| 研究生: |
黃仕強 Huang, Shih-Chiang |
|---|---|
| 論文名稱: |
整合型分子模版微流體晶片應用於表面電漿共振生物感測器之檢測 A Microfluidic Chip Integrated with Molecular Imprinting Polymers for Surface Plasmon Resonance Detection |
| 指導教授: |
李國賓
Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 微流體 、生物晶片 、表面電漿共振 、微幫浦 、微機電系統 、分子模版 、區域性分子模版 |
| 外文關鍵詞: | Localized MIP, Biochip, Surface Plasmon Resonance, Microfluidics, Micropumps, Molecular Imprinting Polymer, MEMS |
| 相關次數: | 點閱:144 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究成功地整合分子模版(Molecular Imprinting Polymers, MIP)於一創新之微流體生物晶片,並且運用表面電漿共振(Surface Plasmon Resonance, SPR)生物感測技術檢測生物檢體。當微量生物檢體進樣後,經由微流體晶片中的“蜘蛛網型蠕動式微氣動幫浦”與微氣動閥門驅動至高靈敏度及高專一性之區域性分子模版(Localized MIP)反應區域,並且同時運用表面電漿共振生物感測儀器進行即時性分析。
本研究在微流體生物晶片製作方面,利用微機電製程技術將為流體元件及微型溫度控制元件製作於玻璃(BK-7)與聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)等基材之上。其中,流速感測器能校正微氣動幫浦流率之誤差,以達到精確地控制檢體進樣之流率;微型溫度控制晶片精準地控制檢測環境溫度之穩定,使其能精準地使環境溫度維持在37℃,且誤差範圍可控制在0.1℃以內,藉此降低背景雜訊並提高分析訊號之噪訊比。
最後,本研究成功地在1×3分子模版/表面電漿共振整合型生物晶片上,同時針對三種不同分子模版(黃體激素、睪酮、膽固醇)進行生物分子吸附檢測,更結合表面電漿共振生物感測器的高靈敏度、高解析度、動態分析及不須事先標定生物分子之特性,使得本研究能偵測到達人體生理濃度之極限。相信此成果可對未來分子模版及生醫疾病檢測分析提供了一種便利且穩定之研究工具。
This study reports a novel microfluidic system integrated with localized molecular imprinting polymers (MIP) for surface plasmon resonance (SPR) detection of specific label-free bio-samples. The innovative microfluidic biochip is capable of transporting a specific amount of bio-samples inside multiple microchannels using micro pneumatic micropumps and micro pneumatic valves to sensing regions where multiple MIP films are locally spin-coated such that highly-sensitive, highly-specific bio-sensing could be achieved.
The innovative microfluidic biochip is fabricated by using MEMS (Micro-Electro-Mechanical System) technology on glass (BK-7) and PDMS (Polydimethylsiloxane) substrates. The flow sensor can be certain calibrated the error of pumping rate and realized the accurate sample transfer. In addition, since SPR detection could be very sensitive to temperature variation, a micromachine-based temperature control module comprised of micro-heaters and a temperature sensor was used to maintain a uniform temperature with a variation less than 0.1℃ during measurement.
The microfluidic MIP/SPR biochips have the potential to be widely used for bio-sensing applications. While compared to large-scale SPR techniques, the developed microfluidic system has several advantages, including labeling-free, high sensitivity, capability of quantitative analysis of nano-scale bio-molecules in real-time fashion.
1. M. Madou, Fundamentals of Microfabrication, CRC, New York, USA (1997)
2. D. J. Graves, “Powerful Tools for Genetic Analysis come of Age,” Trends Biotechnol, 17, pp. 127-134 (1999)
3. C. B. Epstein and R. A. Butow, “Microarray Technology-enchanced Versatility, Persistent Challenge,” Current Opinion in Biotechnology, 11, pp. 36-41 (2000)
4. G. H. W. Sanders and A. Manz, “Chip-based Microsystems for Genomic and Proteomic Analysis,” Trends in Analytical Chemistry, 19, pp. 364-378 (2000)
5. N. H. Chiem and D. J. Harrison, “Microchip Systems for Immunoassay: an Integrated Immunoreactor with Electrophoretic Separation for Serum Theophylline Determination,” Clinical Chemistry, 44, pp. 591-598 (1998)
6. K. Sato, A. Hibara, M. Tokeshi, H. Hisamoto and T. Kitamori, “Microchip-based Chemical and Biochemical Analysis Systems,” Journal of Chromatography A, 987, pp. 197-204 (2003)
7. J. Davies, Surface Analytical Techniques for Probing Biomaterial Processes, CRC Press, Bucks, England (1996)
8. B. Liedberg, C. Nylander and I. Lundstrom, “Surface Plasmon Resonance for Gas Detecton and Biosensing,” Sensors and Auctuators B, 4, pp. 299-304 (1983)
9. W. Hickel, D. Kamp and W. Knoll, “Surface-plasmon Microscopy,” Nature, 339, pp. 186 (1989)
10. W. M. Robertson and E. Fullerton, “Rexxamiation of the Surface Plasma Waves Technique for Determining the Dielectric Constant and Thickness of Metal Films,” Journal of the Optical Society of America B, 6, pp. 1584 (1989)
11. Y. Zhang, Y. Zhang, R. H. Terrill and P. W. Bohn, “Coupled Second-harmonic Generation, Surface Plasmon Resonance and AC Impedance Studies of Full and Partial Monolayers in (Au,Ag)-alkanethiolate Electrolyte Systems,” Thin Solid Films, 335, pp. 178 (1998)
12. C. Seife, “Long-Wavelength Lasers Sniff Out New Uses,” Science, 290, pp. 916 (2000)
13. G. Flatgen, K. Krischer, B. Pettinger, K. Doblhofer, H. Junkes and G. Ertl, “ Two-dimensional Imaging of Potential Waves in Electrochemical Systems by Surface Plasmon Microscopy,” Science, 269, pp. 668 (1995)
14. B. Rothenhausler and W. Knoll, “Surface–plasmon Microscopy,” Nature, 332, pp. 615 (1988)
15. J. Derov, Y. Y. Teng and A. S. Karakashian, “Angular Scan Spectrum of a Surface Plasma Excitation on a Schottky Diode,” Physics Letters A, 95, pp. 197-200 (1983)
16. V. Vaicikauskas, J. Bremer, O. Hunderi, R. Antanavicius and R. Januskevicius, “Optical Constants of Indium Tin Oxide Films as Determined by Surface Plasmon Phase Method,” Thin Solid Films, 411, pp. 262-267 (2002)
17. J. N. Wilde, J. Nagel and M. C. Petty, “Optical Sensing of Aromatic Hydrocarbons Using Langmuir–blodgett Films of a Schiff Base Co-ordination Polymer,” Thin Solid Films, 726, pp. 327-329, (1998)
18. T. Abdallah, S. Abdalla, S. Negm and H. Talaat, “”Surface Plasmons Resonance Technique for the Detection of Nicotine in Cigarette Smoke,” Sensors and Actuators A, 102, pp. 234-239 (2003)
19. J. Homola, S. S. Yee and G. Gauglitz, “Surface Plasmon Resonance Sensors: Review,” Sensors and Auctuators B, 54, pp. 3-15 (1999)
20. L. B. McGown, M. J. Joseph, J. B. Pitner, G. P. Vonk and C. P. Linn, “The Nucleic Acid Ligand-A New Tool for Molecular Recognition,” Analytical Chemistry, 67, pp. 663-668 (1995)
21. K. Mosbach “Molecular Imprinting,” Trends in Biochemical Sciences, 19, pp. 9-14 (1994)
22. N. Masque, R. M. Marce and F. Borrull, “Molecularly Imprinted Polymers: New Tailor-made Materials for Selective Solid-phase Extraction,” Trends in Analytical Chemistry, 20, pp. 447-486 (2001)
23. H. Sbik, R. Jeannot and B. Rondeau, “Multiresidue Methods Using Solid-phase Extraction Techniques for Monitoring Priority Pesticides,” Journal of Chromatography A, 885, pp. 217-236 (2000)
24. M. C. Hennion, “Soled-phase Extraction: Method Development, Sorbents, and Soupling with Liquid Chromatography,” Journal of Chromatography A, 856, pp. 3-54 (1999)
25. F. L. Enisg and O. Hayden, “Tailor-Made Materials for Tailor-Made Applications: Application of Molecular Imprints in Chemical Analysis,” Trends in Analytical Chemistry, 18, pp. 138-145 (1999)
26. O. Brűggemann, K. Haupt, L. Ye, E. Yilmaz and K Mosbach, “New Configurations and Applications of Molecularly Imprinted Polymers,” Journal of Chromatography A, 889, pp. 15-24 (2000)
27. T. Kobayashi, Y. Murawaki, P. S. Reddy, M. Abe and N. Fujii, “Molecular Imprinting of Caffeine and Its Recognition Assay by Quartz-crystal Microbalance,” Analytical Chemistry, 435, pp. 141-149 (2001)
28. M. J. Whitcombe, C. Alexander and E. N. Vulfson, “Smart Polymers for the Food Industry,” Trends in Food Science and Technology, 8, pp. 140-145 (1997)
29. D. Kriz, O. RamstrÖm and K. Mosbach, “Molecular Imprinting - New Possibilities for Sensor Technology,” Analytical Chemistry, 69, pp. 345-349 (1997)
30. 林展生, 微流體多工取樣系統於分子模版感測晶片之應用, 國立成功大學工程科學研究所碩士論文 (2004)
31. R. W. Wood, “On Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Philosophical Magazine, 4, pp. 396-342 (1902)
32. R. H. Ritchie, “Plasma Losses by Fast Electrons in Thin Films,” Physical Review, 106, pp. 874-881 (1957)
33. A. Otto, “Excitation of Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection,” Zeitschrift Für Physik, 216, pp. 398-410 (1968)
34. E. Kretschmann, “Die Bestimmung Optischer Konstanten Von Metallen Durch Anregung Von Oberflachenplasmaschwingungen,”Zeitschrift Für Physik, 241, pp. 313-324 (1971)
35. L. Pauling, “Molecular Architecture and Biological Reactions,” Chemical and Engineering News, 24, pp. 1375 (1946)
36. B. Sellergren, “Molecularly Imprinted Polymers,” Elsevier Science, Amsterdam, Netherlands (2001)
37. L. Pauling, “A Theory of the Structure and Process of Formation of Antibodies,” Journal of the American Chemical Society, 62, pp. 2643-2657 (1940)
38. G. Wulff and A. Sarhan, “Use of Polymers with Enzyme-analogous Structures for the Resolution of Racemates,” Angewandte Chemie, 11, pp. 341 (1972)
39. L. Anderson, G. Sellergren and K. Mosbach., “Imprinting of Amino Acid Derivatives in Macroporous Polymers,” Tetrahedron Letters, 25, pp. 521 (1984)
40. E. Hedborg, F. Winquist, I. Lumdstorm, L Andersson and K. Mosbach, “Some Studies of Molecularly-imprinted Polymer Membranes in Combination with Field-effect Devices,” Sensors and Auctuators A, 38, pp. 796 (1993)
41. 李昆峰, 電聚合鄰苯二胺薄膜之製作與評估其在分子模印感測上之應用, 國立成功大學醫學工程研究所碩士論文 (2001)
42. J. G. Spencer, “Piezoelectric Micropump with Three Valve Working Peristaltically,” Sensor and Actuators A, 21-23, pp. 203-206 (1990)
43. F. C. M. van de Pol, H. T. G. van Lintel, M. Elwenspoek and J. H. J. Fluitman, “Thermopneumatic Micropump Based on Micro-engineering Techniques,” Sensors and Actuators A, 21, pp. 198-202 (1990)
44. R. Zengerle, J. Ulrich, S. Kluge, M. Richter and A. Richter, “A Bidirectional Silicon Micropump,” Sensors and Actuators A, 50, pp. 81-86 (1995)
45. W. Zhang and C. H. Ahn, “A Bi-directional Magnetic Micropump on a Silicon Wafer,” Solid-State Sensor and Actuators, pp. 94-97 (1996)
46. E. Stemme and G. Stemme, “Valveless Diffuser/Nozzle Based Fluid Pump,” Sensors and Actuators A, 39, pp. 159-167 (1993)
47. W. L. Benard, H. Kahn, A. H. Heuer and M. A. Huff, “A Titanium-Nickel Shape Memory Alloy Actuated Micropump,” Solid-State Sensors and Actuators, pp. 361-364 (1997)
48. C. Vieider, O. Ohman and Elderstig, “A Pneumatically Actuated Micro Valve with a Silicone Rubber Membrane for Integration with Fluid-Handling Systems,” Solid-State Sensors and Actuators, 2, pp. 284-286 (1995)
49. M. A. Huff, J. Gilbert and M. A. Schmidt, “Flow Characteristics of a Pressure-Balanced Microvalve,” Solid-State Sensors and Actuators, pp. 98-101 (1993)
50. K. Yanagisawa, H. Kuwano and A. Tago, “An Electromagnetically Driven Microvalve,” Solid-State Sensors and Actuators, pp. 102-105 (1993)
51. H. Jerman, “Electrically-Activated, Normally-Closed Diaphragm Valve,” Solid-State Sensors and Actuators, pp. 1045-1048 (1991)
52. E. Makino, T. Mitauya and T. Shibata, “Fabrication of TiNi Shape Memory Micropump,” Sensors and Actuators A, 88, pp. 256-262 (2001)
53. A. Olsson, G. Stemme, and E. Stemme, “A Valve-less Planar Fluid Pump with Two Pump Chambers,” Sensors and Actuator A, 46-47, pp. 549-556, (1995)
54. H. A. Chong and G. S. Mark, “Fluid Micropumps Based on Rotary Magnetic Actuators,” Journal of Microelectromechanical Systems, pp. 408 (1995)
55. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer and S. R. Quake, “Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography,” Science, 288, pp. 113-116 (2000)
56. K. Hosokawa and R. Maeda, “Low-cost Technology for High-density Microvalve Arrays Using Polydimethylsiloxane,” IEEE 14th International MEMS Conference, Interlaken, Switzerland, Jan. 21-25, pp. 531-534 (2001)
57. R. H. Liu, Q. Yu and D. J. Beebe, “Fabrication and Characterization of Hydrogel-based Microvalves,” Journal of Microelectromechanical Systems, 11, pp. 45-53 (2002)
58. F. S. Ligler and C. A. R. Taitt, Optical Biosensors: Present and Future, Elsevier Science, Amsterdam, Netherlands (2002)
59. 簡汎清, 超高解析度表面電漿共振生物感測器之研製, 國立中央大學機械工程研究所碩士論文 (2003)
60. H. Raether, Surface Plasmons on Smooth and Rough Surfaces on Gratings, Springer-Verlag, Berlin, Germany (1988)
61. E. Stenberg, B. Persson, H. Roos and C. Urbaniczky, “Quantitative Determination of Surface Concentration of Protein with Surface Plasmon Resonance Using Radiolabeled Proteins,” Journal of Colloid and Interface Science, 143, pp. 513-526 (1991)
62. 謝宗閔, 使用微機電系統技術進行微小型聚合酵素連鎖反應系統之研製, 國立成功大學電機工程研究所碩士論文 (2003)
63. T. Richter, L. Loranelle, O. D. Richtard, U. Bilitewski and D. J. Harrison, “Bi-enzymatic and Capillary Electrophoretic Analysis of Non-fluorescent Compounds in Microfluidic Devices: Determination of Xanthine,” Sensors and Actuators B, 81, pp. 369-376 (2002)
64. L. H. He, C. W. Lim and B. S. Wu, “A Continuum Model for Size-dependent Deformation of Elastic Films of Nano-scale Thickness,” International Journal of Solids and Structures, 41, pp. 847-857 (2004)
65. S. Timosheko, “Theory of Plate and Shells,” McGraw-Hill, New York, USA (1970)
66. 郭盈成, 新式微幫浦與微閥門之設計與製作, 國立成功大學工程科學研究所碩士論文 (2003)
67. O. Ramstro¨m, K. Skudar, J. Haines, P. Patel and O. Bru¨ggemann, “Food Analyses Using Molecularly Imprinted Polymers,” Journal of Agricultural and Food Chemistry, 49, pp. 2106 (2001)
68. K. Mosbach and O. Ramstrom, “The Emerging Technique of Molecular Imprinting and Its Future Impact on Biotechnology,” Biotechnology, 14, pp. 163-170 (1996)
69. G. Wulff, “Molecular Imprinting in Cross-linked Materials with the Aid of Molecular Templates,” Angewandte Chemie, 34, pp. 1812-1832 (1995)
70. K. J. Shea, “Molecular Imprinting of Synthetic Network Polymers: the Denovo Synthesisof Macromolecular Binding and Catalytic Sites,” Trends in Polymer Science, 2, pp. 166-173 (1994)
71. 鶴田楨二著, 薛敬和譯, 高分子合成反應, 高立圖書公司, 台灣 (2001)
72. A. G. Mayes and K. Mosbach, “Molecularly Imprinted Polymers: Useful Materials for Analytical Chemistry?” Trends in Analytical Chemistry, 16, pp. 321 (1997)
73. R. J. Ansell and K. Mosbach, “Molecularly Imprinted Polymers-New Tools for Biomedical Science,” Pharmaceutical News, 3, pp. 16 (1995)
74. T. Takeuchi and J. Haginaka, “Separation and Sensing Based on Molecular Recognition Using Molecularly Imprinted Polymers,” Journal Chromatography B, 728, pp. 1 (1999)
75. 鄧景鴻, 以膽紅素為模版材料之製備及吸脫附感測之探討, 國立成功大學化學工程研究所碩士論文 (2003)
76. F. Svec and J. M. Frechet, “Continuous Rods of Macroporous Polymer as Highperformance Liquid Chromatography Separation Media,” Analytical Chemistry, 64, pp. 820-822 (1992)
77. K. Hosoya, K. Yoshizako, Y. Shirasu, K. Kimata and T. Araki, “Molecularlyimprinted Uniform-size Polymer-based Stationary Phase for High Performanceliquid Chromatography Structural Contribution of Cross-linked Polymer Network Onspecific Molecular Recognition,” Journal of Chromatography A, 728, pp. 139-147 (1996)
78. R.J. Ansell and K. Mosbach, “Molecularly Imprinted Polymers by Suspension Polymerization in Perfluorocarbon Liquids, with Emphasis on the Influence of the Porogenic Solvent,” Journal of Chromatography A, 787, pp. 55-66 (1997)
79. M. Yoshida, K. Uezu, M. Goto, S. Furusaki and M. Takagi, “An Enantioselective Polymer Prepared by the Surface Molecular-imprinting Technique,” Chemistry Letters, 9, pp. 925-926 (1998)
80. H. Y. Wang, T. Kobayashi and N. Fujii, “Molecular Imprinting Membrance Prepared by Phase Inversion Precipitation Technique,” Langmuir, 12, pp. 4850-4856 (1996)
81. C. H. Wang, G. B. Lee, “Automatic Bio-sampling Chips Integrated with Micro-pumps and Micro-valves for Multiple Disease Detection,” Biosensors and Bioelectronics, 21, pp. 419-425 (2004)
82. A. A. Kolomenskii, P. D. Gershon, and H. H. A. Schuessler, “Sensitivity and Detection Limit of Concentration and Adsorption Measurements by Laser-induced Surface-plasmon Resonance,” Applied Optics, 36, pp. 6539-6547 (1997)
83. J. N. Yih, F. C. Chien, C. Y. Lin, H. F. Yau, and S. J. Chen, “An Angular-interrogation Attenuated-total-reflection Metrology System for Plasmonic Sensors,” in press, Applied Optics (2005)
84. 莊達仁著, VLSI製造技術, 高立書局, 台灣 (2002)
85. K. Wasa, and S. Hayakawa, Hand Book of Sputter Deposition Technology, Noyes Publications, New Jersey, USA. (1992)
86. 李正中著, 薄膜光學與鍍膜技術, 藝軒圖書出版社, 台灣 (2001)
87. 泉谷徹郎著, 高正雄譯, 光學玻璃, 復漢出版社, 台灣 (1996)
88. Data Sheet for NANOTM SU-8 Negative Tone Photoresists, Formulations 50 & 100, released by MICRO-CHEM. Corp.