簡易檢索 / 詳目顯示

研究生: 施詠笙
Shih, Yung-Sheng
論文名稱: 天然水體之化學物質對奈米銀及氧化鋅微粒和斑馬魚胚胎行為的毒性影響
Effects of Natural Water Chemistry on Ag/ZnO Nanoparticles Behavior and Toxicity to Embryos of Zebrafish (Danio rerio)
指導教授: 王應然
Wang, Ying-Jan
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 98
中文關鍵詞: 奈米銀奈米氧化鋅奈米毒性斑馬魚胚胎水生毒性
外文關鍵詞: zebrafish embryos, silver nanoparticles, zinc oxide nanoparticles, Nanotoxicity, aquatic toxicity
相關次數: 點閱:85下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米微粒在日常生活中的應用越來越廣泛,例如醫療保健和工業產業,因此奈米微粒大量增加進入到環境水體中的可能性。現今奈米微粒的毒性暴露評估主要是在實驗室已知條件和純淨去離子水,然而,奈米微粒可能因周圍環境不同因而改變其物化特性及生物毒性,因此探討環境水體中奈米微粒之毒性效應及奈米微粒進入環境水體之生物毒性效性是個重要的議題。為探討奈米微粒之毒性效應,本研究使用斑馬魚胚胎探討奈米微粒在自然環境中的物理化學變化,及其所誘發之生物毒性效應。
    為了萃取出環境水體之奈米微粒亦不改變其物化特性,我們使用物理不同孔徑過濾,針對過濾環境水體之奈米微粒結果顯示,環境水體之濾液對於存活率、氧化壓力及細胞凋亡試驗中,並不會導致明顯生物毒性,而暴露自然水體濾液斑馬魚的體長較長;另外,添加奈米微粒至環境水體結果證實,不論是成功湖、曾文水庫、二仁溪在添加奈米銀及奈米氧化鋅微粒後,奈米微粒會聚集為較大的顆粒,相較於純水而言,環境水體可減緩奈米銀及奈米氧化鋅微粒所誘發的毒性效應,其中曾文水庫相較成功湖和二仁溪,其斑馬魚胚胎存活率較低,,而於細胞毒性機轉上,添加於環境湖水中的奈米銀和奈米氧化鋅微粒會誘發氧化壓力、細胞自噬、細胞凋亡…等機轉的發生,但曾文水庫相較成功湖和二仁溪亦會誘發較顯著的氧化壓力、細胞自噬、細胞凋亡現象。
    本研究證實過濾成功湖、二仁溪及曾文水庫水體中之奈米微粒,不會引發明顯毒性。而於添加奈米微粒至環境水體實驗結果證實,不論成功湖、曾文水庫、二仁溪在添加奈米銀及奈米氧化鋅微粒後,奈米微粒會導致斑馬魚胚胎死亡率增加,並且誘發氧化壓力、細胞自噬、細胞凋亡…等細胞毒性機轉,但相較於純水而言,奈米微粒進入環境水體後會與環境水體的元素發生化學反應,改變其物化特性並且聚集成較大的顆粒,因而減緩奈米銀及奈米氧化鋅微粒所誘發的毒性效應。

    SUMMARY

    The growing applications of nanoparticles have been in various aspects of daily life, such as healthcare and industrial sectors. The toxicity exposure assessment of nanoparticles mainly in the laboratory with pure Milli-Q water solvent. As a result, it is a big issue to study nanoparticles physico-chemical properties and biological effects in the natural environments. This research, we using zebrafish embryo as an in vivo modle to determine the toxic effects of nanoparticles in the natural waterZebrafish embryo did not observe a significant reduction in their survival rates when exposure to filtrates, through 1, 0.45, 0.22 and 0.1 μm filters, of the samples from Erren River, Zengwun Reservoir, and Cheng-Kung Lake. Interestingly, all of these samples contributed to body length elongation of the hatched fish, whereas they didn’t evoke/enhance oxidative stress and apoptosis in such system. AgNPs/ZnONPs changed their physicochemical characteristics and toxicity after spiking in Erren River, Zengwun Reservoir, and Cheng-Kung Lake water. The results also indicated zebrafish embryos exposed AgNPs/ZnONPs in Erren River, Zengwun Reservoir, and Cheng-Kung Lake lead to reduce the survival rate and led to mild ROS generation, autophagy, apoptosis. This study confirmed AgNPs/ZnONPs in three natural water zebrafish decrease survivial rate and mitigated cellular toxicity including oxidative stress , autophagy and apoptosis. AgNPs and ZnONPs spiked in the natural water changed the physicochemical properties and caused to aggregation. In conclusion, AgNPs/ZnONPs spiked in the natural water reduced nanoparticle triggered toxicity due to changed physicochemical properties.

    Keywords: zebrafish embryos, silver nanoparticles, zinc oxide nanoparticles, Nanotoxicity, aquatic toxicity

    第一章、序論 1 第二章、文獻回顧 2 2-1奈米材料 2 2-2奈米材料特性及潛在生物效應 3 2-3.奈米微粒進入環境交互作用及可能產生之毒性影響 5 2-3.1環境水體與奈米微粒之交互作用及可能產生之毒性影響 5 2-3.2工程奈米材料影響生態系統的證據:地面植物與水生動物 6 2-3.3奈米微粒於環境中流向與毒性影響 6 2-3.4奈米微粒於水體環境可能造成毒性原因 7 2-4. 奈米銀/氧化鋅的使用現況與生物不良反應 8 2-4.1 奈米銀之毒性 8 2-4.2 奈米氧化鋅之毒性 9 2-5奈米微粒所引發的毒性及細胞毒性機轉 9 2-5.1 氧化壓力(Oxidative Stress) 9 2-5.2細胞自噬(Autophagy) 10 2-5.3細胞凋亡(Apoptosis) 13 2-6斑馬魚 14 2-6.1斑馬魚基本介紹 14 2-6.2斑馬魚做為奈米物質毒性測試物種 15 2-6.3斑馬魚於環境物質監測應用 17 第三章、研究目的 19 第四章、研究材料與方法 20 4-1研究使用模式 20 4-2研究方法與實驗步驟 22 4-2.1湖水採樣及原水樣過濾 22 4-3.1奈米銀及奈米氧化鋅微粒合成 26 4-4.1奈米微粒物化特性分析 27 4-5.1奈米銀及奈米氧化鋅添加入湖水流程及策略 28 4-6.1斑馬魚養殖與實驗準備 28 4-7.1胚胎毒性測試參考準則 29 4-8.1斑馬魚胚胎之奈米銀微粒分布 31 4-9.1統計分析 31 第五章、研究架構 32 第六章、研究結果 33 6-1湖水水質基本檢測 33 6-2 原始奈米銀其奈米氧化鋅在去離子水物化特性分析 33 6-3湖水奈米微粒物化特性分析 33 6-4原水樣不經過濾暴露斑馬魚胚胎 33 6-5斑馬魚胚胎暴露不同孔徑之濾液湖水之存活率 34 6-6成功湖、曾文水庫、二仁溪濾液暴露斑馬魚胚胎之體長 34 6-7第一季及第二季成功湖、曾文水庫、二仁溪之濾液對於斑馬魚胚胎氧化壓力之影響 34 6-8第二季成功湖、曾文水庫、二仁溪之濾液對於斑馬魚胚胎細胞凋亡之影響 35 6-9不同濃度奈米銀及奈米氧化鋅微粒在去離子水和三種天然水中的變化 35 6-10奈米銀及奈米氧化鋅微粒在去離子水和三種天然水的型態變化 35 6-11奈米銀及奈米氧化鋅微粒在去離子水和三種天然湖水之光散射分析 36 6-12過濾後湖水添加奈米銀暴露班馬魚胚胎之存活率 36 6-13奈米銀在去離子水與添加入三種湖水過濾後暴露班馬魚胚胎之存活率 37 6-14奈米氧化鋅在去離子水與添加入三種湖水暴露班馬魚胚胎之存活率 37 6-15奈米氧化鋅在去離子水與添加入三種湖水過濾後暴露班馬魚胚胎之存活率 38 6-16奈米氧化鋅在去離子水與添加入三種湖水暴露班馬魚胚胎之孵化率 38 6-17過濾後湖水添加奈米銀所引發的氧化壓力 38 6-18過濾後湖水添加奈米氧化鋅所引發的氧化壓力 39 6-19過濾後湖水添加奈米銀微粒所引發的細胞自噬 39 6-20過濾後湖水添加奈米氧化鋅所引發的細胞自噬 39 6-21過濾後湖水添加奈米銀所引發的細胞凋亡 39 6-22過濾後湖水添加奈米氧化鋅所引發的細胞凋亡 40 6-23奈米銀微粒在三種天然水的結構成分 40 6-24奈米氧化鋅在三種天然水的結構成分 40 第七章、結論與討論 41 第八章、結論與建議 49 第九章、參考文獻 50 表目錄 57 Table-1 Water quality of first season NCKU lake, Zengwun Reservoir, Er-zen river and the monitoring station value. 57 Table-2 Water quality testing of second season NCKU lake, Zengwun Reservoir, Er-zen river and their monitoring station value. 57 Table-3. Dynamic light scattering analysis of AgNPs spiked in different natural water. Hydrodynamic diameters of AgNPs became larger and deposit on the bottom when nanoparticles spiked in natural water. (N.D.=Non detected) 58 Table-4. Dynamic light scattering analysis of ZnONPs spiked in different natural water. Hydrodynamic diameters of ZnONPs become larger and deposit on the bottom when nanoparticles spiked in natural water. (N.D.=Non detected) 58 圖目錄 59 Fig. 1. Transmission electron microscope images of natural water in first season (A) NCKU lake; (B) Zengwun Reservoir; (C) Er-zen river water. Scale bar (A) 2 µm, 200 nm, 50 nm ; (B) 0.2µm, 200 nm, 0.2µm; (C) 10 µm, 1 µm, 0.2 µm 59 Fig. 2. Energy-dispersive X-ray spectroscopy analysis of two points in natural water in first season (A) NCKU lake; (B) Zengwun Reservoir; (C) Er-zen river after passing 0.45 µm filter. 60 Fig. 3. Transmission electron microscope images of natural water in second season (A) NCKU lake; (B) Zengwun Reservoir; (C) Er-zen river water. Scale bar, (A) 10 µm, 0.5 µm, 200 nm; (B) 10 µm, 0.5 µm, 200 nm; (C) 10 µm, 0.5 µm, 200 nm 61 Fig. 4. Energy-dispersive X-ray spectroscopy analysis of two points in natural water in second season (A) NCKU lake; (B) Zengwun Reservoir; (C) Er-zen river after passing 0.45 µm filter. 62 Fig. 5. First season survival rate of zebrafish embryos exposed to original water (A) survival rate of zebrafish embryos exposed to original. Survival rate of each natural water groups are high. 4 mg/L 3,4 Dichloroaniline (DCA) is positive control for the survival rate of zebrafish embryos. Pictures of exposing in 48 hpf is (B) NCKU lake ; (C) Zengwun Reservoir ; (D) Er-zen river 0, 24, 48, 72, 96 hpf with different natural water. (N=30) 63 Fig. 6. First season survival rate of zebrafish embryos exposed to original after passing 1 µm, 0.45 µm, 0.22 µm, 0.1 µm filter (A) NCKU lake (B) Zengwun Reservoir (C) Er-zen river 0 ,24, 48, 72, 96 hpf with different natural water. Survival rate is high in each natural water. (N=30) 64 Fig. 7. Second season survival rate of zebrafish embryos exposed to original after passing 1 µm, 0.45 µm, 0.22 µm, 0.1 µm filter (A) NCKU lake (B) Zengwun Reservoir (C) Er-zen river 0 ,24, 48, 72, 96 hpf with different natural water. Survival rate is high in each natural water. (N=30) 65 Fig. 8. First season body length of zebrafish embryos exposed to original after passing 1 µm, 0.45 µm, 0.22 µm, 0.1 µm filter (A) NCKU lake (B) Zengwun Reservoir (C) Er-zen river 72, hpf with different natural water. Body length is significantly longer than MQ water in each natural water (*p≤0.05). (N=30) Body length of zebrafish embryos were measured by view 7 software. 66 Fig. 9. Second season body length of zebrafish embryos exposed to original after passing 1 µm, 0.45 µm, 0.22 µm, 0.1 µm filter (A) NCKU lake (B) Zengwun Reservoir (C) Er-zen river 72, hpf with different natural water. Body length is significantly longer than MQ water in each natural water (*p≤0.05). (N=30). Body length of zebrafish embryos were measured by view 7 software. 67 Fig. 11. Zebrafish embryos exposed to first season Zengwun Reservoir water after passing 1 µm, 0.45 µm, 0.22 µm, 0.1 µm filter. After 72 hpf, zebrafish embryos were stained with DCFH-DA. ROS stained are rare in zebrafish embryos 69 Fig. 12. Zebrafish embryos exposed to first season Er-zen river water after passing 1 µm, 0.45 µm, 0.22 µm, 0.1 µm filter. After 72 hpf, zebrafish embryos were stained with DCFH-DA. ROS stained are rare in zebrafish embryos. 70 Fig. 13. Zebrafish embryos exposed to second season NCKU lake water after passing 1 µm, 0.45 µm, 0.22 µm, 0.1 µm filter. After 72 hpf, zebrafish embryos were stained with DCFH-DA. ROS stained are rare in zebrafish embryos. 71 Fig. 14. Zebrafish embryos exposed to second season Zengwun Reservoir water after passing 1 µm, 0.45 µm, 0.22 µm, 0.1 µm filter. After 72 hpf, zebrafish embryos were stained with DCFH-DA. ROS stained are rare in zebrafish embryos. 72 Fig. 15. Zebrafish embryos exposed to second season Er-zen river water after passing 1 µm, 0.45 µm, 0.22 µm, 0.1 µm filter. After 72 hpf, zebrafish embryos were stained with DCFH-DA. ROS stained are rare in zebrafish embryos. 73 Fig. 16. TUNEL assay at 4 hpf zebrafish embryos exposed to second season NCKU lake water after passing 1 µm, 0.45 µm, 0.22 µm, 0.1 µm filter until 72 hpf. Red color represents apoptotic cells. 74 Fig. 17. TUNEL assay at 4 hpf zebrafish embryos exposed to second season Zengwun Reservoir water after passing 1 µm, 0.45 µm, 0.22 µm, 0.1 µm filter until 72 hpf. Red color represents apoptotic cells. 75 Fig. 18. TUNEL assay at 4 hpf zebrafish embryos exposed to second season Er-zen river water after passing 1 µm, 0.45 µm, 0.22 µm, 0.1 µm filter until 72 hpf. Red color represents apoptotic cells. 76 Fig. 19. 5, 10, 15, 20, 25, 50, 75 and 100 µg/ml silver nanoparticles (AgNPs) and zinc oxide particles (ZnONPs) spiked in NCKU lake, Zengwun Reservoir, Er-zen river natural water. AgNPs and ZnONPs are aggregated and deposited on the bottom. 77 Fig. 20. Transmission electron microscope images of silver nanoparticles (AgNPs) spiked in (A) Milli-Q water(MQ); (B) NCKU lake; (C) Zengwun Reservoir (Zengwun); (D) Er-zen river natural water. One sample had two images. AgNPs aggregate and change shape in the natural water. 78 Fig. 21. Energy-dispersive X-ray spectroscopy analysis of AgNPs spiked indifferent water. One smaple had two images. (A) Milli-Q water; (B) NCKU lake; (C) Zengwun Reservoir; (D) Er-zen river. 79 Fig. 22. Transmission electron microscope images of zinc oxide nanoparticles (ZnONPs) spiked in (A) Milli-Q water (MQ); (B) NCKU lake; (C) Zengwun Reservoir (Zengwun); Er-zen river natural water. AgNPs aggregate and change shape in the natural water. 80 Fig. 23. Energy-dispersive X-ray spectroscopy analysis of ZnONPs spiked indifferent water. One smaple had two images. (A) Milli-Q water; (B) NCKU lake; (C) Zengwun Reservoir; (D) Er-zen river 81 Fig. 24. Two different concentrations (1, 10 μg/ml) survival rate (A) (B) of zebrafish embryos exposed to AgNPs spiked in (C) NCKU lake; (D) Zengwun Reservoir (Zengwun); (E) Er-zen river water passing 0.45 μm filter. 0 ,24, 48, 72, 96 hpf with different natural water. Nanoparticles aggregated/agglomerated in natural water (F). AgNPs in Milli-Q water is more toxicity than natural water. (N=30) 82 Fig. 25. Two different concentrations (1, 10 μg/ml) survival rate (A) (B) of zebrafish embryos exposed to AgNPs spiked in (C) NCKU lake; (D) Zengwun Reservoir (Zengwun); (E) Er-zen river water and then passed 0.45 μm filter. 0 ,24, 48, 72, 96 hpf with different natural water. AgNPs in Milli-Q water is more toxicity than natural water. (N=30) 83 Fig. 26. Two different concentrations (1, 10 μg/ml) survival rate (A) (B) of zebrafish embryos exposed to ZnONPs spiked in (C) NCKU lake; (D) Zengwun Reservoir (Zengwun); (E) Er-zen river water passing 0.45 μm filter. 0 ,24, 48, 72, 96 hpf with different natural water. 10μg/ml ZnONPs in Milli-Q water is more toxicity than natural water. (N=30) 84 Fig. 27 Two different concentrations (10, 50 μg/ml) survival rate (A) (B) of zebrafish embryos exposed to ZnONPs spiked in NCKU lake ; (C) Zengwun Reservoir ; Er-zen river water and then passed 0.45 μm filter. 0 ,24, 48, 72, 96 hpf with different natural water. ZnONPs in Milli-Q water is more toxicity than natural water but toxicity is lower after passing 0.45 μm filter. (N=30) 85 Fig. 28. Hatching rate of zebrafish embryos exposed to ZnONPs spiked in NCKU lake ; Zengwun Reservoir ; Er-zen river water and then passed 0.45 μm filter. (A) 48, (B) 72, (C) 96 hpf with different natural water. ZnONPs in different water have show (D) late haching time in all groups. (N=30) 86 Fig. 29. Zebrafish embryos exposed to second season natural water after passing 0.45 µm filter and then spiked AgNPs. NCKU lake+1 µg/ml/ 10 µg/ml AgNPs (NCKU 1/NCKU 10); Zengwun Reservoir +1 µg/ml/ 10 µg/ml AgNPs (Zen 1/Zen 10); Er-zen river water+1 µg/ml/ 10 µg/ml AgNPs (Er 1/Er 10). After 72 hpf, zebrafish embryos were stained with DCFH-DA. High toxicity group show more ROS stained in zebrafish embryos. 87 Fig. 30. Zebrafish embryos exposed to second season natural water after passing 0.45 µm filter and then spiked ZnONPs. NCKU lake+1 µg/ml/ 10 µg/ml ZnONPs (NCKU 1/NCKU 10); Zengwun Reservoir +1 µg/ml/ 10 µg/ml ZnONPs (Zen 1/Zen 10); Er-zen river water+1 µg/ml/ 10 µg/ml ZnONPs (Er 1/Er 10). After 72 hpf, zebrafish embryos were stained with DCFH-DA. All groups show high ROS stained in zebrafish embryos. 88 Fig. 31. Zebrafish embryos exposed to second season natural water after passing 0.45 µm filter and then spiked AgNPs. After 72 hpf, zebrafish embryos were stained with Lyso-Tracker Red. High toxicity group show more acidic vesicles stained in zebrafish embryos. 89 Fig. 32. Zebrafish embryos exposed to second season natural water after passing 0.45 µm filter and then spiked ZnONPs. After 72 hpf, zebrafish embryos were stained with Lyso-Tracker Red. High toxicity group show more acidic vesicles stained in zebrafish embryos. 90 Fig. 33. TUNEL assay at zebrafish embryos exposed to second season natural water after passing 0.45 µm filter and then spiked AgNPs. NCKU lake+1 µg/ml/ 10 µg/ml AgNPs (NCKU 1/NCKU 10); Zengwun Reservoir +1 µg/ml/ 10 µg/ml AgNPs (Zen 1/Zen 10); Er-zen river water+1 µg/ml/ 10 µg/ml AgNPs (Er 1/Er 10). Red color represents apoptotic cells. 91 Fig. 34. TUNEL assay at zebrafish embryos exposed to second season natural water after passing 0.45 µm filter and then spiked ZnONPs. NCKU lake+1 µg/ml/ 10 µg/ml ZnONPs (NCKU 1/NCKU 10); Zengwun Reservoir +1 µg/ml/ 10 µg/ml ZnONPs (Zen 1/Zen 10); Er-zen river water+1 µg/ml/ 10 µg/ml ZnONPs (Er 1/Er 10).Red color represents apoptotic cells. 92 Fig. 35. Elemental Mapping analysis of AgNPs spiked in NCKU lake water. Element of Sulphur (S) and Chlorine (Cl) attached on AgNPs. 93 Fig. 36. Elemental Mapping analysis of AgNPs spiked in Zengwun Reservoir water. Element of (Sulphur) S and Chlorine (Cl) attached on AgNPs. 94 Fig. 37. Elemental Mapping analysis of AgNPs spiked in Er-zen water. Element of Sulphur (S) and Chlorine (Cl) attached on AgNPs. 95 Fig. 38. Elemental Mapping analysis of ZnONPs spiked in NCKU lake water. Element of Sulphur (S), Chlorine (Cl), Phosphorum (P) and a little Ferrum (Fe) attached on ZnONPs. 96 Fig. 39. Elemental Mapping analysis of ZnONPs spiked in Zengwun Reservoir water. Element of Sulphur (S), Chlorine (Cl), Ferrum (Fe) and fewer Phosphorum (P) attached on ZnONPs. 97 Fig. 40. Elemental Mapping analysis of ZnONPs spiked in Er-zen river water. Element of Sulphur (S), Chlorine (Cl), Ferrum (Fe) and Phosphorum (P) attached on ZnONPs. 98

    Asharani PV, Yi Lian W, Zhiyuan G, Suresh V. 2008. Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102.
    Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM. 2010. Impact of environmental conditions (ph, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environmental science & technology 44:1260-1266.
    Bai W, Zhang Z, Tian W, He X, Ma Y, Zhao Y, et al. 2010. Toxicity of zinc oxide nanoparticles to zebrafish embryo: A physicochemical study of toxicity mechanism. Journal of Nanoparticle Research 12:1645-1654.
    Batista D, Pascoal C, Cássio F. 2017. How do physicochemical properties influence the toxicity of silver nanoparticles on freshwater decomposers of plant litter in streams? Ecotoxicology and Environmental Safety 140:148-155.
    Beliaeva NF, Kashirtseva VN, Medvedeva NV, Khudoklinova I, Ipatova OM, Archakov AI. 2010. [zebrafish as a model organism for biomedical studies]. Biomeditsinskaia khimiia 56:120-131.
    Bernhardt ES, Colman BP, Hochella MF, Jr., Cardinale BJ, Nisbet RM, Richardson CJ, et al. 2010. An ecological perspective on nanomaterial impacts in the environment. Journal of environmental quality 39:1954-1965.
    Bian S-W, Mudunkotuwa IA, Rupasinghe T, Grassian VH. 2011. Aggregation and dissolution of 4 nm zno nanoparticles in aqueous environments: Influence of ph, ionic strength, size, and adsorption of humic acid. Langmuir 27:6059-6068.
    Blickley TM, McClellan‐Green P. 2008. Toxicity of aqueous fullerene in adult and larval fundulus heteroclitus. Environmental Toxicology and Chemistry: An International Journal 27:1964-1971.
    Brun NR, Lenz M, Wehrli B, Fent K. 2014a. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: Importance of zinc ions. Science of the Total Environment 476:657-666.
    Brun NR, Lenz M, Wehrli B, Fent K. 2014b. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: Importance of zinc ions. Science of The Total Environment 476-477:657-666.
    Bruneau A, Turcotte P, Pilote M, Gagné F, Gagnon C. 2016. Fate of silver nanoparticles in wastewater and immunotoxic effects on rainbow trout. Aquatic Toxicology 174:70-81.
    Chen KL, Mylon SE, Elimelech M. 2006. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environmental science & technology 40:1516-1523.
    Chen KL, Elimelech M. 2009. Relating colloidal stability of fullerene (c60) nanoparticles to nanoparticle charge and electrokinetic properties. Environmental science & technology 43:7270-7276.
    Chen T-H, Lin C-C, Meng P-J. 2014. Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (danio rerio). Journal of hazardous materials 277:134-140.
    Chi-Hsin H, Zhi-Hong W, Chan-Shing L, Chiranjib C. 2007. The zebrafish model: Use in studying cellular mechanisms for a spectrum of clinical disease entities. Current Neurovascular Research 4:111-120.
    Christen V1 CM, Fent K. 2013. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish. Toxicol Appl Pharmacol 2013 Oct 15;272(2):519-28 doi: 101016/jtaap201306011 Epub 2013 Jun 22.
    Connolly M, Fernández-Cruz, M.L ,Navas, J.M. 2014. Metal nanoparticle (np) toxicity testing in vitro and questions surrounding the oxidative stress
    paradigm. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de la Coruña
    Km 75, Madrid, Spain.
    Cuervo AM, Dice JF. 1998. Lysosomes, a meeting point of proteins, chaperones, and proteases. Journal of molecular medicine 76:6-12.
    Dai YJ, Jia YF, Chen N, Bian WP, Li QK, Ma YB, et al. 2014. Zebrafish as a model system to study toxicology. Environmental toxicology and chemistry 33:11-17.
    Dave G. 1984. Effect of ph on pentachlorophenol toxicity to embryos and larvae of zebrafish (brachydanio rerio). Bulletin of environmental contamination and toxicology 33:621-630.
    De Jong WH, Borm PJ. 2008. Drug delivery and nanoparticles: Applications and hazards. International journal of nanomedicine 3:133.
    De La Rosa G, et al., , . 2011. Toxicity and biotransformation of zno nanoparticles in the desert plants prosopis juliflora-velutina, salsola tragus and parkinsonia florida. International Journal of Nanotechnology 2011 8(6-7): p 492-506.
    de Lima R, Seabra AB, Durán N. 2012. Silver nanoparticles: A brief review of cytotoxicity and genotoxicity of chemically and biogenically synthesized nanoparticles. Journal of Applied Toxicology 32:867-879.
    Delay M, Dolt T, Woellhaf A, Sembritzki R, Frimmel FH. 2011. Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (nom) and ionic strength. Journal of Chromatography A 1218:4206-4212.
    Derfus AM, Chan WC, Bhatia SN. 2004. Probing the cytotoxicity of semiconductor quantum dots. Nano letters 4:11-18.
    Duan J, Yu Y, Yu Y, Li Y, Wang J, Geng W, et al. 2014. Silica nanoparticles induce autophagy and endothelial dysfunction via the pi3k/akt/mtor signaling pathway. International journal of nanomedicine 9:5131.
    Dunn Jr WA. 1994. Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends in cell biology 4:139-143.
    Easter SS, Jr., Nicola GN. 1996. The development of vision in the zebrafish (danio rerio). Developmental biology 180:646-663.
    Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR. 2011. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environment International 37:517-531.
    Gagné F, André C, Skirrow R, Gélinas M, Auclair J, van Aggelen G, et al. 2012. Toxicity of silver nanoparticles to rainbow trout: A toxicogenomic approach. Chemosphere 89:615-622.
    Gagnon C, Bruneau A, Turcotte P, Pilote M, Gagne F. 2018. Fate of cerium oxide nanoparticles in natural waters and immunotoxicity in exposed rainbow trout. Journal of Nanomedicine & Nantotechnology 9.
    Gao J, Mahapatra CT, Mapes CD, Khlebnikova M, Wei A, Sepulveda MS. 2016. Vascular toxicity of silver nanoparticles to developing zebrafish (danio rerio). Nanotoxicology 10:1363-1372.
    Ghosh S, Mashayekhi H, Bhowmik P, Xing B. 2009. Colloidal stability of al2o3 nanoparticles as affected by coating of structurally different humic acids. Langmuir 26:873-879.
    Greim H, Borm P, Schins R, Donaldson K, Driscoll K, Hartwig A, et al. 2001. Toxicity of fibers and particles? Report of the workshop held in munich, germany, 26? 27 october 2000. Inhalation toxicology 13:737-754.
    Guo C, Yang M, Jing L, Wang J, Yu Y, Li Y, et al. 2016. Amorphous silica nanoparticles trigger vascular endothelial cell injury through apoptosis and autophagy via reactive oxygen species-mediated mapk/bcl-2 and pi3k/akt/mtor signaling. International journal of nanomedicine 11:5257.
    Hernandez-Viezcas J, et al., . 2011. Spectroscopic verification of zinc absorption and distribution in the desert plant prosopis juliflora-velutina (velvet mesquite) treated with zno nanoparticles. Chemical engineering journal, 2011 170(2): p 346-352.
    Holden PA1 NR, Lenihan HS, Miller RJ, Cherr GN, Schimel JP, Gardea-Torresdey JL. 2013. Ecological nanotoxicology: Integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc Chem Res 2013 Mar 19;46(3):813-22 doi: 101021/ar300069t Epub 2012 Oct 5.
    Holden PA, Nisbet RM, Lenihan HS, Miller RJ, Cherr GN, Schimel JP, et al. 2013. Ecological nanotoxicology: Integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Accounts of Chemical Research 46:813-822.
    International Organization for Standardization. 1996. Water quality— Determination of the acute lethal toxicity of substances to a freshwater fish [Brachydanio rerio Hamilton-Buchanan (Teleostei CP.
    Ispas C, Andreescu D, Patel A, Goia DV, Andreescu S, Wallace KN. 2009. Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish. Environmental science & technology 43:6349-6356.
    Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, et al. 2014. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PloS one 9:e102108.
    Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, et al. 2010. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environmental science & technology 44:1962-1967.
    Kim J, Klionsky DJ. 2000. Autophagy, cytoplasm-to-vacuole targeting pathway, and pexophagy in yeast and mammalian cells. Annual review of biochemistry 69:303-342.
    Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, et al. 2008. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental toxicology and chemistry 27:1825-1851.
    López-Moreno ML, et al. 2010. Evidence of the differential biotransformation and genotoxicity of zno and ceo2 nanoparticles on soybean (glycine max) plants. Environmental science & technology, 2010 44(19): p 7315-7320.
    Lacave JM, Retuerto A, Vicario-Parés U, Gilliland D, Oron M, Cajaraville MP, et al. 2016. Effects of metal-bearing nanoparticles (ag, au, cds, zno, sio2) on developing zebrafish embryos. Nanotechnology 27:325102.
    Lanone S, Boczkowski J. 2006. Biomedical applications and potential health risks of nanomaterials: Molecular mechanisms. Current molecular medicine 6:651-663.
    Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu X-HN. 2007. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS nano 1:133-143.
    Lele Z, Krone P. 1996. The zebrafish as a model system in developmental, toxicological and transgenic research. Biotechnology advances 14:57-72.
    Li X, Lenhart JJ, Walker HW. 2010. Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 26:16690-16698.
    Lin S, Zhao Y, Ji Z, Ear J, Chang CH, Zhang H, et al. 2013. Zebrafish high‐throughput screening to study the impact of dissolvable metal oxide nanoparticles on the hatching enzyme, zhe1. Small 9:1776-1785.
    Lin S, Zhao Y, Nel AE, Lin S. 2013. Zebrafish: An in vivo model for nano ehs studies. Small (Weinheim an der Bergstrasse, Germany) 9:1608-1618.
    Liu W, Zhou Q, Liu J, Fu J, Liu S, Jiang G. 2011. Environmental and biological influences on the stability of silver nanoparticles. Chinese science bulletin 56:2009-2015.
    LM B. 2013. Silver nanoparticles incite size- and dose-dependent developmental phenotypes and nanotoxicity in zebrafish embryos. Chem Res Toxicol 2013 Oct 21;26(10):1503-13 doi: 101021/tx400228p Epub 2013 Sep 11.
    López-Moreno ML, et al., . 2010. X-ray absorption spectroscopy (xas) corroboration of the uptake and storage of ceo2 nanoparticles and assessment of their differential toxicity in four edible plant species. Journal of agricultural and food chemistry, 2010 58(6): p 3689-3693.
    Ma R, Levard Cm, Judy JD, Unrine JM, Durenkamp M, Martin B, et al. 2013. Fate of zinc oxide and silver nanoparticles in a pilot wastewater treatment plant and in processed biosolids. Environmental science & technology 48:104-112.
    MacNee W, Donaldson K. 2003. Mechanism of lung injury caused by pm 10 and ultrafine particles with special reference to copd. European Respiratory Journal 21:47s-51s.
    Manke A, Wang L, Rojanasakul Y. 2013. Mechanisms of nanoparticle-induced oxidative stress and toxicity. BioMed research international 2013.
    Mao B-H, Tsai J-C, Chen C-W, Yan S-J, Wang Y-J. 2016. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 10:1021-1040.
    Mao BH, Tsai JC, Chen CW, Yan SJ, Wang YJ. 2016. Mechanisms of silver nanoparticle-induced toxicity and important role of autophagy. Nanotoxicology 10:1021-1040.
    Mortimore GE, Miotto G, Venerando R, Kadowaki M. 1996. Autophagy. In: Biology of the lysosome:Springer, 93-135.
    Nel A, Xia T, Mädler L, Li N. 2006. Toxic potential of materials at the nanolevel. science 311:622-627.
    Oberdörster E. 2004. Manufactured nanomaterials (fullerenes, c60) induce oxidative stress in the brain of juvenile largemouth bass. Environmental health perspectives 112:1058.
    Oberdörster G, Oberdörster E, Oberdörster J. 2005. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental health perspectives 113:823-839.
    Oberdorster G, Finkelstein JN, Johnston C, Gelein R, Cox C, Baggs R, et al. 2000. Acute pulmonary effects of ultrafine particles in rats and mice. Research report (Health Effects Institute):5-74; disc. 75-86.
    Odzak N, Kistler D, Sigg L. 2017. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments. Environmental Pollution 226:1-11.
    Ong KJ, Felix LC, Boyle D, Ede JD, Ma G, Veinot JG, et al. 2017. Humic acid ameliorates nanoparticle-induced developmental toxicity in zebrafish. Environmental Science: Nano 4:127-137.
    Osborne OJ, Lin S, Chang CH, Ji Z, Yu X, Wang X, et al. 2015. Organ-specific and size-dependent ag nanoparticle toxicity in gills and intestines of adult zebrafish. ACS nano 9:9573-9584.
    Osmond MJ, McCall MJ. 2010. Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology 4:15-41.
    Pallardy M, Biola A, Lebrec H, Bréard J. 1999. Assessment of apoptosis in xenobiotic-induced immunotoxicity. Methods 19:36-47.
    Recordati C, De Maglie M, Bianchessi S, Argentiere S, Cella C, Mattiello S, et al. 2016. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: Nano-specific and size-dependent effects. Particle and Fibre Toxicology 13:12.
    Ribas L, Piferrer F. 2013. The zebrafish (danio rerio) as a model organism, with emphasis on applications for finfish aquaculture research. Reviews in Aquaculture 6:209-240.
    Rico CM, et al. 2011. Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 2011 59(8): p 3485-3498.
    Roy R, Singh SK, Chauhan L, Das M, Tripathi A, Dwivedi PD. 2014. Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via pi3k/akt/mtor inhibition. Toxicology letters 227:29-40.
    Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M, Heinrich J-M, et al. 2006. Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano letters 6:2826-2832.
    Sharma V, Singh P, Pandey AK, Dhawan A. 2012. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 745:84-91.
    Shvedova AA, Pietroiusti A, Fadeel B, Kagan VE. 2012. Mechanisms of carbon nanotube-induced toxicity: Focus on oxidative stress. Toxicol Appl Pharmacol 261:121-133.
    Spence R, Ashton R, Smith C. 2007. Oviposition decisions are mediated by spawning site quality in wild and domesticated zebrafish, <i>danio rerio</i>. Behaviour 144:953-966.
    Stebounova LV, Adamcakova-Dodd A, Kim JS, Park H, T O'Shaughnessy P, Grassian VH, et al. 2011. Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Particle and fibre toxicology 8:5.
    Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, et al. 2012. Zebrafish embryos as an alternative to animal experiments—a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reproductive Toxicology 33:128-132.
