簡易檢索 / 詳目顯示

研究生: 洪義斌
Hong, Yi-Bin
論文名稱: 以無網格徑向函數法解折射介質中的輻射傳遞之積分方程式
Solving the integral equations for radiative transfer in refractive media by a RBF-based meshless method
指導教授: 吳志陽
Wu, Chih-Yang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 73
中文關鍵詞: 輻射傳遞積分方程式空間變折射係數徑向函數法無網格法
外文關鍵詞: Radiative transfer, Integral equation, Spatially varying refractive index, Radial basis function, Meshless method
相關次數: 點閱:125下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用徑向函數 (radial basis function, RBF) 法展開以強度矩表示之輻射傳遞積分方程式中的強度矩,發展出一種無網格的解法,稱為 RBF-IEM。由於本方法不需要網格,較容易應用在不規則形狀的介質。本研究首先應用 RBF-IEM 於二維定折射及變折射係數矩形介質中的輻射傳遞問題,探討不同光學厚度,散射比及 RBF 中心點數對精確性的影響,結果顯示在光學厚度小時需要較多方向格點;光學厚度大時需要較多 RBF 中心點才能得到相同精確性。接著討論二維不規則幾何形狀介質,包括矩形缺角、半圓形內部挖孔介質的熱傳問題,針對不同散射比、折射率梯度及不同邊界性質時的結果進行討論,結果顯示不同散射比對 RBF-IEM 的精確度無明顯影響但不同折射率梯度對精確度則影響甚劇,而對於不規則形狀介質的輻射傳遞只要提供足夠多的方向格點,對本研究方法的精確度並不會影響太多,而當考慮的輻射傳遞問題邊界為反射邊界時,雖然需要多解一組積分方程式,計算時間仍然低於蒙地卡羅法 (Monte Carlo method, MCM),並同時具有優異的精確度。

    A radial basis function-based (RBF-based) meshless method is developed to solve the integral equations of radiative transfer in terms of intensity moments. Since the method does not require meshes, it can be readily applied to the problem with irregular geometry. The method is first applied to radiative transfer in a two-dimensional (2D) rectangular medium with a constant or varying refractive index to investigate the effects of different optical sizes, scattering albedos and RBF centres on the accuracy. The results obtained by using appropriate RBF centres show good accuracy. More RBF centres are required for optically thicker cases; more directional quadrature points are required for optically thinner cases. Radiative transfer in 2D irregular media, including a trapezoidal medium and a semicircular medium with a circle in it, is then studied. Various optical sizes, scattering albedos, gradients of refractive index and boundary properties are considered. The results show that the scattering albedo has little influence on accuracy while the gradient of refractive index affect accuracy greatly. The results also show that irregular geometry of medium does not degrade accuracy much, provided that the number of directional quadrature point is sufficiently large. As for the cases with reflecting surfaces, the computation cost of the present method is still less than that of the MCM, while the accuracy of the present results and that of the MCM are comparable.

    摘要 i Extended Abstract ii 致謝 ix 目錄 x 表目錄 xiii 圖目錄 xv 符號表 xx 第 一 章 緒論 1 1.1 研究動機、背景與文獻回顧 1 1.2 研究目的與方法簡介 3 1.3 本文架構 3 第 二 章 理論分析4 2.1 物理模型與基本假設 4 2.2 輻射傳遞方程式及其積分方程式的推導 5 2.3 介質物理模式對積分方程式之影響 7 2.3.1 冷介質 8 2.3.2 介質溫度已知 8 2.3.3 輻射平衡成立 8 2.4 邊界物理模式對積分方程式之影響 9 第 三 章 數值方法11 3.1 數值光追跡 11 3.2 光線與邊界相交的處理法 13 3.3 徑向函數法 16 3.4 積分方程式之線性方程組 17 3.5 數值積分計算方法 23 第 四 章 結果與討論 25 4.1 二維矩形介質中的輻射熱傳 26 4.1.1 定折射系數介質 26 4.1.2 變折射系數介質 29 4.2 應用 RBF-IEM 於不規則幾何形狀之介質 37 4.2.1 二維缺角矩形介質 38 4.2.2 半圓形挖孔介質 43 4.3 加入反射邊界對計算結果的影響 46 4.4 三維立方體介質中的輻射熱傳 48 第 五 章 結論與未來展望 56 5.1 結論 56 5.2 未來展望 57 參考文獻 58 附錄 A 蒙地卡羅法熱輻射傳遞 65 A.1 蒙地卡羅法簡述 65 A.2 物理模型 65 A.3 蒙地卡羅輻射熱傳模擬步驟 66 A.3.1 初始化光包 (Initialize bundle) 66 A.3.2 產生光包可行進長度 (Calculate extinction length) 70 A.3.3 數值光線覓跡 (Numerical ray-tracing) 70 A.3.4 判斷光包是否超出邊界及尋找光包與邊界交點 (Check if bundle is out of boundary and find intersection) 71 A.3.5 吸收光包 (Bundle absorption) 71 A.3.6 散射光包 (Bundle Scattering) 72 A.3.7 反射光包 (Bundle reflection) 72 A.3.8 重新放射光包 (Bundle re-emission) 73 A.3.9 計算介質溫度及邊界熱通量 (Calculate temperature and flux) 73 A.3.10 三維蒙地卡羅法 73

    [1] R. Siegel and C. M. Spuckler, “Variable refractive index effects on radiation insemitransparent scattering multilayered regions,” Journal of Thermophysics and HeatTransfer, vol. 7, no. 4, pp. 624–630, 1993.
    [2] R. Siegel and C. M. Spuckler, “Effect of index of refraction on radiation characteristicsin a heated absorbing, emitting, and scattering layer,” Journal of Heat Transfer, vol.114, no. 3, pp. 781–784, Aug. 1992.
    [3] P. B. Abdallah and V. L. Dez, “Radiative transfer in a plane parallel slab ofanisotropic uniaxial semi-transparent medium,” Journal of Quantitative Spectroscopyand Radiative Transfer, vol. 67, no. 1, pp. 21–42, Oct. 2000.
    [4] P. B. Abdallah and V. L. Dez, “Radiative flux field inside an absorbing-emittingsemi-transparent slab with variable spatial refractive index at radiative conductivecoupling,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 67, no. 2,pp. 125–137, Oct. 2000.
    [5] P. B. Abdallah and V. L. Dez, “Temperature field inside an absorbing–emittingsemi-transparent slab at radiative equilibrium with variable spatial refractive index,”Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 67, no. 2, pp. 125–137, May 2000.
    [6] P. B. Abdallah and V. L. Dez, “Thermal emission of a semi-transparent slab withvariable spatial refractive index,” Journal of Quantitative Spectroscopy and RadiativeTransfer, vol. 67, no. 3, pp. 185–198, Nov. 2000.
    [7] D. Lemonnier and V. Le Dez, “Discrete ordinates solution of radiative transfer acrossa slab with variable refractive index,” Journal of Quantitative Spectroscopy andRadiative Transfer, vol. 73, no. 2-5, pp. 195–204, 2002.
    [8] L. H. Liu, H. C. Zhang, and H. P. Tan, “Monte Carlo discrete curved ray-tracingmethod for radiative transfer in an absorbing-emitting semitransparent slab withvariable spatial refractive index,” Journal of Quantitative Spectroscopy and RadiativeTransfer, vol. 84, no. 3, pp. 357–362, Jan. 2004.
    [9] L. H. Liu, “Benchmark numerical solutions for radiative heat transfer in twodimensional medium with graded index distribution,” Journal of QuantitativeSpectroscopy and Radiative Transfer, vol. 102, no. 2, pp. 293–303, 2006.
    [10] L. Liu, L. Zhang, and H. Tan, “Finite element method for radiation heat transfer inmulti-dimensional graded index medium,” Journal of Quantitative Spectroscopy andRadiative Transfer, vol. 97, no. 3, pp. 436–445, Feb. 2006.
    [11] L. Liu, “Least-squares finite element method for radiation heat transfer in gradedindex medium,” Journal of Quantitative Spectroscopy and Radiative Transfer, vol.103, no. 3, pp. 536–544, Feb. 2007.
    [12] A. Sharma, D. V. Kumar, and A. K. Ghatak, “Tracing rays through graded-index media:a new method,” Applied Optics, vol. 21, no. 6, pp. 984–987, 1982.
    [13] C.-Y. Wu and H.-Y. Tseng, “折射介質輻射熱傳的數值光線覓跡蒙地卡羅模擬,” 碩士論文, 國立成功大學, 台南市, 2012.
    [14] Y. Zhang, H.-L. Yi, and H.-P. Tan, “Natural element method analysis for coupledradiative and conductive heat transfer in semitransparent medium with irregulargeometries,” International Journal of Thermal Sciences, vol. 76, no. 3, pp. 30–42, Feb.2014.
    [15] Y. Zhang, H.-L. Yi, and H.-P. Tan, “Natural element method for radiative heat transferin a semitransparent medium with irregular geometries,” Journal of ComputationalPhysics, vol. 241, pp. 18–34, May 2013.
    [16] Y. Zhang, Y. Ma, H.-L. Yi, and H.-P. Tan, “Natural element method for solving radiativetransfer with or without conduction in three-dimensional complex geometries,” Journalof Quantitative Spectroscopy and Radiative Transfer, vol. 129, pp. 118–130, Nov.2013.
    [17] Y. Zhang, H.-L. Yi, and H.-P. Tan, “Natural element method for radiative heat transferin two-dimensional semitransparent medium,” International Journal of Heat and MassTransfer, vol. 56, no. 1-2, pp. 411–423, Jan. 2013.
    [18] Y. Zhang, H.-L. Yi, and H.-P. Tan, “Least-squares natural element method for radiativeheat transfer in graded index medium with semitransparent surfaces,” InternationalJournal of Heat and Mass Transfer, vol. 66, pp. 349–354, Nov. 2013.
    [19] E. J. Nyström, “Über Die Praktische Auflösung von Integralgleichungen mitAnwendungen auf Randwertaufgaben,” Acta Mathematica, vol. 54, no. 1, pp. 185–204, Jul. 1930.
    [20] C.-Y. Wu, “Exact integral formulation for radiative transfer in an inhomogeneousscattering medium,” Journal of Thermophysics and Heat Transfer, vol. 4, no. 4, pp.425–431, Oct. 1990.
    [21] C.-Y. Wu and M.-F. Hou, “Integral equation solutions based on exact ray pathsfor radiative transfer in a participating medium with formulated refractive index,”International Journal of Heat and Mass Transfer, vol. 55, no. 23-24, pp. 6600–6608,Nov. 2012.
    [22] C.-Y. Wu and M.-F. Hou, “Solution of integral equations of intensity moments forradiative transfer in an anisotropically scattering medium with a linear refractiveindex,” International Journal of Heat and Mass Transfer, vol. 55, no. 7-8, pp. 1863–1872, Mar. 2012.
    [23] M. Rabbani, K. Maleknejad, N. Aghazadeh, and R. Mollapourasl, “Computationalprojection methods for solving Fredholm integral equation,” Applied Mathematics andComputation, vol. 191, no. 1, pp. 140–143, Aug. 2007.
    [24] J. Saberi-Nadjafi, M. Mehrabinezhad, and H. Akbari, “Solving Volterra integralequations of the second kind by wavelet-Galerkin scheme,” Computers andMathematics with Applications, vol. 63, no. 11, pp. 1536–1547, Jun. 2012.
    [25] E. Babolian, S. Abbasbandy, and F. Fattahzadeh, “A numerical method for solving aclass of functional and two dimensional integral equations,” Applied Mathematics andComputation, vol. 198, no. 1, pp. 35–43, Apr. 2008.
    [26] W.-J. Xie and F.-R. Lin, “A fast numerical solution method for two dimensionalFredholm integral equations of the second kind,” Applied Numerical Mathematics,vol. 59, no. 7, pp. 1709–1719, Jul. 2009.
    [27] R. Franke, “Scattered data interpolation: tests of some method,” Mathematics ofComputation, vol. 38, no. 157, pp. 181–200, 1982.
    [28] A. Alipanah and S. Esmaeili, “Numerical solution of the two-dimensional Fredholmintegral equations using Gaussian radial basis function,” Journal of Computationaland Applied Mathematics, vol. 235, no. 18, pp. 5342–5347, Jul. 2011.
    [29] P. Assari, H. Adibi, and M. Dehghan, “A numerical method for solving linear integralequations of the second kind on the non-rectangular domains based on the meshlessmethod,” Applied Mathematical Modelling, vol. 37, no. 22, pp. 9269–9294, Nov. 2013.
    [30] A. Golbabai and S. Seifollahi, “An iterative solution for the second kind integralequations using radial basis functions,” Applied Mathematics and Computation, vol.181, no. 2, pp. 903–907, Oct. 2006.
    [31] A. Golbabai and S. Seifollahi, “Numerical solution of the second kind integral equationsusing radial basis function networks,” Applied Mathematics and Computation, vol.174, no. 2, pp. 877–883, Mar. 2006.
    [32] A. Golbabai, M. Mammadov, and S. Seifollahi, “Solving a system of nonlinear integralequations by an RBF network,” Computers and Mathematics with Applications,vol. 57, no. 10, pp. 1651–1658, May 2009.
    [33] E. W. Marchand, “Rapid ray tracing in radial gradients.” Applied Optics, vol. 27, no. 3,pp. 465–467, Feb. 1988.
    [34] A. Sharma, “Computing optical path length in gradient-index media: a fast andaccurate method,” Applied Optics, vol. 24, no. 24, pp. 4367–4370, 1985.
    [35] A. Sharma and A. K. Ghatak, “Ray tracing in gradient-index lenses: computation ofray-surface intersection.” Applied Optics, vol. 25, no. 19, pp. 3409–3412, 1986.
    [36] T. Sakamoto, “Ray trace algorithms for GRIN media,” Applied Optics, vol. 26, no. 15,pp. 2943–2946, Aug. 1987.
    [37] J. Puchalski, “Numerical determination of ray tracing: a new method.” Applied Optics,vol. 31, no. 31, pp. 6789–6799, Nov. 1992.
    [38] D. W. Hewak and J. W. Y. Lit, “Numerical ray-tracing methods for gradient indexmedia,” Canadian Journal of Physics, vol. 63, no. 2, pp. 234–239, Feb. 1985.
    [39] M. D. Buhmann, Radial Basis Functions: Theory and Implementations. Cambridgeuniversity press, Cambridge, 2004.
    [40] J. Dormand and P. Prince, “A family of embedded Runge-Kutta formulae,” Journal ofComputational and Applied Mathematics, vol. 6, no. 1, pp. 19–26, 1980.
    [41] P. B. Abdallah and V. L. Dez, “Thermal emission of a two-dimensional rectangularcavity with spatial affine refractive index,” Journal of Quantitative Spectroscopy andRadiative Transfer, vol. 66, no. 6, pp. 555–569, 2000.
    [42] C.-M. Chu and S. W. Churchill, “Representation of the angular distribution of radiationscattered by a spherical particle,” Journal of the Optical Society of America, vol. 45,no. 11, pp. 958–961, Nov. 1955.
    [43] M. Modest, Radiative Heat Transfer, 3rd ed. Academic Press, New York, 2003.
    [44] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation,interference and diffraction of light. Cambridge university press, Cambridge, 1999.
    [45] D. Levin, “The approximation power of moving least-squares,” Mathematics ofComputation, vol. 67, no. 224, pp. 1517–1532, 1998.
    [46] A. Nealen, “An As-Short-as-possible introduction to the least squares, weightedleast squares and moving least squares methods for scattered data approximation andinterpolation,” Technische Universität Darmstadt, Tech. Rep., 2004.
    [47] S. Anderson-Freed, E. Horowitz, and S. Sahni, Fundamentals of Data Structures in C.Silicon Press, Summit, 2007.
    [48] R. L. Hardy, “Multiquadric equations of topography and other irregular surfaces,”Journal of Geophysical Research, vol. 76, no. 8, pp. 1905–1915, 1971.
    [49] J. Duchon, Constructive Theory of Functions of Several Variables, ser. Lecture Notesin Mathematics 571, W. Schempp and K. Zeller, Eds. Springer press, Berlin,Heidelberg, Nov. 1977.
    [50] A. Iske, “Optimal distribution of centers for radial basis function methods,” TechnischeUniversität München, Tech. Rep. M0004, 2000.
    [51] H. Wendland, Scattered data approximation. Cambridge university press, Cambridge,2004.
    [52] G. E. Fasshauer and J. G. Zhang, “On choosing “optimal”shape parameters for RBFapproximation,” Numerical Algorithms, vol. 45, no. 1-4, pp. 345–368, Mar. 2007.
    [53] S. Rippa, “An algorithm for selecting a good value for the parameter c in radial basisfunction interpolation,” Advances in Computational Mathematics, vol. 11, no. 2-3, pp.193–210, 1999.
    [54] C. Sanderson, “Armadillo: An open source C++ linear algebra library for fastprototyping and computationally intensive experiments,” Tech. Rep. NICTA, 2010.
    [55] A. Crosbie and R. Schrenker, “Radiative transfer in a two-dimensional rectangularmedium exposed to diffuse radiation,” Journal of Quantitative Spectroscopy andRadiative Transfer, vol. 31, no. 4, pp. 339–372, Apr. 1984.
    [56] B. Fornberg, T. Driscoll, G. Wright, and R. Charles, “Observations on the behavior ofradial basis function approximations near boundaries,” Computers and Mathematicswith Applications, vol. 43, no. 3-5, pp. 473–490, Feb. 2002.
    [57] R. Siegel and C. Spuckler, “Variable refractive index effects on radiation insemitransparent scattering multilayered regions,” Journal of Thermophysics and HeatTransfer, vol. 7, no. 4, pp. 624–630, 1993.

    下載圖示 校內:2017-08-31公開
    校外:2020-08-31公開
    QR CODE