| 研究生: |
陳振榕 Chen, Jhen-Rong |
|---|---|
| 論文名稱: |
2205雙相不銹鋼中各組成相之電化學性質研究 Electrochemical Behavior of the Respective Constituent Phase in 2205 Duplex Stainless Steel |
| 指導教授: |
蔡文達
Tsai, Wen-Ta |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 選擇性溶解 、雙相不銹鋼 、伽凡尼效應 |
| 外文關鍵詞: | Galvanic effect, selective dissolution, duplex stainless steel |
| 相關次數: | 點閱:92 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
雙相不銹鋼的電化學性質,例如極化曲線等,是兩相綜合之表現,其個別單相性質及其測定方法是很值得探究的。本研究即以雙相結構之材料,如2205雙相不銹鋼為對象,嘗試建立對各組成單相的電化學分析方法,並針對兩相分別在各溶液環境中之電化學性質進行探討。本研究利用選擇性溶解的方法,可以成功分離各單相而製作出2205雙相不銹鋼個別相之試片。研究結果發現在2M H2SO4 + 0.5M HCl混酸水溶液中,2205雙相不銹鋼在活性-鈍態轉換區的電位範圍中之兩個分離的陽極峰,確實是由沃斯田體相(Austenitic Phase, Phase)及肥粒體相(Ferritic Phase, Phase)個別的電化學反應貢獻所重疊而成。
在中性以及氧化性的酸溶液中,均沒有活性-鈍態轉換區陽極峰的出現,而兩相的電化學行為差異則在於腐蝕電位有一相當大的差異,顯示兩相在測試溶液中的電化學特性不同。此外我們經由開路電位測試,發現在氧化性的HNO3溶液中,兩相的極性與在中性以及還原性的溶液中有相反的現象。經伽凡尼電流量測確認,若定義電流由相經導線流向相為正向,則在還原性的H2SO4/HCl混酸溶液中,測定所得之值為負,此時相為陽極,相為陰極。反之在氧化性的HNO3溶液中,測定所得之值為正,相為陰極,相為陽極。
另外本研究利用已知2205雙相不銹鋼於2M H2SO4 + 0.5M HCl中,於不同電位時,具有選擇性解的特性,將2205雙相不銹鋼在選定的溶液組成以及電位下,進行長時間定電位蝕刻,成功地將其中一相完全溶解,此結果可嘗試用來製作微米級的網狀以及線狀元件,而使選擇性溶解的方法在微米級加工或元件製作上有所發揮。
Abstract
The electrochemical behavior of duplex stainless steel (DSS), such as potentiodynamic polarization curve for example, is the properties mixed by the constituent phases. It is worth to explore the measuring methods and the electrochemical behavior of the constituent phases in 2205 DSS. The electrochemical behaviors of the constituent phases in 2205 DSS and the measuring methods of them were performed in this research. The selective dissolution method was employed to separate the constituent phases, and the constituent phase samples were successfully produced. It was found that the two anodic peaks in active-to-passive transition range is the superposition result of the electrochemical reactions of austenite () and ferrite () phases.
No anodic peaks and active-to-passive regions were found in neutral NaCl and oxidizing HNO3 solutions, but the large difference in corrosion potential between and phase did exist. It means that the electrochemical behaviors are different between and phase in these solutions. However, according to the open circuit potential (OCP) tests, the polarity between and phases in HNO3 was found inverse to it in H2SO4/HCl. We define the current flow from to phase through instrument is positive. According to Galvanic current measurements, the value measured is negative in H2SO4/HCl mixed acidic solution, showed the anode is a phase, and the cathode is g phase. On the contrary, the value measured is positive, and the polarity is inversed.
Finally, the well-known selective dissolution characteristics of 2205 DSS were employed to produce micro-scale devices. The long-term potentiostatic etching method was employed to dissolve the phase unwanted and the micro-mesh and micro-wire can be successfully produced.
參考文獻
1. E. Symniotis, “Galvanic Effects on the Active Dissolution of Duplex Stainless Steel”, Corrosion, Vol. 46, No. 1, p.2, 1990.
2. Wen-Ta Tsai, Kuen-Ming Tsai, Chang-Jian Lin, “Selective Corrosion in Duplex Stainless Steel”, Corrosion 2003, San Diego CA, USA. Paper# 03398
3. I-Hsuang Lo, Yan Fu, Chang-Jian Lin, Wen-Ta Tsai, “Effect of Electrolyte Composition on the Active-to-Passive Transition Behavior of 2205 Duplex Stainless Steel in H2SO4/HCl Solutions”, Corrosion Science, accepted, February 2005.
4. Wen-Ta Tsai, Ming-Shan Chen, “Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in Concentrated NaCl Solution”, Corrosion Science, Vol. 42, 2000, pp. 545-559.
5. M. Femenia, J. Pan, C. Laygraf, “In Situ Local Dissolution of Duplex Stainless Steels in 1 M H2SO4 + 1 M NaCl by Electrochemical Scanning Tunneling Microscopy”, Journal of the Electrochemical Society, 149 (6), 2002, B187-B197.
6. 付燕、林昌健,“模擬雙相不銹鋼腐蝕的電化學研究”, 第十二屆全國電化學會議, 上海, 2003. 11.
7. Minhua Shao, Yan Fu, Ronggang Hu, Changjian Lin, “A Study on Pitting Corrosion of Aluminum Alloy 2024-T3 by Scanning Microreference Electrode Technique”, Material Science and Engineering A, 344(1-2), 2003, pp. 323-327.
8. M. Femenia, J. Pan, C. Laygraf, P. Luukkonen, “In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunneling microscopy”, Corrosion Science, Vol.43, 2001, pp.1939-1951.
9. 付燕、林昌健、蔡文達,“微電化學技術研究雙相不銹鋼優選腐蝕行為”,第四屆海峽兩岸材料腐蝕及防護研討會,台灣,2004.
10. J.W. Oldfield, “Crevice Corrosion Resistance of Commercial and High-Purity Experimental Stainless Steels in Marine Environment-The Influence of N, Mn, and S”, Corrosion, Vol.46, 1990,p574.
11. A.J. Sedrik, “Effects of Alloy Composition and Microstructure on the Passivity of Stainless Steels”, Corrosion, Vol.42, 1986, p376.
12. R.M. Davison and J.D. Redmond, “Practice Guide to Using Duplex Stainless Steel”, Materials Performance, Jan. 1990, p57.
13. R.E. Avery, “Resist Chlorides, Retain Strength and Ductility with Duplex Stainless Steel Alloys”, Chemical Engineering Process, Mar. 1991, p.78.
14. N. Sridhar and J. Kolts, “Effects of Nitrogen on the Selective Dissolution of a Duplex Stainless Steel”, Corrosion, Vol.43, 1987, p.646.
15. H. Tsuge, Y. Tarutani and T. Kudo, “The Effect of Nitrogen on the Localized Corrosion Resistance of Duplex Stainless Steel Simulated Weldments”, Corrosion, Vol.44, 1988, p.305.
16. A. Ikeda, S. Mukai, M. Ueda, “Corrosion Behavior of 9 to 25% Cr Steels in Wet CO2 Environments”, Corrosion, Vol. 41, p. 185, 1985.
17. S. Jana, “Effect of Heat Input on the HAZ Properties of TwoDuplex Stainless Steels”, Journal of Material Processing Technology, Vol. 33, p. 247, 1992.
18. J. Oredsson and S. Berndardsson, “Performance of High Alloy Austenitic and Duplex Stainless Steels in Sour Gas and Oil Environments”, Materials Performance, Jan. 1983, p.35.
19. N. Sridhar, L.H. Flasche and J. Kolts, “Effect of Welding Parameters on Localized Corrosion of a Duplex Stainless Steel”, Materials Performance, Dec. 1984, p.52.
20. H. Eriksson and S. Bernhardsson, “The Applicability of Duplex Stainless Steels in Sour Environments”, Corrosion, Vol.47, 1991, p.719.
21. D.C. Agarwel, “Duplex Alloy 255 in Marine Application”, Materials Performance, Oct. 1988, p.63.
22. M.A. Streicher, “New Stainless Steels for the Process and Power Industries”, Metal Progress, Oct. 1985, p.29.
23. B. Larsson, H. Gripenberg and R. Mellström, “Special Stainless Steels for Topside Equipment on offshore Platforms”, in ‘Stainless Steels 84’, Göteborg, 1984, p.452.
24. Y. H. Yau and M. A. Streicher, “Galvanic Corrosion of Duplex FeCr-10%Ni Alloys in Reducing Acids”, Corrosion, Vol.43, 1987, p.366.
25. E. Symniotis, “Galvanic Effects on the Active Dissolution of Duplex Stainless Steel”, Corrosion, Vol. 46, No. 1, p.2, 1990.
26. 蔡坤銘, “異相不銹鋼之偶合電化學性質的研究”, 國立成功大學材料科學及工程學系碩士論文, 1991.
27. A. Dias, M.S. Andrade, “Atomic Force and Magnetic Force Microscopies Applied to Duplex Stainless Steels”, Applied Surface Science, 161, 2000, p109-114.
28. M. Femenia, C. Canalias, J. Pan, C. Laygraf, “Scanning Kelvin Probe Force Microscopy and Magnetic Force Microscopy for Caracterization of Duplex Stainless Steels”, Journal of the Electrochemical Society, 150 (6), 2003, B247-B281.
29. T. Suter, H. Böhni, “A New Microelectrochemical Methode to Study Pit Initiation on Stainless Steels”, Electrochimica Acta, Vol. 42, Nos 20-22, pp. 3275-3280, 1997.
30. T. Suter, H. Böhni, “Microelectrodes for Corrosion Studies in Microsystems”, Electrochimica Acta, Vol. 47, pp.191-199, 2001.
31. R.A. Perren, T.A. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Böhni, M.O. Speidel, “Corrosion Resistance of Duplex Stainless Steels in Chloride Ion Containing Environments: Investigations by Means of a New Microelectrochemical Method I. Precipitation-free States”, Corrosion Science, Vol.43, 2001, pp.707-726.
32. R.A. Perren, T.A. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Böh
-ni, M.O. Speidel, “Corrosion Resistance of Duplex Stainless Steels
in Chloride Ion Containing Environments: Investigations by Means of a
New Microelectrochemical Method II. Influence of Precipitates”, Corro-
sion Science, Vol. 43, 2001, pp.727-745.