簡易檢索 / 詳目顯示

研究生: 張崧浩
Zhang, Song-Hao
論文名稱: 以硫醇─烯點擊化學反應製備具阻燃性質之環磷腈彈性體
Preparation of Flame Retardant Cyclophosphazene-based Elastomers by Thiol-ene Click Chemistry
指導教授: 詹正雄
Jan, Jeng-Shiung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 86
中文關鍵詞: 磷腈類衍生物硫醇-烯點擊化學彈性體光聚合阻燃
外文關鍵詞: Phosphazene derivatives, thiol-ene click reaction, elastomer, photopolymerization, flame retardancy
相關次數: 點閱:46下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將製備由天然植物材料丁香酚作為反應基團的磷腈類衍生物,將其和多種
    硫醇單體進行快速和效率高的光聚合反應,其原材料六氯環三磷腈分子是一個解阻燃
    問題的結構,其結構是由磷和氮原子交替排列的環狀分子,我們將外圍六個氯官能基
    以丁香酚取代(二或三個),剩餘則分別以三種不同非反應性官能基的的芳香羥基分子
    取代,去和硫醇單體以硫醇-烯點擊化學反應聚合成出具有不同性質的交聯彈性體,
    其反應官能基的個數不同,我們可以設計出不同交聯密度的高分子結構,交聯密度會
    大幅影響到彈性體性質,以往大多數彈性體是輕度交聯的柔性聚合物,因此阻燃性較
    差造成實際應用發展的限制,而從數據結果來看到這些彈性體材料能具有優異的阻燃
    性,熱重分析中可以看到其優異的熱穩定性以及高殘碳率,這種膨脹的殘碳往往是保
    護材料燃燒的重要結構,進一步利用元素分析中元素氮和磷比例材料燃燒前後的變化
    ,由此來分析燃燒過程中阻燃的運作,除此之外,在DMA 和拉伸分析中能看出其具
    有一定伸縮性和機械強度,其中有斷裂拉伸強度接近10 MPa 的情況下還保有一定的
    拉伸性的材料存在,我們推測這可能是由於交聯的硫醚鍵結的柔韌性和側鏈中π-π 堆
    疊作用力下的結果,從彈性體外觀也能觀察到其具有高度的透光性,UV 的結果中也
    證明了材料具有高透光度,這些基於丁香酚的磷腈類衍生物以硫醇-烯反應聚合彈性
    體分子,成功建立了一條合成各式性質阻燃的生物基底聚合物材料用於實際應用的新
    途徑。

    In this study, we synthesized a series of elastomers by thiol-ene click reaction between phosphazene derivatives bearing eugenol, a low-toxicity plant essential oil and thiolcontaining monomers via photopolymerization. The structure of phosphazene derivatives with different functional groups were confirmed by NMR and the reduction in allyl and thiol peak pointed out that we successfully polymerized these elastomers by FT-IR. In DMA and tensile-strain test, the as-prepared elastomers exhibited different mechanical strengths and tensile properties, depending on the cross-linking density. TGA curves showed that the elastomers exhibited the temperature at 5% weight loss are higher than 250℃ and larger amount of char residue, confirming its thermal stability at high temperature and the formation of flame retardant carbon layer which protects materials from the flames of a burning building. A part of those elastomers exhibited excellent flame retardancy due to the incorporation of phosphazene derivatives. Besides, we compared the difference between physical properties, flame retardancy, and polymerization via change of the unreactive functional groups. Due to the abovementioned advantages, this is a simple and new pathway to synthesize transparent elastomers with potential applications in a variety of fields.

    摘要 I Extended Abstract II 目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章緒論 1 1.1 前言 1 1.1.1 背景 1 1.1.2 彈性體 2 1.1.3 丁香酚 3 1.1.4 阻燃分子 4 1.1.5 磷腈類材料 6 1.1.6 硫醇─烯點擊化學反應 7 1.2 研究動機 8 第二章文獻回顧 9 2.1 彈性體發展 9 2.2 熱固性彈性體(Thermosetting elastomers, TSE) 9 2.3 熱塑性彈性體(Thermoplastic elastomer, TPE) 11 2.3.1 聚苯乙烯系(Thermoplastic styrene, TPS) 11 2.3.2 聚氨酯系(Thermoplastic polyurethane, TPU) 12 2.3.3 聚醯胺系(Thermoplastic polyamide, TPA) 12 2.3.4 熱塑性硫化膠(Thermoplastic vulcanizates, TPV) 13 2.4 磷腈彈性體 15 2.4.1 三氟氧基的線性聚磷腈 16 2.4.2 烷系氧基的線性聚磷腈 16 2.4.3 兩種側基的線性聚磷腈 17 2.4.4 羥基環磷腈彈性體 18 2.4.5 烯基環磷腈彈性體 20 2.4.6 線性聚磷腈參雜環狀磷腈的彈性體 21 第三章儀器設備與實驗方法 22 3.1 實驗藥品 22 3.2 實驗儀器及設備 23 3.3 儀器原理及分析方式 24 3.3.1 核磁共振儀(Nuclear magnetic resonance spectrophotometer, NMR) 24 3.3.2 傅立葉轉換紅外線光譜儀(FT-IR) 24 3.3.3 拉曼光譜儀(Raman Spectroscopy) 25 3.3.4 動態機械分析儀(DMA) 26 3.3.5 拉伸試驗機 27 3.3.6 熱重分析儀(Thermogravimetry analysis, TGA) 28 3.3.7 UL94 熱燃燒測試儀 29 3.3.8 掃描式電子顯微鏡(SEM) 30 3.3.9 紫外光/可見光光譜儀(UV/vis spectrophotometer) 30 3.4 樣品製備 31 3.4.1 無水溶劑及無水氫化鈉製備 31 3.4.2 羥基分子置換反應 32 3.4.3 六氯環三磷腈(Phosphonitrilic chloride trimer)取代反應 33 3.4.4 產物純化步驟 35 3.4.5 彈性體製備 36 第四章 結果與討論 38 4.1 磷腈類衍生物的合成鑑定 38 4.1.1 初始材料 38 4.1.2 HCP-phe4-eug2 和HCP-phe3-eug3 磷腈類衍生物分析 40 4.1.3 HCP-mo4-eug2 和HCP-mo3-eug3 磷腈類衍生物分析 42 4.1.4 HCP-cn4-eug2 和HCP-cn3-eug3 磷腈類衍生物分析 44 4.2 傅立葉轉換紅外線光譜儀分析(FT-IR) 46 4.3 拉曼光譜分析(Raman) 48 4.4 外觀分析(Appearance) 49 4.5 動態機械分析(DMA) 52 4.6 拉伸試驗測試分析 55 4.7 熱重分析(TGA) 58 4.8 燃燒試驗分析(UL94) 64 4.9 掃描氏電子顯微鏡分析(SEM) 67 4.9.1 彈性體表面SEM分析 67 4.9.2 燃燒後彈性體表面SEM分析 68 4.10 紫外光/可見光譜分析(UV/vis spectrophotometer) 73 第五章結論 75 第六章參考文獻 77

    1. Li, Z., Chen, C., McCaffrey, M., Yang, H. &Allcock, H. R. Polyphosphazene Elastomers with Alkoxy and Trifluoroethoxy Side Groups. ACS Appl. Polym. Mater. 2, 475–480 (2020).
    2. Akiba, M. &Hashim, A. S. Vulcanization and crosslinking in elastomers. Prog. Polym. Sci. 22, 475–521 (1997).
    3. Frick, A. &Rochman, A. Characterization of TPU-elastomers by thermal analysis (DSC). Polym. Test. 23, 413–417 (2004).
    4. Kissounko, D. A., Taynton, P. &Kaffer, C. New material: vitrimers promise to impact composites. Reinf. Plast. 62, 162–166 (2018).
    5. Babu, R. P., O’Connor, K. &Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2, 8 (2013).
    6. Kamatou, G. P., Vermaak, I. &Viljoen, A. M. Eugenol - From the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule. Molecules 17, 6953–6981 (2012).
    7. Chen, X. et al. A Low-Dielectric Polymer Derived from a Biorenewable Phenol (Eugenol). ACS Sustain. Chem. Eng. 6, 13518–13523 (2018).
    8. Pramod, K., Ansari, S. H. &Ali, J. Eugenol: A natural compound with versatile pharmacological actions. Nat. Prod. Commun. 5, 1999–2006 (2010).
    9. Zari, A. T., Zari, T. A. &Hakeem, K. R. Anticancer Properties of Eugenol: A Review. Molecules 26, (2021).
    10. Zhang, Y., Li, Y., Wang, L., Gao, Z. &Kessler, M. R. Synthesis and Characterization of Methacrylated Eugenol as a Sustainable Reactive Diluent for a Maleinated Acrylated Epoxidized Soybean Oil Resin. ACS Sustain. Chem. Eng. 5, 8876–8883 (2017).
    11. Gazzotti, S. et al. Eugenol-grafted aliphatic polyesters: Towards inherently antimicrobial PLA-based materials exploiting OCAs chemistry. Eur. Polym. J. 114, 369–379 (2019).
    12. Qin, J., Liu, H., Zhang, P., Wolcott, M. &Zhang, J. Use of eugenol and rosin as feedstocks for biobased epoxy resins and study of curing and performance properties. Polym. Int. 63, 760–765 (2014).
    13. Huan, S. K. H. et al. Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 17, 6277–6289 (2012).
    14. Horrocks, A. R., Kandola, B. K., Davies, P. J., Zhang, S. &Padbury, S. A. Developments in flame retardant textiles - A review. Polym. Degrad. Stab. 88, 3–12 (2005).
    15. Liang, S., Neisius, N. M. &Gaan, S. Recent developments in flame retardant polymeric coatings. Prog. Org. Coatings 76, 1642–1665 (2013).
    16. Gutmann, T. M.-G. W. A. O. Z. V. S. L. D. T. E. R. W. D. K. D. I. O. E.-P. K. O. Cyclophosphazene als umweltfreundliche halogenfreie per- manente Flammschutzausrüstung textiler Materialien DTNW-Mitteilung. (2020) doi:10.13140/RG.2.2.24593.66407/1.
    17. Huo, S. et al. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog. Polym. Sci. 114, 101366 (2021).
    18. Zhou, X. et al. Polyphosphazenes-based flame retardants: A review. Compos. Part B Eng. 202, 108397 (2020).
    19. Allcock, H. R., Kugel, R. L. &Valan, K. J. Phosphonitrilic Compounds. VI. High Molecular Weight Poly(alkoxy- and aryloxyphosphazenes). Inorg. Chem. 5, 1709–1715 (1966).
    20. Singler, R. E., Schneider, N. S. &Hagnauer, G. L. Polyphosphazenes: Synthesis—properties—applications. Polym. Eng. Sci. 15, 321–338 (1975).
    21. Posner, T. Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe. Berichte der Dtsch. Chem. Gesellschaft 38, 646–657 (1905).
    22. Lowe, A. B. Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 1, 17–36 (2010).
    23. Hoyle, C. E. &Bowman, C. N. Thiol-ene click chemistry. Angew. Chemie - Int. Ed. 49, 1540–1573 (2010).
    24. Sy Piecco, K. W. E. et al. Kinetic Model under Light-Limited Condition for Photoinitiated Thiol-Ene Coupling Reactions. ACS Omega 3, 14327–14332 (2018).
    25. Hundiwale, D. G., Kapadi, U. R., Desai, M. C. &Bidkar, S. H. Mechanical properties of natural rubber filled with flyash. J. Appl. Polym. Sci. 85, 995–1001 (2002).
    26. Gent, A. N. Rubber and Rubber Elasticity: a Review. J Polym Sci Part C, Polym Symp 17, 1–17 (1974).
    27. Bueche, A. M. An investigation of the theory of rubber elasticity using irradiated polydimethylsiloxanes. J. Polym. Sci. 19, 297–306 (1956).
    28. Moore, C. G. &Watson, W. F. Determination of degree of crosslinking in natural rubber vulcanizates. Part II. J. Polym. Sci. 19, 237–254 (1956).
    29. Mullins, L. &Thomas, A. G. Determination of degree of crosslinking in natural rubber vulcanizates. Part V. Effect of network flaws due to free chain ends. J. Polym. Sci. 43, 13–21 (1960).
    30. Yehia, A. A. Recycling of Rubber Waste. https://doi.org/10.1081/PPT-200040086 43, 1735–1754 (2007).
    31. Fukumori, K. &Review, M. M. Material Recycling Technology of Crosslinked Rubber Waste. R&D Rev. Toyota CRDL 38,.
    32. Wemyss, A. M. et al. Dynamic crosslinked rubbers for a green future: A material perspective. Mater. Sci. Eng. R Reports 141, 100561 (2020).
    33. Pantamanatsopa, P. et al. Effect of Modified Jute Fiber on Mechanical Properties of Green Rubber Composite. Energy Procedia 56, 641–647 (2014).
    34. Lyu, L., Pei, J., Hu, D., Sun, G. &Fini, E. H. Bio-modified rubberized asphalt binder: A clean, sustainable approach to recycle rubber into construction. J. Clean. Prod. 345, 131151 (2022).
    35. Roy, K., Debnath, S. C., Pongwisuthiruchte, A. &Potiyaraj, P. Recent advances of natural fibers based green rubber composites: Properties, current status, and future perspectives. J. Appl. Polym. Sci. 138, 50866 (2021).
    36. Fazli, A. &Rodrigue, D. Waste rubber recycling: A review on the evolution and properties of thermoplastic elastomers. Materials (Basel). 13, (2020).
    37. Lo, M., YC Chen - US Patent 9, 714,301 &2017, undefined. Heterogeneous catalyst and method for selectively hydrogenating copolymer utilizing the same. Google Patents (2017).
    38. Abreu, F. O. M. S., Forte, M. M. C. &Liberman, S. A. SBS and SEBS block copolymers as impact modifiers for polypropylene compounds. J. Appl. Polym. Sci. 95, 254–263 (2005).
    39. Denac, M., Musil, V. &Šmit, I. Polypropylene/talc/SEBS (SEBS-g-MA) composites. Part 2. Mechanical properties. Compos. Part A Appl. Sci. Manuf. 36, 1282–1290 (2005).
    40. Fanegas, N. et al. Optimizing the balance between impact strength and stiffness in polypropylene/elastomer blends by incorporation of a nucleating agent. Wiley Online Libr. 48, 80–87 (2008).
    41. Panaitescu, D. M., Vuluga, Z., Radovici, C. &Nicolae, C. Morphological investigation of PP/nanosilica composites containing SEBS. Polym. Test. 31, 355–365 (2012).
    42. Charlon, M. et al. Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols. Eur. Polym. J. 61, 197–205 (2014).
    43. Bartolomé, L., Aurrekoetxea, J., Urchegui, M. A. &Tato, W. The influences of deformation state and experimental conditions on inelastic behaviour of an extruded thermoplastic polyurethane elastomer. Mater. Des. 49, 974–980 (2013).
    44. Kull, K. L. et al. Synthesis and characterization of an ultra-soft poly(carbonate urethane). Eur. Polym. J. 71, 510–522 (2015).
    45. Buckley, C. P., Prisacariu, C. &Martin, C. Elasticity and inelasticity of thermoplastic polyurethane elastomers: Sensitivity to chemical and physical structure. Polymer (Guildf). 51, 3213–3224 (2010).
    46. Mailhot, B., Komvopoulos, K., Ward, B., Tian, Y. &Somorjai, G. A. Mechanical and friction properties of thermoplastic polyurethanes determined by scanning force microscopy. J. Appl. Phys. 89, 5712 (2001).
    47. Alhazov, D., Gradys, A., Sajkiewicz, P., Arinstein, A. &Zussman, E. Thermo-mechanical behavior of electrospun thermoplastic polyurethane nanofibers. Eur. Polym. J. 49, 3851–3856 (2013).
    48. McKeen, L. W. Elastomers and Rubbers. Film Prop. Plast. Elastomers 339–352 (2012) doi:10.1016/B978-1-4557-2551-9.00013-X.
    49. Nichetti, D. &Grizzuti, N. Determination of the phase transition behavior of thermoplastic polyurethanes from coupled rheology/DSC measurements. Polym. Eng. Sci. 44, 1514–1521 (2004).
    50. Buckwalter, D. J., Dennis, J. M. &Long, T. E. Amide-containing segmented copolymers. Prog. Polym. Sci. 45, 1–22 (2015).
    51. Kong, W. et al. Structure–property relations of nylon-6 and polytetramethylene glycol based multiblock copolymers with microphase separation prepared through reactive processing. Polym. Int. 66, 436–442 (2017).
    52. Ma, Y., Wen, H., Xin, C. &He, Y. Chain extension of thermoplastic polyamide elastomer and its foaming performance. J. Appl. Polym. Sci. 139, 52233 (2022).
    53. Yuan, R. et al. Facile synthesis of polyamide 6 (PA6)-based thermoplastic elastomers with a well-defined microphase separation structure by melt polymerization. Polym. Chem. 9, 1327–1336 (2018).
    54. Xu, C., Wang, Y., Lin, B., Liang, X. &Chen, Y. Thermoplastic vulcanizate based on poly(vinylidene fluoride) and methyl vinyl silicone rubber by using fluorosilicone rubber as interfacial compatibilizer. Mater. Des. 88, 170–176 (2015).
    55. Wang, Y., Fang, L., Xu, C., Chen, Z. &Chen, Y. Preparation and properties of dynamically cured poly(vinylidene fluoride)/silicone rubber blends. Polym. Test. 32, 1072–1078 (2013).
    56. Ma, L. F. et al. Conductive thermoplastic vulcanizates (TPVs) based on polypropylene (PP)/ethylene-propylene-diene rubber (EPDM) blend: From strain sensor to highly stretchable conductor. Compos. Sci. Technol. 128, 176–184 (2016).
    57. Chatterjee, T. et al. Super thermoplastic vulcanizates based on carboxylated acrylonitrile butadiene rubber (XNBR) and polyamide (PA12). Eur. Polym. J. 78, 235–252 (2016).
    58. Ning, N. et al. Preparation, microstructure, and microstructure-properties relationship of thermoplastic vulcanizates (TPVs): A review. Prog. Polym. Sci. 79, 61–97 (2018).
    59. Mark, J. E. Some recent theory, experiments, and simulations on rubberlike elasticity. J. Phys. Chem. B 107, 903–913 (2003).
    60. Akgiray, O. Computer simulation of the formation of polymer networks. Makromol. Chemie. Macromol. Symp. 76, 211–218 (1993).
    61. Ouellette, ) R J, South, A., Shaw ; R. Criegee, . L &Rimmelin, R. Synthesis of High Polymeric Alkoxy-and Aryloxyphosphonitriles. J. Am. Chem. Soc. 87, 4216–4217 (1965).
    62. Allcock, H. R. &Kugel, R. L. Phosphonitrilic Compounds. VII. High Molecular Weight Poly(diaminophosphazenes). Inorg. Chem. 5, 1716–1718 (1966).
    63. Allcock, H. R. Developments at the interface of inorganic, organic, and polymer chemistry. Chem. Eng. News 63, 22–36 (1985).
    64. Allcock, H. R. Rational Design and Synthesis of New Polymeric Material. Science (80-. ). 255, 1106–1112 (1992).
    65. Amin, A. M. et al. Recent Research Progress in the Synthesis of Polyphosphazene Elastomers and Their Applications. http://dx.doi.org/10.1080/03602559.2010.496387 49, 1399–1405 (2010).
    66. Singh, A., Steely, L. &Allcock, H. R. Poly[bis(2,2,2-trifluoroethoxy)phosphazene] superhydrophobic nanofibers. Langmuir 21, 11604–11607 (2005).
    67. Kojima, M. &Magill, J. H. Spherulitic crystallization in poly(bis(trifluoroethoxy)phosphazene), PBFP. Polymer (Guildf). 26, 1971–1978 (1985).
    68. Tian, Z., Chen, C. &Allcock, H. R. New mixed-substituent fluorophosphazene high polymers and small molecule cyclophosphazene models: Synthesis, characterization, and structure property correlations. Macromolecules 48, 1483–1492 (2015).
    69. Allcock, H. R., Steely, L., Singh, A. &Hindenlang, M. Hydrophobic and Superhydrophobic Polyphosphazenes. https://doi.org/10.1163/156856108X369967 23, 435–445 (2012).
    70. Weikel, A. L., Lee, D. K., Krogman, N. R. &Allcock, H. R. Phase changes of poly(alkoxyphosphazenes), and their behavior in the presence of oligoisobutylene. Polym. Eng. Sci. 51, 1693–1700 (2011).
    71. Tian, Z., Hess, A., Fellin, C. R., Nulwala, H. &Allcock, H. R. Phosphazene High Polymers and Models with Cyclic Aliphatic Side Groups: New Structure-Property Relationships. Macromolecules 48, 4301–4311 (2015).
    72. Fantin, G. et al. Functionalization of poly(organophosphazenes)—III. Synthesis of phosphazene materials containing carbon-carbon double bonds and epoxide groups. Eur. Polym. J. 29, 1571–1579 (1993).
    73. Liu, R. &Wang, X. Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin. Polym. Degrad. Stab. 94, 617–624 (2009).
    74. Terekhov, I.V., Filatov, S. N., Chistyakov, E. M., Borisov, R. S. &Kireev, V.V. Halogenated hydroxy-aryloxy phosphazenes and epoxy oligomers based on them. Russ. J. Appl. Chem. 2013 8610 86, 1600–1604 (2013).
    75. Zhou, L. et al. Design of a self-healing and flame-retardant cyclotriphosphazene-based epoxy vitrimer. J. Mater. Sci. 2018 539 53, 7030–7047 (2018).
    76. Allen, C. W., Shaw, J. C. &Brown, D. E. Copolymerization of ((a-Methylethenyl)phenyl)pentafluorocyclotriphosphazenes with Styrene and Methyl Methacrylate1. Macromolecules 21, (1988).
    77. Immanuel Selvaraj, I. &Chandrasekhar, V. Copolymerization of 2-(4′-vinyl-4-biphenylyloxy) pentachlorocyclotriphosphazene with acrylate and methacrylate monomers. Polymer (Guildf). 38, 3617–3623 (1997).
    78. Allcock, H. R. &Kellam, E. C. Incorporation of cyclic phosphazene trimers into saturated and unsaturated ethylene-like polymer backbones. Macromolecules 35, 40–47 (2002).
    79. Modzelewski, T. &Allcock, H. R. An unusual polymer architecture for the generation of elastomeric properties in fluorinated polyphosphazenes. Macromolecules 47, 6776–6782 (2014).
    80. Modzelewski, T., Wilts, E. &Allcock, H. R. Elastomeric Polyphosphazenes with Phenoxy-Cyclotriphosphazene Side Groups. Macromolecules 48, 7543–7549 (2015).
    81. Shrivastava, A. Plastic Properties and Testing. Introd. to Plast. Eng. 49–110 (2018) doi:10.1016/B978-0-323-39500-7.00003-4.
    82. Simas, A. B. C., Pereira, V. L. P., Barreto, C. B., DeSales, D. L. &DeCarvalho, L. L. An expeditious and consistent procedure for tetrahydrofuran (THF) drying and deoxygenation by the still apparatus. Quim. Nova 32, 2473–2475 (2009).
    83. Chiou, B.Sen &Khan, S. A. Real-time FTIR and in situ rheological studies on the UV curing kinetics of thiol-ene polymers. Macromolecules 30, 7322–7328 (1997).
    84. Modjinou, T. et al. Antibacterial and antioxidant bio-based networks derived from eugenol using photo-activated thiol-ene reaction. React. Funct. Polym. 101, 47–53 (2016).
    85. Dai, J. et al. UV-thermal dual cured anti-bacterial thiol-ene networks with superior performance from renewable resources. Polymer (Guildf). 108, 215–222 (2017).
    86. Songqi, M. A. et al. Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid. Springer 57, 379–388 (2014).
    87. Ma, S. &Webster, D. C. Naturally Occurring Acids as Cross-Linkers To Yield VOC-Free, High-Performance, Fully Bio-Based, Degradable Thermosets. Macromolecules 48, 7127–7137 (2015).
    88. Ma, S., Webster, D., Macromolecules, F. J.- &2016, undefined. Hard and flexible, degradable thermosets from renewable bioresources with the assistance of water and ethanol. ACS Publ. 49, 3780–3788 (2016).
    89. Gasperini, A. et al. Characterization of Hydrogen Bonding Formation and Breaking in Semiconducting Polymers under Mechanical Strain. Macromolecules 52, 2476–2486 (2019).
    90. Wojtecki, R. J., Meador, M. A. &Rowan, S. J. Using the dynamic bond to access macroscopically responsive structurally dynamic polymers. Nat. Mater. 2011 101 10, 14–27 (2010).
    91. Liu, J. et al. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer. Macromolecules 49, 8593–8604 (2016).
    92. Cramer, N. B., Reddy, S. K., Cole, M., Hoyle, C. &Bowman, C. N. Initiation and kinetics of thiol–ene photopolymerizations without photoinitiators. J. Polym. Sci. Part A Polym. Chem. 42, 5817–5826 (2004).

    下載圖示 校內:2024-08-01公開
    校外:2024-08-01公開
    QR CODE