    Sun Y, Xia Y. 2002. Shape-controlled synthesis of gold and silver nanoparticles. Science 298:2176-2179.
    Tiwari SB AM. 2006. A review of nanocarrier-based cns delivery systems. Materials Science.
    Tran C, Buchanan D, Cullen R, Searl A, Jones A, Donaldson K. 2000. Inhalation of poorly soluble particles. Ii. Influence of particle surface area on inflammation and clearance. Inhalation toxicology 12:1113-1126.
    Truong L, Zaikova T, Richman EK, Hutchison JE, Tanguay RL. 2012. Media ionic strength impacts embryonic responses to engineered nanoparticle exposure. Nanotoxicology 6:691-699.
    Veldman MB, Lin S. 2008. Zebrafish as a developmental model organism for pediatric research. Pediatric research 64:470-476.
    Viswanath B, Kim S. 2016. Influence of nanotoxicity on human health and environment: The alternative strategies. In: Reviews of environmental contamination and toxicology volume 242:Springer, 61-104.
    Vittorini S, Paradiso C, Donati A, Cavallini G, Masini M, Gori Z, et al. 1999. The age-related accumulation of protein carbonyl in rat liver correlates with the age-related decline in liver proteolytic activities. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences 54:B318-B323.
    Wang B, Feng W, Wang M, Wang T, Gu Y, Zhu M, et al. 2008. Acute toxicological impact of nano-and submicro-scaled zinc oxide powder on healthy adult mice. Journal of Nanoparticle Research 10:263-276.
    Wang RL, Biales A, Bencic D, Lattier D, Kostich M, Villeneuve D, et al. 2008. DNA microarray application in ecotoxicology: Experimental design, microarray scanning, and factors affecting transcriptional profiles in a small fish species. Environmental toxicology and chemistry 27:652-663.
    Ward DM, Nislow KH, Chen CY, Folt CL. 2010. Reduced trace element concentrations in fast-growing juvenile atlantic salmon in natural streams. Environmental science & technology 44:3245-3251.
    Warheit D, Reed K, Webb T. 2003. Pulmonary toxicity studies in rats with triethoxyoctylsilane (otes)-coated, pigment-grade titanium dioxide particles: Bridging studies to predict inhalation hazard. Experimental lung research 29:593-606.
    Watanabe M, Okada M, Kudo Y, Tonori Y, Niitsuya M, Sato T, et al. 2002. Differences in the effects of fibrous and particulate titanium dioxide on alveolar macrophages of fischer 344 rats. Journal of Toxicology and Environmental Health, Part A 65:1047-1060.
    Weber GE, Dal Bosco L, Goncalves CO, Santos AP, Fantini C, Furtado CA, et al. 2014. Biodistribution and toxicological study of pegylated single-wall carbon nanotubes in the zebrafish (danio rerio) nervous system. Toxicology and applied pharmacology 280:484-492.
    Wijnhoven SW, Peijnenburg WJ, Herberts CA, Hagens WI, Oomen AG, Heugens EH, et al. 2009. Nano-silver–a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology 3:109-138.
    Wu Y, Zhou Q, Li H, Liu W, Wang T, Jiang G. 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of japanese medaka (oryzias latipes) using the partial-life test. Aquatic Toxicology 100:160-167.
    X. Chen∗ HJS. 2008. Nanosilver: A nanoproduct in medical application. Toxicology Letters 176 (2008) 1–12.
    Xu M, Li J, Iwai H, Mei Q, Fujita D, Su H, et al. 2012. Formation of nano-bio-complex as nanomaterials dispersed in a biological solution for understanding nanobiological interactions. Scientific reports 2:406.
    Yamashita M. 2003. Apoptosis in zebrafish development. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 136:731-742.
    Yashwanth B, Pamanji R, Rao JV. 2016. Toxicomorphomics and toxicokinetics of quinalphos on embryonic development of zebrafish (danio rerio) and its binding affinity towards hatching enzyme, zhe1. Aquatic Toxicology 180:155-163.
    Yu S-j, Yin Y-g, Liu J-f. 2013. Silver nanoparticles in the environment. Environmental Science: Processes & Impacts 15:78-92.
    Yu S-j, Y.-g. Yin, and J.-f. Liu, . 2013. Silver nanoparticles in the environment. Environmental Science: Processes & Impacts, 15(1): p 78-92.
    Zabirnyk O, Yezhelyev M, Seleverstov O. 2007. Nanoparticles as a novel class of autophagy activators. Autophagy 3:278-281.
    Zhang Y, Chen Y, Westerhoff P, Crittenden J. 2009. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water research 43:4249-4257.
    Zhao CM, Wang WX. 2011. Comparison of acute and chronic toxicity of silver nanoparticles and silver nitrate to daphnia magna. Environmental Toxicology and Chemistry 30:885-892.
    Zhou D, Keller AA. 2010. Role of morphology in the aggregation kinetics of zno nanoparticles. Water research 44:2948-2956.
    Zhu X, Zhu L, Duan Z, Qi R, Li Y, Lang Y. 2008. Comparative toxicity of several metal oxide nanoparticle aqueous suspensions to zebrafish (danio rerio) early developmental stage. Journal of Environmental Science and Health, Part A 43:278-284.

    無法下載圖示 校內:2024-02-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE