簡易檢索 / 詳目顯示

研究生: 甘宗旦
Kan, Chung-Dann
論文名稱: 宿主年齡與不同類型成體幹細胞對心臟細胞治療法的影響探討
Cardiac Cellular Therapy – Host Age and Adult Stem Cell Types Factor Analysis
指導教授: 楊友任
Yang, Yu-Jen
共同指導教授: 羅傳堯
Luo, Chwan-Yau
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 101
中文關鍵詞: 心臟細胞治療老年細胞類型
外文關鍵詞: Heart, Cell therapy, Aged, Cell types
相關次數: 點閱:110下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 儘管近年來對心臟疾病在心血管藥物方面有許多重大的突破發展;但在全世界,次發於心肌梗死後的鬱血性心臟衰竭,仍然是一個棘手的醫療健康問題。移植具有潛在收縮能力的外源性的細胞(心肌細胞治療術)至心臟,期望增加心肌收縮能力和整體心臟功能的治療策略,在1990年代初期被提出作為一個治療心臟衰竭的可能方針。發展至今,心肌細胞治療術已可由心肌直接注射,經血管由心臟內注射,經靜脈注射,或冠狀動脈直接注入心臟等各種方式,而達成移殖細胞的目的。數種類型的細胞也被證明可有效預防心室擴張,改善心臟功能。雖然大多數的臨床前研究皆被發表,細胞移植可改善整體和區域性的心臟功能,防止心室重塑後的心臟擴張,和保護心肌損傷後的收縮功能。然而,由於生體系統的複雜性及臨床的安全需求,臨床前動物研究和實際的臨床應用可能會是存在著明顯的不相符性。
    在全面性的回顧心肌細胞治療術的各種類型細胞的歷史發展後,許多臨床應用的實際問題逐漸被提出需重新思考與檢視,這些問題包括了:什麼是最好的細胞選擇類型,何時是最適當的植入時間,如何達成最有效移殖方式,多少細胞才是有效的劑量,達到心臟功能改善的相對機轉,和宿主條件的差異性。

    由於大多數被證實具改善心肌梗死後心臟功能的心肌細胞治療術的動物研究,都是經由移植胎兒或年輕動物的細胞至年輕的宿主。相反的,真正的臨床研究所使用的來源細胞及宿主,則是應用於可能具有許多併發症的老年人。因此,本實驗的第一部分將比較不同年齡的細胞供應者的生長影響特點,和其對不同年齡宿主的影響,以確定年齡對心肌細胞治療術的真實影響性。實驗的結論是經由骨骼肌幹細胞的移殖,年輕宿主的確可經由心肌細胞治療術較老年宿主獲得較明顯的心臟功能改善成效。老年的因素的確會降低心肌細胞治療術所帶來的好處。

    另外,由於大多數的研究皆是利用某一種細胞類型來探討心肌細胞治療術的成效。所以本實驗的第二部分將藉由比較骨骼肌成肌細胞,骨髓基質幹細胞,平滑肌細胞的體外培養,與探討這些細胞於生體心臟對受損心臟功能的影響,希望能對這些成體幹細胞作較詳盡的比較與探討。實驗的結論是總體細胞的存活率和血管新生能力的總和效果,對治療缺血性心臟病的心肌細胞治療術具有相當重要的影響性。骨骼肌成肌細胞,骨髓基質幹細胞,平滑肌細胞皆可表現有血管內皮生長因子和幹細胞生成因子,並進而促進血管生成,都具有心肌細胞治療術改善心室功能的能力。

    雖然目前對心肌細胞治療術用以改善心臟功能的確切機制還沒有完全了解,仍待多方的研究加以釐清。然而,藉由探討某些影響因素對心肌細胞治療術的真實影響,也許可以幫助我們釐清與解釋基礎研究和臨床應用間,不完全相符的一些問題,並可協助解決臨床應用的難題。在本實驗研究,藉由不同年紀宿主與不同移殖細胞類型的體外細胞培養與生體內移植比較,發現:宿主的年齡,不同種類細胞的特徵,和不同種類細胞其生存和內分泌作用的總和影響,對心肌細胞治療術都具有其特定的角色扮演與影響程度。

    Despite many breakthroughs in cardiovascular medicine, congestive heart failure (CHF) secondary to ventricular remodeling following myocardial infarction continues to be a serious medical health problem worldwide. Transplantation of exogenous cells (cellular cardiomyoplasty) with the inherent capability of forming contractile elements was proposed in the early 1990s as a potential treatment strategy to increase contractility and cardiac performance, and as a potential cure for the syndrome of heart failure. Cardiac cellular therapy has been achieved by delivering the cells into the infarct region and borderzone by transepicardial, transendocardial, or transvenous injection, or by intravenous or intracoronary infusion. Several cell types have also been shown to be effective in preventing ventricular dilatation and improving ventricular function. Although most preclinical studies have demonstrated that cell transplantation improves global and regional cardiac function with respect to ventricular remodeling, prevention of cardiac dilatation and preservation of systolic function after myocardial injury. However, owing to the significant complexity of the biological system and the required safety profiles for clinical application, discrepancies between preclinical and clinical results have been observed.

    From the completely literatures reviewing of the developing histories and clinical applications of cardiac cellular therapy by various cell types, several important practical considerations are raised, including: best cell type choice, appropriately implanting timing, effectively deliver route, effective delivering cell dose, corresponding functional improving mechanisms, and host conditions.

    Owing to most of preclinical investigations of cardiac cellular therapy, which demonstrated improved ventricular function after a myocardial infarction, involve the implantation of cells from fetal or young donor animals into young recipients. And, the initial clinical trials, in contrast, have utilized cells derived from and implanted into older individuals with extensive comorbidities. Therefore, the first part of project compared the effects of donor age on the growth characteristics of SKMCs, and the effects of recipient age on the cardiac response to SKMC transplantation to determine the influence of age on the response to cardiac cellular therapy. The conclusion was that cardiac functional improvement was significantly greater in young recipients of SKMC transplantation following coronary ligation. Advanced age may diminish the functional benefits of cardiac cellular therapy.

    Because most studies have just focused on one cell type, the second part of project aimed to compare characteristics of skeletal myoblasts (SKMCs), bone marrow stromal stem cells (BMSCs), and smooth muscle cells (SMCs) and their in-vivo effects on cardiac function after myocardial injury to figure out which is the suitable adult stem cells in clinical applications. And then, the results were that the summation effect of cell survival and neovasculogenesis are important for successful cell therapy of the ischemic heart. SKMCs, BMSCs and SMCs expressed vascular endothelial cell growth factor and stem cell factor and promoted vasculogenesis.

    The exact mechanisms corresponding for cardiac cellular therapy still are not well figured out and needs lot efforts to work them out. However, understanding the numerous impact factors for the true effects of cardiac cellular therapy might help us to explain and solve the basic-clinical inconsistent questions. From this experiment, some important factors, such as: recipient age, different cellular characteristics, and their survival and paracrine summation effects were explored and identified to have significant roles on cardiac cellular therapy.

    English Abstract 5 Chinese Abstract 7 Acknowledgements 9 Chapter 1 Cellular Therapy for Heart Failure -- Current Status & New Trends in Cardiovascular Surgery 1.1. Introduction 10 1.2. Historical Development of Cellular Cardiac Regeneration 12 1.3. Current Research of Cell Therapy 20 1.4. Clinical Application of Cellular Therapy 25 1.5. Retrieving and Interpreting between the Studies and Clinical Results 27 1.6 Conclusion 29 1.7 Intending Work of PhD project 30 Chapter 2 Recipient Age Determines the Functional Improvement Achieved by Skeletal Myoblast Transplantation 2.1 Introduction 31 2.2 Materials and Methods 31 2.2.1 Research animals 31 2.2.2 Rat skeletal myoblast cultures 31 2.2.3 Cell growth study 32 2.2.4 Immunohistochemical staining 32 2.2.5 Myocardial infarction 33 2.2.6 Cell preparation for transplantation 33 2.2.7 Cell transplantation 33 2.2.8 Measurement of cardiac function 34 2.2.9 Morphological and histological analyses 35 2.2.10 Statistical analyses 35 2.3 Results 36 2.3.1 In Vitro Study 36 2.3.2 In Vivo Study 36 2.4 Discussion 39 Chapter 3 Different Neovasculogenic Potential and Survival Rates Affect Efficacy of Allogenic Cell Therapy- Comparison of Three Different Adult Cell Populations 3.1 Introduction 43 3.2 Methods 45 3.2.1 Animals 45 3.2.2 Cell isolation and culture 45 3.2.3 Cell proliferation assay 46 3.2.4 Assessment of hypoxia induced by H2O2 treatment 46 3.2.5 Assessment of hypoxia in a hypoxic chamber 46 3.2.6 Quantification of VEGF and SCF expression 46 3.2.7 Infarction model 47 3.2.8 Cell preparation and transplantation 47 3.2.9 Assessment of cardiac function 47 3.2.10 Tissue collection and analysis 48 3.2.11 Quantification of cell survival 48 3.2.12 Statistical analysis 48 3.3 Results 49 3.3.1 Comparison of in vitro cell morphology and proliferation rate 49 3.3.2 In vitro apoptosis, cell viability and VEGF protein expression 49 3.3.3 Cell survival after transplantation 49 3.3.4 Heart tissue VEGF and SCF protein expression 50 3.3.5 Analysis of in vivo cardiac function 50 3.3.6 Vasculogenesis of the infarct 50 3.4 Discussion 51 3.5 Conclusions 53 Chapter 4 Conclusion 54 Chapter 5 Future Work 56 Reference List 57 Tables 74 Figures 77 List of thesis related publications 95 Curriculum Vitae 96 Grants 97 Publications 99 LIST OF TABLES Table 1 Short Summary of Clinica Application Study Results 74 Table 2 Cardiac Function by Echocardiography 75 Table 3 Change of cardiac function following cell transplantation. 76 LIST OF FIGURES Figure 1. Possible mechanisms of cardiac cellular therapy 77 Figure 2. Techniques for cell transplantation delivery 78 Figure 3. Morphology of skeletal myoblast cells (SKMCs) in culture and cell proliferation abilities comparison 79 Figure 4. Skeletal myoblast cell markers staining and myotubes formation abilities comparison. 80 Figure 5. Survival rates comparison. 81 Figure 6. Cardiac function by echocardiography. 82 Figure 7. Cardiac function by pressure-volume catheter. 83 Figure 8. Cellular density comparison and evidence for implantated cell survival. 84 Figure 9. Vasculogenesis comparison. 86 Figure 10. Matrix preservation comparison. 87 Figure 11. Different cell types’ proliferation rates comparison. 88 Figure 12. In vitro apoptosis and vascular endothelial growth factor (VEGF) expression. 89 Figure 13. Cell survival comparison by PKH26 staining. 90 Figure 14. Cell survival comparison by real-time polymerase chain reaction. 91 Figure 15. In vivo growth factor expression as determined by enzyme-linked immunosorbent assay (ELISA). 92 Figure 16. Effects of cell transplantation on cardiac function and vasculogenesis comparison. 93

    REFERENCES

    1. Caplice NM, Gersh BJ. Stem cells to repair the heart: a clinical perspective. Circ Res. 2003;92:6-8.
    2. Sutton GC. Epidemiologic aspects of heart failure. Am Heart J. 1990;120:1538-1540.
    3. Vitali E, Colombo T, Fratto P, Russo C, Bruschi G, Frigerio M. Surgical therapy in advanced heart failure. Am J Cardiol. 2003;91:88F-94F.
    4. Pfeffer JM. Progressive ventricular dilation in experimental myocardial infarction and its attenuation by angiotensin-converting enzyme inhibition. Am J Cardiol. 1991;68:17D-25D.
    5. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E. Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol. 1991;260:H1406-H1414.
    6. Lietz K, Miller LW. Will left-ventricular assist device therapy replace heart transplantation in the foreseeable future? Curr Opin Cardiol. 2005;20:132-137.
    7. Terrovitis IV, Nanas SN, Rombos AK, Tolis G, Nanas JN. Reversible symmetric polyneuropathy with paraplegia after heart transplantation. Transplantation. 1998;65:1394-1395.
    8. Rose EA, Gelijns AC, Moskowitz AJ et al. Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med. 2001;345:1435-1443.
    9. Rockman HA, Koch WJ, Lefkowitz RJ. Seven-transmembrane-spanning receptors and heart function. Nature. 2002;415:206-212.
    10. Melo LG, Pachori AS, Kong D et al. Molecular and cell-based therapies for protection, rescue, and repair of ischemic myocardium: reasons for cautious optimism. Circulation. 2004;109:2386-2393.
    11. Okada H, Takemura G, Kosai K et al. Postinfarction gene therapy against transforming growth factor-beta signal modulates infarct tissue dynamics and attenuates left ventricular remodeling and heart failure. Circulation. 2005;111:2430-2437.
    12. Reffelmann T, Kloner RA. Cellular cardiomyoplasty--cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure? Cardiovasc Res. 2003;58:358-368.
    13. Leri A, Kajstura J, Anversa P. Regenerating the myocardium: A reality today. Can J Cardiol. 2005;21:361-362.
    14. Reffelmann T, Leor J, Muller-Ehmsen J, Kedes L, Kloner RA. Cardiomyocyte transplantation into the failing heart-new therapeutic approach for heart failure? Heart Fail Rev. 2003;8:201-211.
    15. Chiu RC, Zibaitis A, Kao RL. Cellular cardiomyoplasty: myocardial regeneration with satellite cell implantation. Ann Thorac Surg. 1995;60:12-18.
    16. Campion DR. The muscle satellite cell: a review. Int Rev Cytol. 1984;87:225-251.
    17. Menasche P, Hagege AA, Vilquin JT et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol. 2003;41:1078-1083.
    18. Ghostine S, Carrion C, Souza LC et al. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation. 2002;106:I131-I136.
    19. Prosper F, Herreros J, Barba J. [Future perspectives in the treatment of heart failure: from cell transplantation to cardiac regeneration]. Rev Esp Cardiol. 2004;57:981-988.
    20. Chachques JC, Acar C, Herreros J et al. Cellular cardiomyoplasty: clinical application. Ann Thorac Surg. 2004;77:1121-1130.
    21. Menasche P. Skeletal muscle satellite cell transplantation. Cardiovasc Res. 2003;58:351-357.
    22. Reinecke H, MacDonald GH, Hauschka SD, Murry CE. Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J Cell Biol. 2000;149:731-740.
    23. Reinecke H, Minami E, Poppa V, Murry CE. Evidence for fusion between cardiac and skeletal muscle cells. Circ Res. 2004;94:e56-e60.
    24. Menasche P, Hagege AA, Scorsin M et al. Myoblast transplantation for heart failure. Lancet. 2001;357:279-280.
    25. Hagege AA, Carrion C, Menasche P et al. Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet. 2003;361:491-492.
    26. Dib N, Dinsmore J, Lababidi Z et al. One-year follow-up of feasibility and safety of the first U.S., randomized, controlled study using 3-dimensional guided catheter-based delivery of autologous skeletal myoblasts for ischemic cardiomyopathy (CAuSMIC study). JACC Cardiovasc Interv. 2009;2:9-16.

    27. Menasche P, Alfieri O, Janssens S et al. The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation. 2008;117:1189-1200.

    28. Smits PC, van Geuns RJ, Poldermans D et al. Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol. 2003;42:2063-2069.
    29. Menasche P. Skeletal myoblasts and cardiac repair. J Mol Cell Cardiol. 2008;45:545-553.

    30. Menasche P. Towards the second generation of skeletal myoblasts? Cardiovasc Res. 2008;79:355-356.

    31. Tucker DC, Snider C, Woods WT, Jr. Pacemaker development in embryonic rat heart cultured in oculo. Pediatr Res. 1988;23:637-642.
    32. Li RK, Mickle DA, Weisel RD, Zhang J, Mohabeer MK. In vivo survival and function of transplanted rat cardiomyocytes. Circ Res. 1996;78:283-288.
    33. Soonpaa MH, Koh GY, Klug MG, Field LJ. Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science. 1994;264:98-101.
    34. Leor J, Patterson M, Quinones MJ, Kedes LH, Kloner RA. Transplantation of fetal myocardial tissue into the infarcted myocardium of rat. A potential method for repair of infarcted myocardium? Circulation. 1996;94:II332-II336.
    35. Li RK, Jia ZQ, Weisel RD et al. Cardiomyocyte transplantation improves heart function. Ann Thorac Surg. 1996;62:654-660.
    36. Scorsin M, Hagege AA, Marotte F et al. Does transplantation of cardiomyocytes improve function of infarcted myocardium? Circulation. 1997;96:II-93.
    37. Muller-Ehmsen J, Peterson KL, Kedes L et al. Rebuilding a damaged heart: long-term survival of transplanted neonatal rat cardiomyocytes after myocardial infarction and effect on cardiac function. Circulation. 2002;105:1720-1726.
    38. Etzion S, Battler A, Barbash IM et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J Mol Cell Cardiol. 2001;33:1321-1330.
    39. Li RK, Mickle DA, Weisel RD et al. Natural history of fetal rat cardiomyocytes transplanted into adult rat myocardial scar tissue. Circulation. 1997;96:II-86.
    40. Yau TM, Fung K, Weisel RD, Fujii T, Mickle DA, Li RK. Enhanced myocardial angiogenesis by gene transfer with transplanted cells. Circulation. 2001;104:I218-I222.
    41. Gersh BJ, Simari RD, Behfar A, Terzic CM, Terzic A. Cardiac cell repair therapy: a clinical perspective. Mayo Clin Proc. 2009;84:876-892.
    42. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78:7634-7638.
    43. Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ Res. 2002;91:189-201.
    44. Huber I, Itzhaki I, Caspi O et al. Identification and selection of cardiomyocytes during human embryonic stem cell differentiation. FASEB J. 2007;21:2551-2563.
    45. Tomescot A, Leschik J, Bellamy V et al. Differentiation in vivo of cardiac committed human embryonic stem cells in postmyocardial infarcted rats. Stem Cells. 2007;25:2200-2205.
    46. Behfar A, Terzic A. Cardioprotective repair through stem cell-based cardiopoiesis. J Appl Physiol. 2007;103:1438-1440.

    47. Yamada S, Nelson TJ, Crespo-Diaz RJ et al. Embryonic stem cell therapy of heart failure in genetic cardiomyopathy. Stem Cells. 2008;26:2644-2653.

    48. Kehat I, Kenyagin-Karsenti D, Snir M et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108:407-414.
    49. Solter D. From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet. 2006;7:319-327.
    50. Behfar A, Faustino RS, Arrell DK, Dzeja PP, Perez-Terzic C, Terzic A. Guided stem cell cardiopoiesis: discovery and translation. J Mol Cell Cardiol. 2008;45:523-529.

    51. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663-676.
    52. Park IH, Zhao R, West JA et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008;451:141-146.
    53. Mazhari R, Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med. 2007;4 Suppl 1:S21-S26.
    54. Schuleri KH, Amado LC, Boyle AJ et al. Early improvement in cardiac tissue perfusion due to mesenchymal stem cells. Am J Physiol Heart Circ Physiol. 2008;294:H2002-H2011.

    55. Makino S, Fukuda K, Miyoshi S et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103:697-705.
    56. Hakuno D, Fukuda K, Makino S et al. Bone marrow-derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors. Circulation. 2002;105:380-386.
    57. Liechty KW, MacKenzie TC, Shaaban AF et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med. 2000;6:1282-1286.

    58. Murry CE, Soonpaa MH, Reinecke H et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428:664-668.
    59. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428:668-673.
    60. Li RK, Jia ZQ, Weisel RD, Merante F, Mickle DA. Smooth muscle cell transplantation into myocardial scar tissue improves heart function. J Mol Cell Cardiol. 1999;31:513-522.
    61. Yoo KJ, Li RK, Weisel RD, Mickle DA, Li G, Yau TM. Autologous smooth muscle cell transplantation improved heart function in dilated cardiomyopathy. Ann Thorac Surg. 2000;70:859-865.
    62. Sakai T, Li RK, Weisel RD et al. Fetal cell transplantation: a comparison of three cell types. J Thorac Cardiovasc Surg. 1999;118:715-724.
    63. Yoo KJ, Li RK, Weisel RD et al. Smooth muscle cells transplantation is better than heart cells transplantation for improvement of heart function in dilated cardiomyopathy. Yonsei Med J. 2002;43:296-303.
    64. Kim EJ, Li RK, Weisel RD et al. Angiogenesis by endothelial cell transplantation. J Thorac Cardiovasc Surg. 2001;122:963-971.
    65. Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997;275:964-967.
    66. Urbich C, Dimmeler S. Endothelial progenitor cells functional characterization. Trends Cardiovasc Med. 2004;14:318-322.
    67. Young PP, Vaughan DE, Hatzopoulos AK. Biologic properties of endothelial progenitor cells and their potential for cell therapy. Prog Cardiovasc Dis. 2007;49:421-429.
    68. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451:937-942.
    69. Kocher AA, Schuster MD, Szabolcs MJ et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430-436.
    70. Assmus B, Schachinger V, Teupe C et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002;106:3009-3017.
    71. Tateishi-Yuyama E, Matsubara H, Murohara T et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002;360:427-435.
    72. Orlic D, Kajstura J, Chimenti S et al. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701-705.
    73. Kawamoto A, Gwon HC, Iwaguro H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation. 2001;103:634-637.
    74. Kawamoto A, Tkebuchava T, Yamaguchi J et al. Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation. 2003;107:461-468.
    75. Stamm C, Westphal B, Kleine HD et al. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet. 2003;361:45-46.
    76. Perin EC, Dohmann HF, Borojevic R et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation. 2003;107:2294-2302.
    77. Orlic D, Kajstura J, Chimenti S et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 2001;98:10344-10349.
    78. Vasa M, Fichtlscherer S, Adler K et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation. 2001;103:2885-2890.
    79. Urbanek K, Quaini F, Tasca G et al. Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proc Natl Acad Sci U S A. 2003;100:10440-10445.
    80. Beltrami AP, Barlucchi L, Torella D et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763-776.
    81. Torella D, Rota M, Nurzynska D et al. Cardiac stem cell and myocyte aging, heart failure, and insulin-like growth factor-1 overexpression. Circ Res. 2004;94:514-524.
    82. Oh H, Bradfute SB, Gallardo TD et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A. 2003;100:12313-12318.
    83. Laugwitz KL, Moretti A, Lam J et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature. 2005;433:647-653.
    84. Anversa P, Kajstura J, Leri A, Bolli R. Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation. 2006;113:1451-1463.
    85. Hsieh PC, Segers VF, Davis ME et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 2007;13:970-974.
    86. Smith RR, Barile L, Messina E, Marban E. Stem cells in the heart: what's the buzz all about?--Part 1: preclinical considerations. Heart Rhythm. 2008;5:749-757.
    87. Messina E, De Angelis L, Frati G et al. Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res. 2004;95:911-921.

    88. Li RK, Weisel RD, Mickle DA et al. Autologous porcine heart cell transplantation improved heart function after a myocardial infarction. J Thorac Cardiovasc Surg. 2000;119:62-68.
    89. Scorsin M, Marotte F, Sabri A et al. Can grafted cardiomyocytes colonize peri-infarct myocardial areas? Circulation. 1996;94:II337-II340.
    90. Muller-Ehmsen J, Whittaker P, Kloner RA et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J Mol Cell Cardiol. 2002;34:107-116.
    91. Fedak PW, Altamentova SM, Weisel RD et al. Matrix remodeling in experimental and human heart failure: a possible regulatory role for TIMP-3. Am J Physiol Heart Circ Physiol. 2003;284:H626-H634.
    92. Fedak PW, Weisel RD, Verma S, Mickle DA, Li RK. Restoration and regeneration of failing myocardium with cell transplantation and tissue engineering. Semin Thorac Cardiovasc Surg. 2003;15:277-286.
    93. Thomas CV, Coker ML, Zellner JL, Handy JR, Crumbley AJ, III, Spinale FG. Increased matrix metalloproteinase activity and selective upregulation in LV myocardium from patients with end-stage dilated cardiomyopathy. Circulation. 1998;97:1708-1715.
    94. Angoulvant D, Fazel S, Li RK. Neovascularization derived from cell transplantation in ischemic myocardium. Mol Cell Biochem. 2004;264:133-142.
    95. Fazel S, Angoulvant D, Desai N, Yang S, Weisel RD, Li RK. Cardiac restoration: Frontier or fantasy? Can J Cardiol. 2005;21:355-359.
    96. Sam J, Angoulvant D, Fazel S, Weisel RD, Li RK. Heart cell implantation after myocardial infarction. Coron Artery Dis. 2005;16:85-91.
    97. Li RK, Mickle DA, Weisel RD, Rao V, Jia ZQ. Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Ann Thorac Surg. 2001;72:1957-1963.
    98. Sakakibara Y, Tambara K, Lu F et al. Cardiomyocyte transplantation does not reverse cardiac remodeling in rats with chronic myocardial infarction. Ann Thorac Surg. 2002;74:25-30.
    99. Strauer BE, Brehm M, Zeus T et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913-1918.
    100. Pouzet B, Vilquin JT, Hagege AA et al. Factors affecting functional outcome after autologous skeletal myoblast transplantation. Ann Thorac Surg. 2001;71:844-850.
    101. Yasuda T, Weisel RD, Kiani C, Mickle DA, Maganti M, Li RK. Quantitative analysis of survival of transplanted smooth muscle cells with real-time polymerase chain reaction. J Thorac Cardiovasc Surg. 2005;129:904-911.
    102. Jayakumar J, Suzuki K, Khan M et al. Gene therapy for myocardial protection: transfection of donor hearts with heat shock protein 70 gene protects cardiac function against ischemia-reperfusion injury. Circulation. 2000;102:III302-III306.
    103. Suzuki K, Smolenski RT, Jayakumar J, Murtuza B, Brand NJ, Yacoub MH. Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation. 2000;102:III216-III221.
    104. Landmesser U, Engberding N, Bahlmann FH et al. Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation. 2004;110:1933-1939.
    105. Suzuki K, Murtuza B, Smolenski RT et al. Cell transplantation for the treatment of acute myocardial infarction using vascular endothelial growth factor-expressing skeletal myoblasts. Circulation. 2001;104:I207-I212.
    106. Vincent KA, Feron O, Kelly RA. Harnessing the response to tissue hypoxia: HIF-1 alpha and therapeutic angiogenesis. Trends Cardiovasc Med. 2002;12:362-367.
    107. Brasselet C, Morichetti MC, Messas E et al. Skeletal myoblast transplantation through a catheter-based coronary sinus approach: an effective means of improving function of infarcted myocardium. Eur Heart J. 2005.
    108. Thompson CA, Nasseri BA, Makower J et al. Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation. J Am Coll Cardiol. 2003;41:1964-1971.
    109. Chazaud B, Hittinger L, Sonnet C et al. Endoventricular porcine autologous myoblast transplantation can be successfully achieved with minor mechanical cell damage. Cardiovasc Res. 2003;58:444-450.
    110. Fuchs S, Satler LF, Kornowski R et al. Catheter-based autologous bone marrow myocardial injection in no-option patients with advanced coronary artery disease: a feasibility study. J Am Coll Cardiol. 2003;41:1721-1724.
    111. Perin EC, Geng YJ, Willerson JT. Adult stem cell therapy in perspective. Circulation. 2003;107:935-938.
    112. Dib N, Michler RE, Pagani FD et al. Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: four-year follow-up. Circulation. 2005;112:1748-1755.
    113. Cleland JG, Coletta AP, Abdellah AT et al. Clinical trials update from the American Heart Association 2006: OAT, SALT 1 and 2, MAGIC, ABCD, PABA-CHF, IMPROVE-CHF, and percutaneous mitral annuloplasty. Eur J Heart Fail. 2007;9:92-97.
    114. Schachinger V, Assmus B, Britten MB et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol. 2004;44:1690-1699.
    115. Schachinger V, Erbs S, Elsasser A et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210-1221.
    116. Chen SL, Fang WW, Ye F et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94:92-95.
    117. Assmus B, Honold J, Schachinger V et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006;355:1222-1232.
    118. Wollert KC, Meyer GP, Lotz J et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet. 2004;364:141-148.
    119. Meyer GP, Wollert KC, Lotz J et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287-1294.
    120. Lunde K, Solheim S, Aakhus S et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199-1209.
    121. Kocher AA, Schlechta B, Gasparovicova A, Wolner E, Bonaros N, Laufer G. Stem cells and cardiac regeneration. Transpl Int. 2007;20:731-746.
    122. Kang HJ, Lee HY, Na SH et al. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial. Circulation. 2006;114:I145-I151.
    123. Bartunek J, Vanderheyden M, Vandekerckhove B et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation. 2005;112:I178-I183.
    124. Zhang H, Fazel S, Tian H et al. Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy. Am J Physiol Heart Circ Physiol. 2005;289:H2089-H2096.
    125. Kan CD, Li SH, Weisel RD, Zhang S, Li RK. Recipient age determines the cardiac functional improvement achieved by skeletal myoblast transplantation. J Am Coll Cardiol. 2007;50:1086-1092.
    126. Metharom P, Doyle B, Caplice NM. Clinical trials in stem cell therapy: pitfalls and lessons for the future. Nat Clin Pract Cardiovasc Med. 2007;4 Suppl 1:S96-S99.
    127. Fazel S, Chen L, Weisel RD et al. Cell transplantation preserves cardiac function after infarction by infarct stabilization: augmentation by stem cell factor. J Thorac Cardiovasc Surg. 2005;130:1310.
    128. Heeschen C, Lehmann R, Honold J et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation. 2004;109:1615-1622.
    129. Allan R, Kass M, Glover C, Haddad H. Cellular transplantation: future therapeutic options. Curr Opin Cardiol. 2007;22:104-110.
    130. Mazhari R, Hare JM. Advances in cell-based therapy for structural heart disease. Prog Cardiovasc Dis. 2007;49:387-395.
    131. Bartunek J, Vanderheyden M, Wijns W et al. Bone-marrow-derived cells for cardiac stem cell therapy: safe or still under scrutiny? Nat Clin Pract Cardiovasc Med. 2007;4 Suppl 1:S100-S105.
    132. Martin JF. Stem cells and the heart: ethics, organization and funding. Nat Clin Pract Cardiovasc Med. 2006;3 Suppl 1:S136-S137.
    133. Chachques JC, Acar C, Herreros J et al. Cellular cardiomyoplasty: clinical application. Ann Thorac Surg. 2004;77:1121-1130.
    134. Al Radi OO, Rao V, Li RK, Yau T, Weisel RD. Cardiac cell transplantation: closer to bedside. Ann Thorac Surg. 2003;75:S674-S677.
    135. Menasche P, Hagege A, Scorsin M et al. [Autologous skeletal myoblast transplantation for cardiac insufficiency. First clinical case]. Arch Mal Coeur Vaiss. 2001;94:180-182.
    136. Fazel S, Chen L, Weisel RD et al. Cell transplantation preserves cardiac function after infarction by infarct stabilization: augmentation by stem cell factor. J Thorac Cardiovasc Surg. 2005;130:1310.
    137. Fedak PW, Szmitko PE, Weisel RD et al. Cell transplantation preserves matrix homeostasis: a novel paracrine mechanism. J Thorac Cardiovasc Surg. 2005;130:1430-1439.
    138. Fedak PW, Moravec CS, McCarthy PM et al. Altered expression of disintegrin metalloproteinases and their inhibitor in human dilated cardiomyopathy. Circulation. 2006;113:238-245.
    139. Fujii T, Yau TM, Weisel RD et al. Cell transplantation to prevent heart failure: a comparison of cell types. Ann Thorac Surg. 2003;76:2062-2070.
    140. Conboy IM, Rando TA. Aging, stem cells and tissue regeneration: lessons from muscle. Cell Cycle. 2005;4:407-410.
    141. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature. 2005;433:760-764.
    142. Fedak PW, Szmitko PE, Weisel RD et al. Cell transplantation preserves matrix homeostasis: a novel paracrine mechanism. J Thorac Cardiovasc Surg. 2005;130:1430-1439.
    143. Murry CE, Field LJ, Menasche P. Cell-based cardiac repair: reflections at the 10-year point. Circulation. 2005;112:3174-3183.
    144. Li RK, Jia ZQ, Weisel RD, Mickle DA, Choi A, Yau TM. Survival and function of bioengineered cardiac grafts. Circulation. 1999;100:II63-II69.
    145. Rubart M, Soonpaa MH, Nakajima H, Field LJ. Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J Clin Invest. 2004;114:775-783.
    146. Krause DS, Theise ND, Collector MI et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105:369-377.
    147. Tomita S, Mickle DA, Weisel RD et al. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg. 2002;123:1132-1140.
    148. Schachinger V, Assmus B, Britten MB et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol. 2004;44:1690-1699.
    149. Chen SL, Fang WW, Ye F et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94:92-95.
    150. Chen SL, Fang WW, Ye F et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol. 2004;94:92-95.
    151. Sun L, Hui AM, Su Q et al. Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell. 2006;9:287-300.
    152. Zhang W, Stoica G, Tasca SI, Kelly KA, Meininger CJ. Modulation of tumor angiogenesis by stem cell factor. Cancer Res. 2000;60:6757-6762.
    153. Parsa CJ, Matsumoto A, Kim J et al. A novel protective effect of erythropoietin in the infarcted heart. J Clin Invest. 2003;112:999-1007.
    154. Han SY, Li HX, Ma X, Zhang K, Ma ZZ, Tu PF. Protective effects of purified safflower extract on myocardial ischemia in vivo and in vitro. Phytomedicine. 2009;16:694-702.
    155. Sakakibara Y, Tambara K, Lu F et al. Cardiomyocyte transplantation does not reverse cardiac remodeling in rats with chronic myocardial infarction. Ann Thorac Surg. 2002;74:25-30.
    156. Nagaya N, Fujii T, Iwase T et al. Intravenous administration of mesenchymal stem cells improves cardiac function in rats with acute myocardial infarction through angiogenesis and myogenesis. Am J Physiol Heart Circ Physiol. 2004;287:H2670-H2676.
    157. Thompson RB, Emani SM, Davis BH et al. Comparison of intracardiac cell transplantation: autologous skeletal myoblasts versus bone marrow cells. Circulation. 2003;108 Suppl 1:II264-II271.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE