簡易檢索 / 詳目顯示

研究生: 郭丁瑋
Kuo, Ting-Wei
論文名稱: 表面處理技術在光電元件上的應用
The Application of Surface Treatments on Optoelectronic Devices
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 120
中文關鍵詞: 發光二極體氧化鋅掺鋁抗反射層濕式刻蝕法太陽能電池多孔二氧化矽氟化鎂氧化矽氮氧化矽氮化矽選擇性高障礙區
外文關鍵詞: light-emitting diodes, ZnO:Al, Anti-reflection layer, wet-etching, solar cells, porous SiO2, MgF2, SiOx, SiOxNy, SiNx, Selective High Barrier Region
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,地球能源與資源大量地消耗,導致油電成本增加。因此,再生能源與節能科技的迅速發展是必要的。於再生能源中又以太陽能發電的太陽能電池光電元件受到特別的重視。於節能科技中又以固態照明的發光二極體光電元件受到特別的重視。因它們兼具環保、安全、壽命長及安裝容易及裝設環境受限較小的優勢。太陽能電池是以改進轉換效率為目標,而發光二極體則是以光萃取效率為依據。這兩者效率的改進皆與光電元件的表面處理有關。
    因此,本論文將藉由表面處理技術針對光電元件上的磷化鎵、粗糙化矽、玻璃及氮化鎵材質的表面進行表面處理。分別在磷化鎵材質上製備粗糙化氧化鋅掺鋁薄膜、在粗糙化矽材質上製備氧化矽-氮氧化矽-氮化矽的結構、在玻璃材質上製備多孔氧化矽-氟化鎂的結構及在氮化鎵材質上製備選擇性高障礙區。於粗糙化矽材質上製備氧化矽-氮氧化矽-氮化矽的結構,這三層結構在300 nm至1100 nm波長的平均反射率被減少至2.01%。這三層結構應用於粗糙結晶矽太陽能電池上短路電流密度改善了7.78%及轉換效率改善了10.95%。於玻璃材質上製備多孔氧化矽-氟化鎂的結構,這二層結構在400 nm至1200 nm波長的平均反射率被減少至0.5%。這二層結構應用於矽疊層太陽能電池上短路電流密度改善了6.82%及轉換效率改善了7.14%。於磷化鎵材質上製備粗糙化氧化鋅掺鋁薄膜,這一結構應用於鋁鎵銦磷(AlGaInP)發光二極體上在20mA處其光萃取效率改善了129.9%。於氮化鎵材質上製備選擇性高障礙區,這方法應用於氮化鎵(GaN)發光二極體上在20mA處其光萃取效率改善了12%。這些研究證實了表面處理技術對光電元件中效率參數的重要性。

    In recent years, the large-scale consumption of Earth’s energy resources has increased fossil-fuel and electricity costs; therefore, the rapid development of renewable energy and energy-efficient technologies is necessary. To achieve renewable energy and energy-saving technology, optoelectronic devices of solar cells in solar power have received particular attention, and optoelectronic devices of light-emitting diodes (LEDs) solid-state lighting in energy-saving technology have received particular attention. Because they are environmentally friendly, safe, durable, easy to install, and do not require a specific installation environment. The purpose of solar cells is improved conversion efficiency, and the purpose of LEDs is improved light-extraction efficiency. Improvement in efficiency is closely related to the surface treatment of optoelectronic devices.
    Thus, in this study, the surface of gallium phosphide (GaP), textured crystalline silicon (TCS), gallium nitride (GaN), and glass materials were processed using surface-treatment technology. The following samples were fabricated: a SiOx/SiOxNy/SiNx structure in TCS, a porous SiO2/MgF2 structure in glass, a textured AZO in GaP, and a selective high-barrier region (SHBR) in GaN. The average reflection of the SiOx/SiOxNy/SiNx structure in TCS decreased to 2.01% (1100 to 300 nm). In comparison with untreated TCS solar cells, applying the experimental SiOx/SiOxNy/SiNx structure to conventional TCS solar cells improved the short-circuit current density (Jsc) by 7.78%, and the solar-cell efficiency by 10.95%. The average reflection of the porous SiO2/MgF2 structure in glass decreased to 2.01% (1200 to 400 nm). Application of the porous SiO2/MgF2 structure to conventional silicon-based tandem solar cells resulted in 6.82% and 10.95% improvements in Jsc and efficiency, respectively. For the textured ZnO:Al (AZO) structure fabricated in GaP at 20 mA, the relative luminous intensity of textured AZO AlGaInP LEDs increased by 129.9% compared with a conventional sample. For the SHBR structure fabricated in GaN, at 20 mA, the relative luminous intensity of GaN LEDs increased by 12% compared with a conventional sample. These results confirmed the importance of surface-treatment technology on efficiency parameters in optoelectronic devices.

    Contents Abstract (Chinese)………………………………………………………I Abstract (English)………………………………………III Acknowledgments……………………………………… VI Contents……………………………………………………VII Table Captions…………………………………………………X Figure Captions..................XI Chapter 1 Introduction…………………………1 1.1 Motive…………………………………………………1 1.2 Thesis Organization…………………………4 Chapter 2 Background Theory…………………………………5 2.1 Solar Cell Principle……………………………………5 2.2 Solar Cell Type and Efficiency………………………………………6 2.3 Solar Cell Characterization……………………………9 2.3.1 Current-Voltage Characteristics……………………9 2.3.2 Quantum Efficiency…………………………12 2.4 Light Efficiency of LEDs……………………………14 2.5 Crystal Structure and Characteristics of ZnO…………18 Chapter 3 Experiments…………………………………………20 3.1 Physical Vapor Deposition by Sputtering………………………20 3.2 Plasma-Enhanced Chemical Vapor Deposition………………2 3.3 Inductively coupled plasma etching system……………………23 3.4 Thin Film Analysis……………………………………………25 3.2.1 Scanning Electron Microscope………………………………25 3.2.2 Atomic Force Microscope…………………………………26 3.2.3 Spectroscopic Ellipsometer………………………………26 3.2.4 Ultraviolet and Visible Spectrophotometer……………………26 3.5 Solar Cell Device Measurement………………………………………27 3.6 Transmission-line model………………………………………………28 3.7 ESCA spectra…………………………………………………………30 3.8 Fabrication of AlInGaP LEDs…………………………………………30 3.9 Fabrication of silicon solar cells………………………………………32 3.10 Fabrication of GaN LEDs…………………………………………34 Chapter 4 Results and Discussion……………………………………35 4.1Silicon material surface treatment on optoelectronic devices………… 35 4.1.1 Introduction…………………………………………………35 4.1.2 Experiment……………………………………………………38 4.1.3 Theory…………………………………………………………40 4.1.4 Results and discussion………………………………………42 4.1.4.1 Refractive index and thickness of silicon oxide, oxynitride, and nitride films………………………………………43 4.1.4.2 Reflection spectra of SiOx/SiOxNy/SiNx TLARCs…49 4.1.4.3 The SiOx/SiOxNy/SiNx TLARC applied to textured silicon solar cells………………………………………52 4.2.5 Summary………………………………………………………56 4.2 Glass material surface treatment on optoelectronic devices…58 4.2.1 Introduction………………………………………………58 4.2.2 Theory…………………………………………………………60 4.2.3 Experiment……………………………………………………63 4.2.4 Results and discussion……………………………………65 4.2.4.1 Refractive index and thickness of MgF2 and porous SiO2………………………………………………………65 4.2.4.2 The porous SiO2/MgF2 DLAR applied to textured silicon solar cells………………………………………………69 4.2.4 Summary………………………………………………………73 4.3 GaP material surface treatment on optoelectronic devices………………………………………………75 4.3.1 Introduction…………………………………………………75 4.3.2 Experiment……………………………………………………77 4.3.3 Results and discussion………………………………………78 4.3.3.1 Surface Morphology of AZO Layer…………………78 4.3.3.2 Textured AZO in Light Emitting Diodes……………79 4.3.4 Summary………………………………………………………85 4.4 GaN material surface treatment on optoelectronic devices…………86 4.4.1 Introduction………………………………………………86 4.4.2 Experiment……………………………………………………88 4.4.3 Results and discussion……………………………………89 4.4.4 Summary………………………………………………………96 Chapter 5 Conclusion…………………………97 References…………………………99 Publication List…………………………119 Vita…………………………120

    References
    [1] Y. Wang, L. Chen, H. Yang, Q. Guo, W .Zhou, and M. Taoa, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells, vol. 93, p.p. 85-91, 2009.
    [2] J. J. Chen, Y. K. Su, C. L. Lin, and C. C. Kao, “Light output improvement of AlGaInP-Based LEDs with nano-mesh ZnO layers by nanosphere lithography,” IEEE Photon. Technol. Lett., vol. 22, pp. 383-385, 2010.
    [3] S. A. Boden and D. M. Bagnall, “Optimization of moth-eye antireflection schemes for silicon solar cells,” Progress in Photovoltaics: Research and Applications, vol. 18, p.p. 195–203, 2010.
    [4] P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir, vol. 23, p.p. 7901-7906, 2007.
    [5] Y. Liu, S. H. Sun, J. Xu, L. Zhao, H. C. Sun, J. Li, W. W. Mu, L. Xu, K. J. Chen, “Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells,” Optics Express, vol. 19, p.p. A1051–A1056, 2011.
    [6] J. W. Leem, D. H. Joo, J. S. Yu,” Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Solar Energy Materials & Solar Cells, vol. 95, p.p. 2221–2227, 2011.
    [7] Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Letters, vol. 8, p.p. 1501–1505, 2008.
    [8] W. Zhou, M. Tao, L. Chen, H. Yang,” Microstructured surface design for omnidirectional antireflection coatings on solar cells,” Journal of Applied Physics, vol. 102, p.p. 103105-1–103105-9, 2007.
    [9] Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett., vol. 17, p.p. 2289-2291, 2005.
    [10] S. K. Kim, H. D. Song, H. S. Ee, H. M. Choi, H. K. Cho, Y. H. Lee, and H. G. Park, “Metal mirror assisting light extraction from patterned AlGaInP light-emitting diodes,” Appl. Phys. Lett., vol. 94, p.p. 101102(1)- 101102(3), 2009.
    [11] M. F. Saenger, J. Sun, M. Schadel, J. Hilfiker, M. Schubert, J. A. Woollam, “Spectroscopic ellipsometry characterization of SiNx antireflection films on textured multicrystalline and monocrystalline silicon solar cells,” Thin Solid Films, vol. 518, p.p. 1830–1834, 2010.
    [12] B. Liu, S. Qiu, N. Chen, G. Du, J. Sun, Double-layered silicon nitride antireflection coatings for multicrystalline silicon solar cells,” Materials Science in Semiconductor Processing, vol. 16, p.p. 1014–1021, 2013.
    [13] D. Bouhafs, A. Moussi, A. Chikouche, J.M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells” Solar Energy Materials & Solar Cells, vol. 52, p.p. 79–93, 1998.
    [14] X. Li, J. Gao, L. Xue, Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Advanced Functional Materials, vol. 20, p.p. 259–265, 2010.
    [15] W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett., vol. 36, p.p. 891-893, 1980.
    [16] Y. Y. Liou, C. C. Liu, C. C. Kuo, W. C. Liu, and C. C. Jaing, “Design of universal broadband visible antireflection coating for commonly used glass substrates,” Jpn. J. Appl. Phys., vol. 46, p.p. 5143-5147, 2007.
    [17] Ping-KuanChang and Mau-Phon Houng, “The influence of TCO/p interface on silicon thin film solar cells performances,” National Digital Library of Theses and Dissertations in Taiwan, 2012.
    [18] Kuang-Chieh Lai and Mau-Phon Houng, “Improvement of thin film solar cells efficiency by using high light trapping-based back reflector,” National Digital Library of Theses and Dissertations in Taiwan, 2011.
    [19] Chien-Chun Wang and Mau-Phon Houng, “Investigation on light-output enhancement of light emitting diodes by the nano-roughness structure and pattern substrate,” National Digital Library of Theses and Dissertations in Taiwan, 2008.
    [20] L.L. Kazmerski, D. Gwinner and A. Hicks, “Best research-cell efficiencies,” 2010.
    [21] P. Lechner, R. Geyer, H. Schade, B. Rech and J. Müller, “Detailed accounting for quantum efficiency and optical losses in a-Si:H based solar cells,” Proceedings of the 28th IEEE Photovoltaic Specialists Conference, p.p. 861-864, 2000.
    [22] T. Brammer and H. Stiebig, “Characterization of microcrystalline silicon thin-film solar cells,” Proceedings of the 29th IEEE Photovoltaic Specialists Conference, p.p. 1274-1277, 2002.
    [23] T. Wittchen, H.C. Holstenberg, D. Hunerhoff, J.M. Zhang and J. Metzdorf, “Solar cell calibration and characterization: Simplified DSR apparatus,” Proceedings of the 20th IEEE Photovoltaic Specialists Conference, p.p. 1251-1257, 1988.
    [24] J. Metzdorf, “Calibration of solar cells. 1: The differential spectral responsivity method,” Applied Optics, vol. 26, p.p. 1701-1708, 1987.
    [25] E. Fred Schubert, “Light-Emitting Diodes,” 2nd, p.p. 86-87, 2006.
    [26] S. Illek, U. Jacob, A. Plossl, P. Stauss, K. Streubel, W. Wegleiter, and R. Wirth, “Burried micro-reflectors boost performance of AlGaInP LEDs,” Compound Semicond., vol. 8, p.p. 39-42, 2002.
    [27] E. Hecht, “OPTICS,” 4th, Addison Wesley, New York, p.p.117-120, 2002.
    [28] E. Hecht, “OPTICS,” 4th, Addison Wesley, New York, p.p.120-123, 2002.
    [29] B. Lin, Z. Fu, Y. Jia, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett., vol. 79, p.p. 943–945, 2001.
    [30] G. J. Exarhos and S. K. Sharma, Influence of processing variables on the structure and properties of ZnO films, Thin Solis Film, vol. 270, p.p. 27–32, 1995.
    [31] D. R. Lide, “Handbook of Chemistry and Physics,” 71st ed, CRC, Boca Raton, FL, 1991.
    [32] Takashi Komaru et al., Optimization of Transparent Conductive Oxide for Improved Resistance to Reactive and/or High Temperature Optoelectronic Device Processing, Jpn. J. Appl. Phys. PartⅠvol. 38, p.p. 5796–5804, 1999.
    [33] J. E. Jaff, R. Pandey, and A. D. Kunz, “Correlated hartree-fock electronic structure of ZnO and ZnS,” J. Phys. Chem. Solid vol. 52, p.p. 755–760, 1991.
    [34] J. R. Chelikowsky, Solid State Commun, vol. 122, p.p. 351, 1997.
    [35] J. E. Jaff, R. Pandey, and A. D. Kunz, Correlated hartree-fock electronic structure of ZnO and ZnS, J. Phys. Chem. Solid, vol. 52, p.p. 755–760, 1991.
    [36] J. W. Tomm, B. Ullrich, X. G. Qiu, Y. Segawa, A. Ohtomo and H. Koinuma, Optical and photoelectrical properties of oriented ZnO films, J. Appl. Phys, vol. 87, p.p. 1844–1848, 2000.
    [37] M. S. Wu, W. C. Shin and W. H. Tsai, “Growth of ZnO thin films on interdigital transducer/Corning 7059 glass substrates by two-step fabrication methods for surface acoustic wave applications,” J. Phys. D: Appl. Phys., vol. 31, p.p. 943, 1998.
    [38] M. Y. Han and J. H. Jou, Determination of the mechanical properties of r.f.-magnetron-sputtered zinc oxide thin films on substrates, Thin Solid Films, vol. 260, p.p. 58–67, 1995.
    [39] P. Nunes, E. Fortunato and R. Martins, Influence of the post-treatment on the properties of ZnO thin films, Thin Solid Films, vol. 383, p.p. 277–280, 2001.
    [40] J. L. Vossen, “Transparent conducting films,” Physics of Thin Films, vol 9, p.p. 1, 1977.
    [41] J. Zhao, A. Wang, M. A. Green, “24.5% efficiency PERT silicon solar cells on SEH MCZ substrates and cell performance on other SEH CZ and FZ substrates,” Solar Energy Materials & Solar Cells, vol. 65, p.p. 429–435, 2001.
    [42] W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells,” Journal of Applied Physics, vol. 32, p.p. 510–519, 1961.
    [43] Y. Wang, L. Chen, H. Yang, Q. Guo, W. Zhou, M. Tao, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Solar Energy Materials & Solar Cells, vol. 93, p.p. 85–91, 2009.
    [44] S. A. Boden and D. M. Bagnall, “Optimization of moth‐eye antireflection schemes for silicon solar cells,” Progress in Photovoltaics: Research and Applications, vol. 18, p.p. 195–203, 2010.
    [45] Y. Liu, S. H. Sun, J. Xu, L. Zhao, H. C. Sun, J. Li, W. W. Mu, L. Xu, K. J. Chen, “Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells,” Optics Express, vol. 19, p.p. A1051–A1056, 2011.
    [46] J. W. Leem, D. H. Joo, J. S. Yu, “Biomimetic parabola-shaped AZO subwavelength grating structures for efficient antireflection of Si-based solar cells,” Solar Energy Materials & Solar Cells, vol. 95 p.p. 2221–2227, 2011.
    [47] Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells,” Nano Letters, vol. 8, p.p. 1501–1505, 2008.
    [48] W. Zhou, M. Tao, L. Chen, H. Yang, “Microstructured surface design for omnidirectional antireflection coatings on solar cells,” Journal of Applied Physics, vol. 102, p.p. 103105-1–103105-9, 2007.
    [49] A. W. Smith and A. Rohatgi, “Ray tracing analysis of the inverted pyramid texturing geometry for high efficiency silicon solar cells,” Solar Energy Materials & Solar Cells, vol. 29, p.p. 37–49, 1993.
    [50] M. F. Saenger, J. Sun, M. Schadel, J. Hilfiker, M. Schubert, J. A. Woollam, “Spectroscopic ellipsometry characterization of SiNx antireflection films on textured multicrystalline and monocrystalline silicon solar cells,” Thin Solid Films, vol. 518, p.p. 1830–1834, 2010.
    [51] D. Hocine, M. S. Belkaid, M. Pasquinelli, L. Escoubas, J. J. Simon, G. A. Riviere, A. Moussi, Materials Science in Semiconductor Processing, vol. 16, p.p. 113–117, 2013.
    [52] B. Liu, S. Qiu, N. Chen, G. Du, J. Sun, Double-layered silicon nitride antireflection coatings for multicrystalline silicon solar cells,” Materials Science in Semiconductor Processing, vol. 16, p.p. 1014–1021, 2013.
    [53] I. Lee, D.G. Lim, S.H. Lee, J. Yi, “The effects of a double layer anti-reflection coating for a buried contact solar cell application,” Surface and Coatings Technology, vol. 137, p.p. 86–91, 2001.
    [54] D. Bouhafs, A. Moussi, A. Chikouche, J.M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells,” Solar Energy Materials & Solar Cells, vol. 52, p.p. 79–93, 1998.
    [55] X. Li, J. Gao, L. Xue, Y. Han, “Porous polymer films with gradient-refractive-index structure for broadband and omnidirectional antireflection coatings,” Advanced Functional Materials, vol. 20, p.p. 259–265, 2010.
    [56] A.G. Aberle, “Overview on SiN surface passivation of crystalline silicon solar cells,” Solar Energy Materials & Solar Cells, vol. 65, p.p. 239–248, 2001.
    [57] Z. Chen, P. Sana, J. Salami, A. Rohatgi, “A novel and effective PECVD SiO2/SiN antireflection coating for Si solar cells,” IEEE Transactions on Electron Devices, vol. 40, p.p. 1161–1165, 1993.
    [58] C. P. Manuel and A. Rabl, “The average distribution of solar radiation-correlations between diffuse and hemispherical and between daily and hourly insolation values” Solar Energy, vol. 22, p.p. 155–164, 1979.
    [59] H. A. Macleod, Thin-film optical filters, second ed., Macmillan Publishing Company, New York, 1986.
    [60] S. Y. Lien, D. S. Wuu, W. C. Yeh, J. C. Liu, “Tri-layer antireflection coatings (SiO2/SiO2–TiO2/TiO2) for silicon solar cells using a sol–gel technique,” Solar Energy Materials & Solar Cells, vol. 90, p.p. 2710–2719, 2006.
    [61] T. Karabacak, Y.P. Zhao, G.C. Wang, T.M. Lu, “Growth front roughening in silicon nitride films by plasma-enhanced chemical vapor deposition,” Physical Review B, vol. 66, p.p. 075329-1–075329-10, 2002.
    [62] J. Dupuis, E. Fourmond, D. Ballutaud, N. Bererd, M. Lemiti, “Optical and structural properties of silicon oxynitride deposited by plasma enhanced chemical vapor deposition,” Thin Solid Films, vol. 519, p.p. 1325–1333, 2010.
    [63] A. Sassella, A. Borghesi, F. Corni, A. Monelli, G. Ottaviani, R. Tonini, B. Pivac, M. Bacchetta, L. Zanotti, “Infrared study of Si-rich silicon oxide films deposited by plasma-enhanced chemical vapor deposition,” Journal of Vacuum Science & Technology A, vol. 15, p.p. 377–389, 1997.
    [64] D. N. Wright, E. S. Marstein, A. Rognmo, A. Holt, “Plasma-enhanced chemical vapour-deposited silicon nitride films; The effect of annealing on optical properties and etch rates,” Solar Energy Materials & Solar Cells, vol. 92, p.p. 1091–1098, 2008.
    [65] H. Oraizi and A. Abdolali, “Design and optimization of planar multilayer antireflection metamaterial coatings at Ku band under circularly polarized oblique plane wave incidence,” Progress In Electromagnetics Research C, vol. 3, p.p. 1–18, 2008.
    [66] K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock, J. H. Werner, “Role of the CdS buffer layer as an active optical element in Cu (In, Ga) Se2 thin‐film solar cells,” Progress in Photovoltaics: Research and Applications, vol. 10, p.p. 457–463, 2002.
    [67] J. Seiffe, L. Gautero, M. Hofmann, J. Rentsch, R. Preu, S. Weber, R.A. Eichel, “Surface passivation of crystalline silicon by plasma-enhanced chemical vapor deposition double layers of silicon-rich silicon oxynitride and silicon nitride,” Journal of Applied Physics, vol. 109, p.p. 034105-1–034105-12, 2011.
    [68] J. Kim, J. Park, J.H. Hong, S.J. Choi, G.H. Kang, G.J. Yu, N.S. Kim, H.E. Song, “Double antireflection coating layer with silicon nitride and silicon oxide for crystalline silicon solar cell,” Journal of Electroceramics, vol. 30, p.p. 41–45, 2013.
    [69] F. J. Haug, D. Rudmann, G. Bilger, H. Zogg, and A. N. Tiwari, “Comparison of structural and electrical properties of Cu(In,Ga)Se2 for substrate and superstrate solar cells,” Thin Solid Films, vol. 403, p.p. 293-296, 2002.
    [70] T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells, vol. 74, p.p. 469-478, 2002.
    [71] T. Brammer, W. Reetz, N. Senoussaoui, O. Vetterl, O. Kluth, B. Rech, H. Stiebig, and H. Wagner, “Optical properties of silicon-based thin-film solar cells in substrate and superstrate configuration,” Sol. Energy Mater. Sol. Cells, vol. 74, p.p. 469-478, 2002.
    [72] K. Orgassa, U. Rau, Q. Nguyen, H. W. Schock and J. H. Werner, “Role of the CdS buffer layer as an active optical element in Cu(In,Ga)Se2 thin-film solar cells,” Prog. Photovolt: Res. Appl., vol. 10, p.p. 457-463, 2002.
    [73] M. Tao, W. Zhou, H. Yang, and L. Chen, “Surface texturing by solution deposition for omnidirectional antireflection,” Appl. Phys. Lett., vol. 91, p.p. 081118, 2007.
    [74] K. M. Yeung, W. C. Luk, K. C. Tam, C. Y. Kwong, M. A. Tsai, H. C. Kuo, A. M. C. Ng, and A. B. Djurisic, “2-Step self-assembly method to fabricate broadband omnidirectional antireflection coating in large scale,” Sol. Energy Mater. Sol. Cells, vol. 95, p.p. 699-703, 2011.
    [75] Y. Wang, L. Chen, H. Yang, Q. Guo, W .Zhou, and M. Taoa, “Spherical antireflection coatings by large-area convective assembly of monolayer silica microspheres,” Sol. Energy Mater. Sol. Cells, vol. 93, p.p. 85-91, 2009.
    [76] S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi, “Imprinted moth-eye antireflection patterns on glass substrate,” Electron. Mater. Lett., vol. 5, p.p. 39-42, 2009.
    [77] N. C. Linn, C. H. Sun, and P. Jiang, “Self-assembled biomimetic antireflection coatings,” Appl. Phys. Lett., vol. 91, p.p. 101108, 2007.
    [78] P. Podsiadlo, L. Sui, Y. Elkasabi, P. Burgardt, J. Lee, A. Miryala, W. Kusumaatmaja, M. R. Carman, M. Shtein, J. Kieffer, J. Lahann, and N. A. Kotov, “Layer-by-layer assembled films of cellulose nanowires with antireflective properties,” Langmuir, vol. 23, p.p. 7901-7906, 2007.
    [79] M. Chigane, Y. Hatanaka, and T. Shinagawa, “Enhanced antireflection properties of silica thin films via redox deposition and hot-water treatment,” Sol. Energy Mater. Sol. Cells, vol. 94, p.p. 1055-1058, 2010.
    [80] A. Jonsson, A. Roos, and E. K. Jonson, “The effect on transparency and light scattering of dip coated antireflection coatings on window glass and electrochromic foil,” Sol. Energy Mater. Sol. Cells, vol. 94, p.p. 992-997, 2010.
    [81] C. Ballif, J. Dicker, D. Borchert, and T. Hofmann, “Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain,” Sol. Energy Mater. Sol. Cells, vol. 82, p.p. 331-344, 2004.
    [82] G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, B. Fan, D. Zhou, and F. Zhang, “A novel route to control refractive index of sol-gel derived nano-porous silica films used as broadband antireflective coatings,” Mater. Sci. Eng. B, vol. 78, p.p. 135-139, 2000.
    [83] Z. Liu, X. Zhang, T. Murakami, and A. Fujishima, “Sol-gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties,” Sol. Energy Mater. Sol. Cells, vol. 92, p.p. 1434-1438, 2008.
    [84] H. Nagel, A. Metz, and R. Hezel, “Porous SiO2 flms prepared by remote plasma enhanced chemical vapour deposition - a novel antireflection coating technology for photovoltaic modules,” Sol. Energy Mater. Sol. Cells, vol. 65, p.p. 71-77, 2001.
    [85] Y. Zheng, K. Kikuchi, M. Yamasaki, K. Sonoi, and K. Uehara, “Two-layer wideband antireflection coatings with an absorbing layer,” Appl. Opt., vol. 36, p.p. 6335-6338, 1997.
    [86] S. W. Kim, D. S. Bae, and H. Shin, “Zinc-embedded silica nanoparticle layer in a multilayer coating on a glass substrate achieves broadband antireflection and high transparency,” J. Appl. Phys., vol. 96, p.p. 6766-6711, 2004.
    [87] J. T. Cox and G. Hass, “Triple-layer antireflection coatings on glass for the visible and near infrared,” J. Opt. Soc. Am., vol. 52, p.p. 965-969, 1962.
    [88] M. H. Asghar, M. B. Khan, S. Naseem, and Z. A. Khan, “Design and preparation of antireflection films on glass substrate,” Turk. J. Phys., vol. 29, p.p. 43-53, 2005.
    [89] U. Schulz, “Wideband antireflection coatings by combining interference multilayers with structured top layers,” Opt. Express, vol. 17, p.p. 8704-8708, 2009.
    [90] Y. Ohtera, D. Kurniatan, and H. Yamada, ”Antireflection coatings for multilayer-type photonic crystals,” Opt. Express, vol. 18, p.p. 12249-12261, 2010.
    [91] W. H. Lowdermilk and D. Milam, “Graded-index antireflection surfaces for high-power laser applications,” Appl. Phys. Lett., vol. 36, 891-893, 1980.
    [92] Y. Y. Liou, C. C. Liu, C. C. Kuo, W. C. Liu, and C. C. Jaing, “Design of universal broadband visible antireflection coating for commonly used glass substrates,” Jpn. J. Appl. Phys., vol. 46, p.p. 5143-5147, 2007.
    [93] O. Duyar and H. Z. Durusoy, “Design and preparation of antireflection and reflection optical coatings,” Turk. J. Phys., vol. 28, p.p. 139-144, 2004.
    [94] H. Ishizawa, S. Niisaka, T. Murata, and A. Tanaka, “Preparation of MgF2-SiO2 thin films with a low refractive index by a solgel process,” Appl. Opt., vol. 47, p.p. C200-C205, 2008.
    [95] H. Nagel, A. G. Aberle, and R. Hezel, “Optimised antireflection coatings for planar silicon solar cells using remote PECVD silicon nitride and porous silicon dioxide,” Prog. Photovolt: Res. Appl., vol. 7, p.p. 245-260, 1999.
    [96] I. Pereyra and M. I. Alayo, “High quality low temperature DPECVD silicon dioxide,” J. Non-Cryst. Solids, vol. 212, p.p. 225-231, 1997.
    [97] Y. Liu, W. Ren, L. Zhang, and X. Yao, “New method for making porous SiO2 thin films,” Thin Solid Films, vol. 353, p.p. 124-128, 1999.
    [98] I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, “Ultrahigh spontaneous emission quantum efficiency 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures,”Appl. Phys. Lett., vol. 62, p.p. 131–133, 1993.
    [99] Y. H. Aliyu, D. V. Morgan, H. Thomas, and S. W. Bland, “AlGaInP LEDs using reactive thermally evaporated transparent conducting indium tin oxide (ITO),” Electron. Lett., vol. 31, p.p. 2210–2212, 1995.
    [100] A. K. Chin, G. Zydzik, S. Singh, L. G. Van Uitert, and G. Minneci,” Al203 as an antireflection coating for InP/lnGaAsP LEDs,” J. Vac. Sci. Technol. B, vol. 1,p.p. 72-73, 1983.
    [101] T. Gessmann, E. F. Schubert, J. W. Graff, K. Streubel, and C. Karnutsch, “Omnidirectional reflective contacts for light-emitting diodes,” IEEE Electron Device Lett., vol. 24, p.p. 683–685, 2003.
    [102] Y. C. Lee, C. E. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Enhancing the light extraction of (AlxGa1-x)0.5In0.5P-Based light-emitting diode fabricated via geometric sapphire shaping,” IEEE Photon. Technol. Lett., vol. 20, p.p. 369-371, 2008.
    [103] S. K. Kim, H. D. Song, H. S. Ee, H. M. Choi, H. K. Cho, Y. H. Lee, and H. G. Park, “Metal mirror assisting light extraction from patterned AlGaInP light-emitting diodes,” Appl. Phys. Lett., vol. 94, p.p.101102(1)- 101102(3), 2009.
    [104] P. W. Huang and Y. C. Sermon Wu, “Improved performance of AlGaInP LEDs by a periodic GaP-dish mirror array,” IEEE Photon. Technol. Lett., vol. 21, p.p. 1441-1443, 2009.
    [105] J. J. Chen, Y. K. Su, C. L. Lin, and C. C. Kao, “Light output improvement of AlGaInP-Based LEDs with nano-mesh ZnO layers by nanosphere lithography,” IEEE Photon. Technol. Lett., vol. 22, p.p. 383-385, 2010.
    [106] Y. J. Lee, H. C. Tseng, H. C. Kuo, S. C. Wang, C. W. Chang, T. C. Hsu, Y. L. Yang, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Improvement in light-output efficiency of AlGaInP LEDs fabricated on stripe patterned epitaxy,” IEEE Photon. Technol. Lett., vol. 17, p.p. 2532-2534, 2005.
    [107] Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express, vol.17, pp.20991-20997, 2009.
    [108] C. C. Liu, S. X. Lin, C. C. Wang, K. K. Chong, C. I Hung, and M. P. Houng, “Light output enhancement of AlGaInP light emitting diodes with nanopores of anodic alumina,” Japan. J. of Appl. Phys., vol. 48, p.p. 082102(1)-082102(3), 2009.
    [109] Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, “Increasing the extraction efficiency of AlGaInP LEDs via n-side surface roughening,” IEEE Photon. Technol. Lett., vol. 17, p.p.2289-2291, 2005.
    [110] C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photon. Technol. Lett., vol. 20, p.p. 428-430, 2008.
    [111] I. Schnitzer and E. Yablonovitch, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett., vol. 63, p.p. 2174–2176, 1993.
    [112] K. Jäger and M. Zeman, “A scattering model for surface-textured thin films,” Appl. Phys. Lett., vol. 95, p.p. 171108(1)-171108(3), 2009.
    [113] R. C. Jayasinghe, G. Ariyawansa, N. Dietz, A. G. Unil Perera, S. G. Matsik, H. B. Yu, I. T. Ferguson, A. Bezinger, S. R. Laframboise, M. Buchanan, and H. C. Liu, “Simultaneous detection of ultraviolet and infrared radiation in a single GaN/GaAlN heterojunction,” Opt. Lett. vol. 33, p.p. 2422-2424, 2008.
    [114] J. M. Barkera, D. K. Ferry, D. D. Koleske, and R. J. Shul, “Bulk GaN and AlGaN∕ GaN heterostructure drift velocity measurements and comparison to theoretical models,” J. Appl. Phys., vol. 97, p.p. 063705, 2005.
    [115] S. L. Selvaraj, T. Suzue, and T. Egawa, “Breakdown Enhancement of AlGaN/GaN HEMTs on 4-in Silicon by Improving the GaN Quality on Thick Buffer Layers,” IEEE Electron Device Lett., vol. 30, p.p. 587- 589, 2009.
    [116] J. H. Kang, H. G. Kim, H. K. Kim, H, Y. Kim, J. H. Ryu, P. Uthirakumar, N. Han and C. H. Hong, “Improvement of light output power in InGaN/GaN light-emitting diodes with a nanotextured GaN surface using indium tin oxide nanospheres,” Jpn. J. Appl. Phys., vol. 48, p.p. 102104, 2009.
    [117] C. C. Liu, S. X. Lin, C. C. Wang, K. K. Chong, C. I. Hung, and M. P. Houng, “Light output enhancement of AlGaInP light emitting diodes with nanopores of anodic alumina,” Jpn. J. Appl. Phys., vol. 48, 082102, 2009.
    [118] C. C. Wang, H. C. Lu, C. C. Liu, F. L. Jenq, Y. H. Wang, and M. P. Houng, “Improved extraction efficiency of light-emitting diodes by modifying surface roughness with anodic aluminum oxide film,” IEEE Photonics Technol. Lett., vol. 20, p.p. 428-430, 2008.
    [119] C. E. Lee, B. S. Cheng, Y. C. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, “Output power enhancement of vertical-injection ultraviolet light-emitting diodes by GaN-Free and surface roughness structures,” Electrochem. Solid-State Lett., vol. 12, p.p. H44-H46, 2009.
    [120] T. K. Kim, S. H. Kim, S. S. Yang, J. K. Son, K. H. Lee, Y. G. Hong, K. H. Shim, J. W. Yang, K. Y. Lim, S. J. Bae, and G. M. Yang, “GaN-based light-emitting diode with textured indium tin oxide transparent layer coated with Al2O3 powder,” Appl. Phys. Lett., vol. 94, p.p. 161107, 2009.
    [121] L. C. Peng, W. C. Lai, M. N. Chang, S. C. Shei, and J. K. Sheu, “GaN-based LEDs with GaN mu-pillarsAround mesa, patterned substrate, and reflector under pads,” IEEE Photonics Technol. Lett., vol. 21, p.p. 1659-1661, 2009.
    [122] C. C. Wang, H. Ku, C. C. Liu, K. K. Chong, C. I Hung, Y. H. Wang, and M. P. Houng, “Enhancement of the light output performance for GaN-based light-emitting diodes by bottom pillar structure,” Appl. Phys. Lett., vol. 91, p.p. 121109, 2007.
    [123] C. M. Lee, C. C. Chuo, Y. C. Liu, I. L. Chen, and J. I. Chyi, “InGaN-GaN MQW LEDs with current blocking layer formed by selective activation,” IEEE Electron Device Lett., vol. 25, p.p. 384 – 386, 2004.
    [124] H. C. Wang, Y. K. Su, C. L. Lin, W. B. Chen, and S. M. Chen, “InGaN/GaN light emitting diodes with a lateral current blocking structure,” Jpn. J. Appl. Phys., vol. 43, p.p. 2006, 2004.
    [125] H. W. Jang and J. L. Lee, “Enhancement of electroluminescence in GaN-based light-emitting diodes using an efficient current blocking layer,” J. Vac. Sci. Technol., vol. 23, p.p. 2284 – 2287, 2005.
    [126] G. I. Hatakoshi, Y. Hattori, S. Saito, N. Shida, and S. Nunoue, “Device Simulator for Designing High-Efficiency Light-Emitting Diodes,” Jpn. J. Appl. Phys., vol. 46, p.p. 5419-5425, 2007.
    [127] H. H. Huang, H. Y. Zeng, C. L. Lee, S. C. Lee, and W. I. Lee, “Extended microtunnels in GaN prepared by wet chemical etch,” Appl. Phys. Lett., vol. 89, p.p. 202115, 2006.
    [128] X. A. Cao, S. J. Pearton, A. P. Zhang, G. T. Dang, F. Ren. R. J. Shul, L. Zhang, R. Hickman, and J. M. Van Hove, “Electrical effects of plasma damage in p-GaN,” Appl. Phys. Lett., vol. 75, p.p. 17, 1999.
    [129] J. S. Jang, “High output power GaN-based light-emitting diodes using an electrically reverse-connected p-Schottky diode and p-InGaN–GaN superlattice,” Appl. Phys. Lett., vol. 93, p.p. 081118, 2008.
    [130] M. Kato, K. Mikamo, M. Ichimura, M. Kanechika, O. Ishiguro, and T. Kachi, “Characterization of plasma etching damage on p-type GaN using Schottky diodes,” J. Appl. Phys., vol. 103, p.p. 093701, 2008.
    [131] K. P. Hsueh, H. T. Hsu, C. M. Wang, S. C. Huang, Y. M. Hsina, and J. K. Sheu, “Effect of Cl2/Ar dry etching on p-GaN with Ni/Au metallization characterization,” Appl. Phys. Lett., vol. 87, p.p. 252107, 2005.
    [132] C. C. Liu, Y. H. Chen, M. P. Houng, Y. H. Wang, Y. K. Su, W. B. Chen, and S. M. Chen, “Improved light-output power of GaN LEDs by selective region activation,” IEEE Photonics Technol. Lett., vol. 16, p.p.1444 –1446, 2004.
    [133] C. C. Wang, F. L. Jenq, C. C. Liu, C. I. Hung, Y. H. Wang, and M. P. Houng, “Selective high resistivity region formation by a Ni catalyst on GaN light-emitting diodes,” Semicond. Sci. Technol., vol. 23, p.p. 025012, 2008.
    [134] C. Huh, J. M. Lee, D. J. Kim, and S. J. Parkc, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” J. Appl. Phys., vol. 92, p.p. 2248, 2002.
    [135] C. F. Tsai, Y. K. Su, and C. L. Lin, “Improvement in the Light Output Power of GaN-Based Light-Emitting Diodes by Natural-Cluster Silicon Dioxide Nanoparticles as the Current-Blocking Layer,” IEEE Photonics Technol. Lett., vol. 21, p.p. 996 – 998, 2009.
    [136] H. H. Jeong, S. Y. Lee, Y. K. Jeong, K. K. Choi, J. O. Song, Y. H. Lee, and T. Y. Seong, “Improvement of the light output power of GaN-based vertical light emitting diodes by a current blocking layer,” Electrochem. Solid-State Lett., vol. 13, p.p. H237-H239, 2010.
    [137] H. W. Huang, F. I. Lai, J. K. Huang, C. H. Lin, K. Y. Lee, C. F. Lin, C. C. Yu, and H. C. Kuo, “Enhancement of light output power of GaN-based light-emitting diodes using a SiO2 nano-scale structure on a p-GaN surface,” Semicond. Sci. Technol., vol. 25, p.p. 065007, 2010.
    [138] S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu, S. C. Shei, and Y. Z. Chiou, “Nitride-based LEDs with an insulating SiO2 layer underneath p-pad electrodes,” Electrochem. Solid-State Lett., vol. 10, p.p. H175-H177, 2007.
    [139] K. M. Uang, S. J. Wang, T. M. Chen, W. C. Lee, S. L. Chen, Y. Y. Wang, and H. Kuan, “Enhanced performance of vertical GaN-based light-emitting diodes with a current-blocking layer and electroplated nickel substrate,” Jpn. J. Appl. Phys., vol. 48, p.p. 102101, 2009.
    [140] S. Tripathya, S. J. Chuab, A. Ramam, E. K. Sia, J. S. Pan, R. Lim, G. Yu, and Z. X. Shen, “Electronic and vibronic properties of Mg-doped GaN: The influence of etching and annealing,” J. Appl. Phys., vol. 91, p.p. 3398, 2002.
    [141] J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, and T. F. Kuech, “p-GaN surface treatments for metal contacts,” Appl. Phys. Lett., vol. 76, p.p. 415, 2000.
    [142] J. S. Jang and T. Y. Seong, “Mechanisms for the reduction of the Schottky barrier heights of high-quality nonalloyed Pt contacts on surface-treated p-GaN,” J. Appl. Phys., vol. 88, p.p. 3064, 2000.

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE