., Nano letters, 9, 30-35 (2008).
    [19] D. Graf, F. Molitor, K. Ensslin, C. Stampfer, A. Jungen, C. Hierold, L. Wirtz, Nano letters 7, 238-242 (2007).
    [20] F. Guinea, B. Horovitz, P. Le Doussal, Phys. Rev. B 77, 205421 (2008).
    [21] F. Guinea, M. I. Katsnelson, A. K. Geim, Nature Physics 6, 30-33 (2009).
    [22] C. Stampfer, et al., Phys. Rev. Lett. 102, 056403 (2009).
    [23] K. Wakabayashi, et al., Carbon 47, 124-137 (2009).
    [24] S. Dutta, S. K. Pati, Carbon 48, 4409-4413 (2010).
    [25] L. Pisani, J. Chan, B. Montanari, N. Harrison, Phys. Rev. B 75, 064418 (2007).
    [26] F. Xia, et al., Nano letters 10, 715-718 (2010).
    [27] M. Y. Han, J. C. Brant, P. Kim, Phys. Rev. Lett. 104, 056801 (2010).
    [28] Y. W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
    [29] Y. W. Son, M. L. Cohen, S. G. Louie, Nature 444, 347-349 (2006).
    [30] C. Berger, et al., Science 312, 1191-1196 (2006).
    [31] K. S. Kim, et al., Nature 457, 706-710 (2009).
    [32] D. V. Kosynkin, et al., Nature 458, 872-876 (2009).
    [33] A. L. El as, et al., Nano Lett. 10, 366 (2010).
    [34] L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 877-880 (2009).
    [35] S. S. Datta, D. R. Strachan, S. M. Khamis, A. C. Johnson, Nano letters, 8, 1912-1915(2008).
    [36] L. M. Viculis, J. J. Mack, R. B. Kaner, Science 299, 1361-1361 (2003).
    [37] M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, A. K. Geim, Nature nanotechnology 3, 676-681 (2008).
    [38] J. Y. Huang, L. Qi, J. Li, Nano Research 3, 43-50 (2010).
    [39] Z. Liu, K. Suenaga, P. J. F. Harris, and S. Iijima, Phys. Rev. Lett. 102, 015501 (2009).
    [40] J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, and J.-M. Zuo, Phys. Rev. Lett. 104, 166805 (2010).
    [41] X. Peng, J. Zhou, W. Wang, D. Cao, Carbon 48, 3760-3768 (2010).
    [42] G. Mpourmpakis, E. Tylianakis, G. E. Froudakis, Nano letters 7, 1893-1897 (2007).
    [43] K. K. Paulla, A. A. Farajian, Journal of Physics: Condensed Matter 25, 115303 (2013).
    [44] E. Cruz-Silva, X. Jia, H. Terrones, B. G. Sumpter, M. Terrones, M. S. Dresselhaus, V. Meunier, ACS nano 7, 2834-2841 (2013).

    Chapter 2.
    [1] H. P. Bovenkerk, F. P. Bundy, H. T. Hall, H. M. Strong, R. H. Wenthorf, Nature (London) 184, 1094 (1959).
    [2] F. Tuinstra and J. L. Koenig, J. Chem. Phys. 53, 1126-1130 (1970).
    [3] R. J. Nemanich and S. A. Solin, Phys. Rev. B 20, 392-401 (1979).
    [4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306, 666-669 (2004).
    [5] J. S. Bunch, Y. Yaish, M. Brink, K. Bolotin, P. L. McEuen, Nano lett. 5, 287-290 (2005).
    [6] Y. B. Zhang, J. P. Small, M. E. S. Amori, P. Kim, Phys. Rev. lett. 94, 176803 (2005).
    [7] Y. Wu, B. Yang, B. Zong, H. Sun, Z. Shen, Y. P. Feng, J. Mater. Chem. 14, 469-477 (2004).
    [8] S. Iijima, Nature (London) 354, 56-58 (1991).
    [9] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical properties of carbon nanotubes, Imperial College Press (1998).
    [10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).
    [11] E. Stolyarova, D. Stolyarov, K. Bolotin, S. Ryu, L. Liu, K. T. Rim, M. Klima, M. Hybertsen, et al. Nano Lett. 9, 332-337 (2009).
    [12] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, R. E. Smalley, Nature 318, 162-163 (1985).
    [13] J. Liu, H. Dai, J. H. Hafner, D. T. Colbert, R. E. Smalley, S. J. Tans, C. Dekker, Nature 385, 780 (1997).
    [14] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 458, 872-876 (2009).
    [15] A. L. El ias, A. R. Botello-M endez, D. Meneses-Rodr guez, V. J. Gonz alez, D. Ram rez-Gonz alez, L. Ci, E. Munoz-Sandoval, P. M. Ajayan, H. Terrones, M. Terrones, Nano Lett. 10, 366-372 (2010).
    [16] L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 877-880 (2009).
    [17] Y. W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
    [18] H. Lee, Y.-W. Son, N. Park, S. Han, J. Yu, Phys. Rev. B 72, 174431 (2005).
    [19] T. Kawai, Y. Miyamoto, O. Sugino, Y. Koga, Phys. Rev. B 62, 16349 (2000).
    [20] T. Miyake, S. Saito, Phys. Rev. B 68, 155424 (2003).
    [21] C. L. Kane, E. J. Mele, Phys. Rev. Lett. 78, 1932-1935 (1997).
    [22] F. L. Shyu, M. F. Lin, J. Phys. Soc. Jpn. 71, 1820 (2002).
    [23] M. Ouyang, J. L. Huang, C. L. Cheung, C. M. Lieber, Science 292, 702-705 (2001).
    [24] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 391, 59-62 (1998).
    [25] L. Tapaszto, G. Dobrik, P. Lambin, L. P.Biro, Nat. Nanotechnol. 3, 397-401 (2008).
    [26] G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169-11186 (1996).
    [27] J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865-3868 (1996).
    [28] D. H. Robertson, D. W. Brenner, J. W.Mintmire, Phys. Rev. B 45, 12592 (1992).
    [29] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204-2206 (1992).
    [30] R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 46, 1804-1811 (1992).

    Chapter 3.
    [1] A. L. El ias, et al., Nano Lett. 10, 366 (2010).
    [2] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 458, 872-876 (2009).
    [3] L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature 458, 877 (2009).
    [4] K. Kim , A. Sussman , A. Zettl, ACS Nano 4 1362-1366 (2010).
    [5] F. Cataldo, et al., Carbon 48, 2596-2602 (2010).
    [6] C. Stampfer, J. Guttinger, S. Hellmuller, F. Molitor, K. Ensslin, and T. Ihn, Phys. Rev. Lett. 102, 056403 (2009).
    [7] K. Wakabayashi, et al., Carbon 47, 124-137 (2009).
    [8] S. Dutta, S. K. Pati, Carbon 48, 4409-4413 (2010).
    [9] L. Pisani, J. A. Chan, B. Montanari, and N. M. Harrison, Phys. Rev. B 75, 064418 (2007).
    [10] F. Xia, D. B. Farmer, Y. M. Lin, and P. Avouris, Nano letters 10, 715 (2010).
    [11] Y. M. Han, B. C. Juliana, and K. Philip, Phys. Rev. Lett. 104, 056801 (2010).
    [12] A. K. Geim, and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
    [13] D. V. Khveshchenko, Phys. Rev. Lett. 87, 246802 (2001).
    [14] Y. W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
    15] S. L. Chang, B. R. Wu, P. H. Yang, and M. F. Lin, Phys. Chem. Chem. Phys. 14, 16409 (2012).
    [16] J. H. Wong, B. R. Wu, and M. F. Lin, J. Phys. Chem. C 116, 8271
    [17] Y. C. Huang, C. P. Chang, and M. F. Lin, Nanotechnology 18, 495401 (2007).
    [18] Y. C. Huang, M. F. Lin, and C. P. Chang, J. Appl. Phys. 103, 073709 (2008).
    [19] C. P. Chang, Y. C. Huang, C. L. Lu, J. H. Ho, T. S. Li, and M. F. Lin, Carbon
    44, 508 (2006).
    [20] Y. W. Son, M. L. Cohen, and S. G. Louie, Nature 444, 347 (2006).
    [21] Y. Guo ,W. Guo, C. Chen, The Journal of Physical Chemistry C 114, 13098-13105 (2010).
    [22] H. Santos, A. Ayuela, L. Chico, and E. Artacho, Phys. Rev. B 85, 245430 (2012).
    [23] M. P. Lima, A. Fazzio, and A. J. R. da Silva, Phys. Rev. B 79, 153401 (2009).
    [24] K. K. Paulla, and A. A. Farajian, J. Phys.: Condens. Matter 25, 115303 (2013).
    [25] J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, Nature 391, 59 (1998).
    [26] L. Tapaszto, G. Dobrik, P. Lambin, L. P. Biro, Nat. Nanotechnol. 3, 397 (2008).
    [27] A. C. Ferrari, et al., Phys. Rev. Lett. 97 187401 (2006).
    [28] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus Phys. Rep. 473, 51 (2009).
    [29] C. Berger, et al., Science 312, 1191 (2006).
    [30] A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, and A. Bachtold, Phys. Rev. Lett. 103, 076601 (2009).
    [31] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).
    [32] G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
    [33] S. Grimme, J. Comput. Chem. 27, 1787 (2006).
    [34] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [35] Y. W. Son, S. M. Choi, Y. P. Hong, S. Woo, S. H. Jhi, Physical Review B 84, 155410 (2011).
    [36] M. Ouyang, J. L. Huang, C. L. Cheung, C. M. Lieber, Science 292, 702 (2001).
    [37] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes (Vol. 4). London: Imperial college press (1998).

    Chapter 4.
    [1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 306 666, (2004).
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London) 438, 197 (2005).
    [3] A. K. Geim, K. S. Novoselov, Nature materials 6, 183-191(2007).
    [4] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proceedings of the National Academy of Sciences of the United States of America 102, 10451-10453 (2005).
    [5] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature 438, 197-200 (2005).
    [6] Y. Zhang, J. W. Tan, H. L. Stormer,P. Kim, Nature 438, 201-204 (2005).
    [7] S. Y. Zhou, G. H. Gweon, A. V. Fedorov,P. N. First, W. A. de Heer, D. H. Lee, F. Guinea, A. H. Castro Neto, A. Lanzara, Nat. Mater. 6, 770-916 (2007).
    [8] C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 321, 385-388 (2008).
    [9] C. Berger, et al., Science 312, 1191-1196 (2006).
    [10] K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi,B. H. Ho, Nature 457, 706-710 (2009).
    [11] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, J. M. Tour, Nature 458, 872-876 (2009).
    [12] L. Jiao, L. Zhang, X. Wang, G. Diankov, H. Dai, Nature 458, 877-880 (2009).
    [13] A. Cano-Marquez, F. Rodriguez-Macias, J. Campos-Delgado, C. Espinosa-Gonzalez, F. Tristan-Lopez, D. Ramirez-Gonzalez, D. Cullen, D. Smith, M. Terrones, Y. Vega-Cantu, Nano Lett. 9, 1527 (2009).
    [14] S. S. Datta, D. R. Strachan, S. M. Khamis, A. C. Johnson, Nano Lett. 8, 1912-1915 (2008).
    [15] M. V. Savoskin, V. N. Mochalin, A. P. Yaroshenko, N. I. Lazareva, T. E. Konstantinova, I. V. Barsukov, I. G. Proko ev, Carbon 45, 2797-2800(2007).
    [16] X. Li, X. Wang, L. Zhang, S. Lee, H. Dai, Science 319, 1229-1232 (2008).
    [17] Z. Liu, K. Suenaga, P. J. F. Harris, S. Iijima, Phys. Rev. Lett. 102, 015501 (2009).
    [18] J. Zhang, J. Xiao, X. Meng, C. Monroe, Y. Huang, J.-M. Zuo, Phys. Rev. Lett. 104, 166805 (2010).
    [19] J. Y. Huang, L. Qi, J. Li, Nano Res. 3, 43-50 (2010).
    [20] F. Liu, S. Song, D. Xue, H. Zhang, Advanced Materials 24, 1089-1094 (2012).
    [21] Y. W. Son, M. L. Cohen, S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
    [22] S. L. Chang, B. R. Wu, P. H. Yang, M. F. Lin, Phys Chem Chem Phys 14, 16409 (2012).
    [23] J. H. Wong, B. R. Wu, M. F. Lin, J Phys Chem C 116, 8271 (2012).
    [24] C. P. Chang, Y. C. Huang, C. L. Lu, J. H. Ho, T. S. Li, M. F. Lin, Carbon 44, 508 (2006).
    [25] Y. W. Son, M. L. Cohen, S. G. Louie, Nature 444, 347 (2006).
    [26] S. L. Chang, B. R. Wu, J. H. Wong, M. F. Lin, Carbon (2014).
    [27] E. Cruz-Silva, X. Jia, H. Terrones, B. G. Sumpter, M. Terrones, M. S. Dresselhaus, V. Meunier, ACS nano 7, 2834-2841 (2013).
    [28] G. Mpourmpakis, E. Tylianakis, G. E. Froudakis, Nano letters 7, 1893-1897 (2007).
    [29] X. Peng, J. Zhou, W. Wang, D. Cao, Carbon 48, 3760-3768 (2010).
    [30] X. H. Zheng, L. L. Song, R. N. Wang, H. Hao, L. J. Guo, Z. Zeng, Applied Physics Letters 97, 153129 (2010).
    [31] J. Feng, L. Qi, J. Y. Huang, J. Li, Phys. Rev. B 80, 165407 (2009).
    [32] G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999).
    [33] G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169 (1996).
    [34] S. Grimme, J Comput Chem 27, 1787 (2006).
    [35] J. P. Perdew, K. Burke,M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
    [36] P. E. Lammert,P. Zhang, V. H. Crespi, Phys. Rev. Lett. 84, 2453 (2000).
    [37] M. Birowska, K. Milowska, J. A. Majewski, Acta Phys Pol A 120, 845 (2011).
    [38] C. Li, T. W. Chou, International Journal of Solids and Structures, 40, 2487-2499
    (2003).
    [39] M. Ouyang, J. L. Huang, C. L. Cheung, C. M. Lieber, Science 292, 702 (2001).
    [40] L. Tapaszto, G. Dobrik, P. Lambin, L. P. Biro, Nat Nanotechnol 3, 397V401 (2008).
    [41] A. Ferrari, et al., Phys. Rev. Lett. 97, 187401 (2006).
    [42] A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, A. Bachtold, Phys. Rev. Lett. 103, 076601 (2009).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE