簡易檢索 / 詳目顯示

研究生: 陳振榕
Chen, Jhen-Rong
論文名稱: 2205雙相不銹鋼中各組成相之電化學性質研究
Electrochemical Behavior of the Respective Constituent Phase in 2205 Duplex Stainless Steel
指導教授: 蔡文達
Tsai, Wen-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 69
中文關鍵詞: 選擇性溶解雙相不銹鋼伽凡尼效應
外文關鍵詞: Galvanic effect, selective dissolution, duplex stainless steel
相關次數: 點閱:92下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

      雙相不銹鋼的電化學性質,例如極化曲線等,是兩相綜合之表現,其個別單相性質及其測定方法是很值得探究的。本研究即以雙相結構之材料,如2205雙相不銹鋼為對象,嘗試建立對各組成單相的電化學分析方法,並針對兩相分別在各溶液環境中之電化學性質進行探討。本研究利用選擇性溶解的方法,可以成功分離各單相而製作出2205雙相不銹鋼個別相之試片。研究結果發現在2M H2SO4 + 0.5M HCl混酸水溶液中,2205雙相不銹鋼在活性-鈍態轉換區的電位範圍中之兩個分離的陽極峰,確實是由沃斯田體相(Austenitic Phase,  Phase)及肥粒體相(Ferritic Phase,  Phase)個別的電化學反應貢獻所重疊而成。

      在中性以及氧化性的酸溶液中,均沒有活性-鈍態轉換區陽極峰的出現,而兩相的電化學行為差異則在於腐蝕電位有一相當大的差異,顯示兩相在測試溶液中的電化學特性不同。此外我們經由開路電位測試,發現在氧化性的HNO3溶液中,兩相的極性與在中性以及還原性的溶液中有相反的現象。經伽凡尼電流量測確認,若定義電流由相經導線流向相為正向,則在還原性的H2SO4/HCl混酸溶液中,測定所得之值為負,此時相為陽極,相為陰極。反之在氧化性的HNO3溶液中,測定所得之值為正,相為陰極,相為陽極。

      另外本研究利用已知2205雙相不銹鋼於2M H2SO4 + 0.5M HCl中,於不同電位時,具有選擇性解的特性,將2205雙相不銹鋼在選定的溶液組成以及電位下,進行長時間定電位蝕刻,成功地將其中一相完全溶解,此結果可嘗試用來製作微米級的網狀以及線狀元件,而使選擇性溶解的方法在微米級加工或元件製作上有所發揮。

    Abstract

     The electrochemical behavior of duplex stainless steel (DSS), such as potentiodynamic polarization curve for example, is the properties mixed by the constituent phases. It is worth to explore the measuring methods and the electrochemical behavior of the constituent phases in 2205 DSS. The electrochemical behaviors of the constituent phases in 2205 DSS and the measuring methods of them were performed in this research. The selective dissolution method was employed to separate the constituent phases, and the constituent phase samples were successfully produced. It was found that the two anodic peaks in active-to-passive transition range is the superposition result of the electrochemical reactions of austenite () and ferrite () phases.

     No anodic peaks and active-to-passive regions were found in neutral NaCl and oxidizing HNO3 solutions, but the large difference in corrosion potential between  and  phase did exist. It means that the electrochemical behaviors are different between  and  phase in these solutions. However, according to the open circuit potential (OCP) tests, the polarity between  and  phases in HNO3 was found inverse to it in H2SO4/HCl. We define the current flow from  to  phase through instrument is positive. According to Galvanic current measurements, the value measured is negative in H2SO4/HCl mixed acidic solution, showed the anode is a phase, and the cathode is g phase. On the contrary, the value measured is positive, and the polarity is inversed.

     Finally, the well-known selective dissolution characteristics of 2205 DSS were employed to produce micro-scale devices. The long-term potentiostatic etching method was employed to dissolve the phase unwanted and the micro-mesh and micro-wire can be successfully produced.

    總目錄 中文摘要............................................................................................................I Abstract...........................................................................................................III 總目錄..............................................................................................................V 表目錄..........................................................................................................VIII List of Tables………………………………...................................................IX 圖目錄..............................................................................................................X List of Figures…………………………………………………..........……XIV 第一章 前言……………………………………………………….......……1 第二章 相關理論及文獻回顧……………………………………….......…4 2-1雙相不銹鋼簡介.....................................................................................4 2-2 2205雙相不銹鋼之兩相間優選腐蝕行為研究...…………….......…..5 2-3 2205雙相不銹鋼之各組成相電化學性質相關研究............................8 第三章 實驗方法與步驟...............................................................................9 3-1 2205雙相不銹鋼中各組成相之電化學性質研究................................9 3-1-1 實驗材料......................................................................................9 3-1-1-1 2205雙相不銹鋼之金相觀察...............................................9 3-1-2 試片準備....................................................................................10 3-1-2-1 2205雙相不銹鋼之雙相電化學試片製備..........................10 3-1-2-2 2205雙相不銹鋼之動電位極化測試..................................11 3-1-2-3 定電位試驗、金相觀察以及相鑑定...................................11 3-1-2-4 2205雙相不銹鋼各組成相之電化學試片製備..................12 3-1-2-5 2205雙相不銹鋼各組成相之電化學測試..........................12 3-1-2-6兩相偶合之伽凡尼電流量測...............................................13 3-2 微米級網狀及柱狀結構體之製作......................................................13 3-2-1試片準備....................................................................................14 3-2-2 較長時間之定電位蝕刻及金相觀察......................................14 第四章 結果與討論.....................................................................................19 4-1 2205雙相不銹鋼的性質......................................................................19 4-1-1 金相觀察以及成分分析............................................................19 4-1-2 雙相試片之電化學測試............................................................19 4-2 單相試片之製作結果..........................................................................20 4-3 各單相之電化學性質..........................................................................21 4-3-1 硫酸/鹽酸水溶液.....................................................................21 4-3-1-1 活性-鈍態轉換區..............................................................22 4-3-1-2 硫酸/鹽酸水溶液濃度的影響..........................................23 4-3-2 氯化鈉水溶液..........................................................................26 4-3-3 硝酸/氯化鐵水溶液.................................................................27 4-4 伽凡尼電流之量測..............................................................................28 4-5 微米級元件之製作..............................................................................29 第五章 結論.................................................................................................65 第六章 參考文獻.........................................................................................66 表目錄 表4-1 2205雙相不銹鋼成分表.....................................................................32 表4-2經1100℃/30 min固溶處理之2205雙相不銹鋼之相及相 之EDS化學組成分析.........................................................................33 表4-3 2205雙相不銹鋼及其單相試片在2 M H2SO4 + 0.5 M HCl中 ,陽極之活性-鈍態轉換區電流峰電位值、腐蝕電位值及開路 電位之比較..........................................................................................34 表4-4 H2SO4/HCl水溶液濃度對陽極峰電位的影響...................................35 List of Tables Table 4-1 Chemical composition of 2205 DSS used (wt %)...........................32 Table 4-2 Chemical compositions of  and  phases after 1100℃/ 30 min solution treatment in 2205 DSS, analyzed by EDS (wt %)..............................................................................................33 Table 4-3 The values of Ecorr, OCP, Emax, and Emax of 2205 DSS and it’s constituent phases in 2 M H2SO4 + 0.5 M HCl...................34 Table 4-4 Effects of H2SO4/HCl concentration on the magnitude of Emax and Emax...........................................................................35 圖目錄 圖3-1 試片示意圖(a)動電位極化測試試片(b)用於製備微米級結構 體之試片.............................................................................................16 圖3-2 單相試片製備構想示意圖(a)2205雙相不銹鋼原材(b)將其中 一相大量溶解(c)以冷鑲埋用環氧樹脂再填補覆蓋(d)研磨使 試片單相暴露.....................................................................................17 圖3-3 伽凡尼電流量測裝置示意圖.............................................................18 圖4-1 2205雙相不銹鋼經1100℃/30min固溶處理後水淬,並經95 ℃之改良式 Murakami 溶液蝕刻5分鐘所呈現之金相……........ 36 圖4-2 2205雙相不銹鋼分別於1.5 M HNO3、1 M NaCl以及2 M H2SO4 + 0.5 M HCl水溶液中之動電位極化測試結果比較, 掃描速率為1 mV/sec..........................................................................37 圖4-3 2205雙相不銹鋼在2 M H2SO4 + 0.5 M HCl之混酸水溶液中 ,以-265 mVSCE之電位進行30分鐘之定電位試驗金相以及 其兩相個別之EDS化學組成分析.....................................................38 圖4-4 2205雙相不銹鋼在2 M H2SO4 + 0.5 M HCl之混酸水溶液中 ,以-330 mVSCE之電位進行30分鐘之定電位試驗金相以及 其兩相個別之EDS化學組成分析.....................................................39 圖4-5 2205雙相不銹鋼之相單相試片(a)試片巨觀形貌,(b)圖 4-5(a)中A點之SEM影像圖,(c)圖4-5(a)中B點之SEM 影像圖,(d)圖4-5(a)中C點之SEM影像圖........................................40 圖4-6 2205雙相不銹鋼之相單相試片SEM形貌。(a)、(b)、(c) 不同倍率之觀察顯示環氧樹脂能夠填入大小不一的孔隙, (d)為未經過環氧樹脂填充孔隙之試片.............................................41 圖4-7 2205雙相不銹鋼在2 M H2SO4 + 0.5 M HCl之混酸水溶液 中,活性-頓態轉換區雙電流峰現象之解析示意圖(linear scale)..................................................................................................42 圖4-8 2205雙相不銹鋼之相、相以及2205雙相不銹鋼於2 M H2SO4 + 0.5 M HCl之動電位極化曲線在活性-鈍態轉換區 試驗結果的比較..................................................................................43 圖4-9 2205雙相不銹鋼及相、相在2 M H2SO4 + 0.5 M HCl中 的開路電位量測數據之比較..............................................................44 圖4-10 相、相在2 M H2SO4以及2 M H2SO4 + 0.1 M HCl中動 電位極化測試結果之比較.................................................................45 圖4-11 相、相在0.5 M HCl以及0.5 M H2SO4 + 0.5 M HCl中 測試結果之比較.................................................................................46 圖4-12 相在固定鹽酸濃度為0.5 M,改變硫酸濃度之溶液中進 行動電位極化測試結果之比較........................................................47 圖4-13 相在固定硫酸濃度為2 M,改變鹽酸濃度之溶液中進行 動電位極化測試結果之比較...........................................................48 圖4-14 相在固定鹽酸濃度為0.5 M,改變硫酸濃度之溶液中進 行動電位極化測試結果之比較.......................................................49 圖4-15 相在固定硫酸濃度為2 M,改變鹽酸濃度之溶液中進行 動電位極化測試結果之比較...........................................................50 圖4-16 相、相以及2205雙相不銹鋼在1 M NaCl水溶液中之 動電位極化測試結果比較...............................................................51 圖4-17 相、相以及2205雙相不銹鋼在1 M NaCl水溶液中之 開路電位測試結果比較...................................................................52 圖4-18 相、相及2205雙相不銹鋼在1.5 M HNO3中動電位極 化測試結果比較...............................................................................53 圖4-19 、相及2205雙相不銹鋼在1.5 M HNO3中之開路電位 測試結果...........................................................................................54 圖4-20 2205雙相不銹鋼及、相在1.5 M HNO3 + 0.1 M FeCl3 的極化測試結果比較.......................................................................55 圖4-21 2205雙相不銹鋼及、相在1.5 M HNO3 + 0.5 M FeCl3 的極化測試結果比較.......................................................................56 圖4-22 2205雙相不銹鋼在1.5 M HNO3、1.5 M HNO3 + 0.1M FeCl3及1.5 M HNO3 + 0.5M FeCl3 中之動電位極化測試 結果比較...........................................................................................57 圖4-23 相在1.5 M HNO3以及分別添加了0.1、0.5 M FeCl3中 之動電位極化測試結果之比較.......................................................58 圖4-24 相在1.5 M HNO3以及分別添加了0.1、0.5 M FeCl3中之 動電位極化測試結果之比較...........................................................59 圖4-25 相及相在1.5M HNO3以及2M H2SO4 + 0.5M HCl中偶 合之伽凡尼電流量測結果...............................................................60 圖4-26 將相大量溶解後所得之SEM形貌,試片厚度約為40 m,蝕刻時間約11小時,部分位被溶解的相仍與 相相連...............................................................................................61 圖4-27 將相幾乎完全溶解後所得之SEM形貌,試片厚度約 為10m,蝕刻時間約為3小時........................................................62 圖4-28 在Emax定電位之試片,在/相界附近之相凹陷較深 ,顯示此處之相具有較大的溶解速率...........................................63 圖4-29 在Emax定電位之試片,在/相界附近之相邊界有明 顯的刃狀突起....................................................................................64 List of Figures Fig. 3-1 The schematic graphs of samples used to perform (a) potentiodynamic polarization test and (b) micro-machining process...........................................................................................16 Fig. 3-2 The schematic diagrams of the respective constituent phase samples preparation processes. (a) 2205 DSS (b) one constituent phase was dissolved (c) the remaining space were filled with epoxy resin (d) ground the sample carefully could result in the exposure of only one constituent phase.........................................................17 Fig. 3-3 schematic diagram of the instrument for Galvanic current measurement...................................................................................18 Fig. 4-1 SEM micrograph of 2205 DSS, after 1100℃/30min solution treatment, etched with modified Murakami solution.......................36 Fig. 4-2 results of potentiodynamic polarization tests of the 2205 DSS in 1.5 M HNO3, 1 M NaCl and 2 M H2SO4 + 0.5 M HCl separately (scan rate 1mV/sec)...........................................................................37 Fig. 4-3 The SEM micrograph and chemical composition of the 2205 DSS analyzed by EDS after potentiostatic polarization test (30 minutes) at -265mVSCE in 2 M H2SO4 + 0.5 M HCl.......................................38 Fig. 4-4 The SEM micrograph and chemical compositions of the 2205 DSS analyzed by EDS after potentiostatic polarization test (30 minutes) at -330mVSCE in 2 M H2SO4 + 0.5 M HCl...........................................39 Fig. 4-5  phase sample of 2205 DSS (a) macro-scale morphology, (b) SEM morphology of point A, (c) SEM morphology of point B, and (d) SEM morphology of point C in Fig. 4-5(a)......................................40 Fig. 4-6 The SEM micrographs of the  phase in 2205 DSS. (a) 1000X, (b) 5000X, and (c) 2000X SEM micrographs reveal that the epoxy resin can fill the etched  phase space. (d) the sample have not been filled with epoxy resin................................................................................41 Fig. 4-7 analysis of the active-to-passive transition of the 2205 DSS in 2 M H2SO4 + 0.5 M HCl (linear scale).....................................................42 Fig. 4-8 super positioned potentiodynamic polarization curves of the 2205 DSS in active-to-passive transition region in 2 M H2SO4 + 0.5 M HCl.....................................................................................................43 Fig. 4-9 The results of the open circuit potential measurements of 2205 DSS,  and  phases in 2 M H2SO4 + 0.5 M HCl.......................................44 Fig. 4-10 potentiodynamic polarization curves of  and  phases in 2 M H2SO4 and 2 M H2SO4 + 0.1 M HCl separately..............................45 Fig. 4-11 potentiodynamic polarization curves of  and  phases in 0.5 M HCl and 0.5 M H2SO4 + 0.5 M HCl separately.......................................46 Fig. 4-12 potentiodynamic polarization curves of  phase in X M H2SO4 + 0.5 M HCl. X=0, 0.5, 1.0, 1.5, 2.0.........................................................47 Fig. 4-13 potentiodynamic polarization curves of  phase in 2 M H2SO4 + Y M HCl. Y=0, 0.1, 0.3, 0.5................................................................48 Fig. 4-14 potentiodynamic polarization curves of  phase in X M H2SO4 + 0.5 M HCl. X=0, 0.5, 1.0, 1.5, 2.0.........................................................49 Fig. 4-15 potentiodynamic polarization curves of  phase in 2 M H2SO4 + Y M HCl. Y=0, 0.1, 0.3, 0.5................................................................50 Fig. 4-16 potentiodynamic polarization curves of the 2205 DSS, and  phases in 1 M NaCl.........................................................................51 Fig. 4-17 results of the open circuit potential measurements of the 2205 DSS,  and  phases in 1 M NaCl............................................................52 Fig. 4-18 potentiodynamic polarization curves of 2205 DSS,  and  phases in 1.5 M HNO3...................................................................................53 Fig. 4-19 results of the open circuit potential measurements of 2205DSS,  and  phases in 1.5 M HNO3...........................................................54 Fig. 4-20 potentiodynamic polarization curves of 2205DSS,  and  phases in 1.5 M HNO3 + 0.1 M FeCl3..........................................................55 Fig. 4-21 potentiodynamic polarization curves of 2205DSS,  and  phases in 1.5 M HNO3 + 0.5 M FeCl3..........................................................56 Fig. 4-22 potentiodynamic polarization curves of the 2205 DSS in 1.5 M HNO3, 1.5 M HNO3 + 0.1M FeCl3, and 1.5 M HNO3 + 0.5M FeCl3 separately........................................................................................ 57 Fig. 4-23 potentiodynamic polarization curves of  phase in 1.5 M HNO3, 1.5 M HNO3 + 0.1 M FeCl3 and 1.5 M HNO3 + 0.1 M FeCl3 separately.........................................................................................58 Fig. 4-24 potentiodynamic polarization curves of  phase in 1.5 M HNO3, 1.5 M HNO3 + 0.1 M FeCl3 and 1.5 M HNO3 + 0.1 M FeCl3 separately..........................................................................................59 Fig. 4-25 Galvanic current measurement of coupled  and  phases in A: 1.5M HNO3, and B: 2M H2SO4 + 0.5M HCl...................................60 Fig. 4-26 The SEM micrograph of the  phase etched 2205 DSS. The etching time is 11 hours and there is still some retained  phase connected to the  phase. The thickness of the sample is 40m...............................................................................................61 Fig. 4-27 The SEM micrograph of the  phase etched 2205 DSS. The etching time is 3 hours and the  phase was almost dissolved. The thickness of the sample is 10m....................................................................62 Fig. 4-28 The SEM micrograph of the 2205 DSS potentiostatic etched at Emax. The  phase has greater dissolution rate near the / phase boundary..........................................................................................63 Fig. 4-29 The SEM micrograph of the 2205 DSS potentiostatic etched at Emax. The The  phase has lower dissolution rate near the / phase boundary..........................................................................................64

    參考文獻

    1. E. Symniotis, “Galvanic Effects on the Active Dissolution of Duplex Stainless Steel”, Corrosion, Vol. 46, No. 1, p.2, 1990.

    2. Wen-Ta Tsai, Kuen-Ming Tsai, Chang-Jian Lin, “Selective Corrosion in Duplex Stainless Steel”, Corrosion 2003, San Diego CA, USA. Paper# 03398

    3. I-Hsuang Lo, Yan Fu, Chang-Jian Lin, Wen-Ta Tsai, “Effect of Electrolyte Composition on the Active-to-Passive Transition Behavior of 2205 Duplex Stainless Steel in H2SO4/HCl Solutions”, Corrosion Science, accepted, February 2005.

    4. Wen-Ta Tsai, Ming-Shan Chen, “Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in Concentrated NaCl Solution”, Corrosion Science, Vol. 42, 2000, pp. 545-559.

    5. M. Femenia, J. Pan, C. Laygraf, “In Situ Local Dissolution of Duplex Stainless Steels in 1 M H2SO4 + 1 M NaCl by Electrochemical Scanning Tunneling Microscopy”, Journal of the Electrochemical Society, 149 (6), 2002, B187-B197.

    6. 付燕、林昌健,“模擬雙相不銹鋼腐蝕的電化學研究”, 第十二屆全國電化學會議, 上海, 2003. 11.

    7. Minhua Shao, Yan Fu, Ronggang Hu, Changjian Lin, “A Study on Pitting Corrosion of Aluminum Alloy 2024-T3 by Scanning Microreference Electrode Technique”, Material Science and Engineering A, 344(1-2), 2003, pp. 323-327.

    8. M. Femenia, J. Pan, C. Laygraf, P. Luukkonen, “In situ study of selective dissolution of duplex stainless steel 2205 by electrochemical scanning tunneling microscopy”, Corrosion Science, Vol.43, 2001, pp.1939-1951.
    9. 付燕、林昌健、蔡文達,“微電化學技術研究雙相不銹鋼優選腐蝕行為”,第四屆海峽兩岸材料腐蝕及防護研討會,台灣,2004.

    10. J.W. Oldfield, “Crevice Corrosion Resistance of Commercial and High-Purity Experimental Stainless Steels in Marine Environment-The Influence of N, Mn, and S”, Corrosion, Vol.46, 1990,p574.

    11. A.J. Sedrik, “Effects of Alloy Composition and Microstructure on the Passivity of Stainless Steels”, Corrosion, Vol.42, 1986, p376.

    12. R.M. Davison and J.D. Redmond, “Practice Guide to Using Duplex Stainless Steel”, Materials Performance, Jan. 1990, p57.

    13. R.E. Avery, “Resist Chlorides, Retain Strength and Ductility with Duplex Stainless Steel Alloys”, Chemical Engineering Process, Mar. 1991, p.78.

    14. N. Sridhar and J. Kolts, “Effects of Nitrogen on the Selective Dissolution of a Duplex Stainless Steel”, Corrosion, Vol.43, 1987, p.646.

    15. H. Tsuge, Y. Tarutani and T. Kudo, “The Effect of Nitrogen on the Localized Corrosion Resistance of Duplex Stainless Steel Simulated Weldments”, Corrosion, Vol.44, 1988, p.305.

    16. A. Ikeda, S. Mukai, M. Ueda, “Corrosion Behavior of 9 to 25% Cr Steels in Wet CO2 Environments”, Corrosion, Vol. 41, p. 185, 1985.

    17. S. Jana, “Effect of Heat Input on the HAZ Properties of TwoDuplex Stainless Steels”, Journal of Material Processing Technology, Vol. 33, p. 247, 1992.

    18. J. Oredsson and S. Berndardsson, “Performance of High Alloy Austenitic and Duplex Stainless Steels in Sour Gas and Oil Environments”, Materials Performance, Jan. 1983, p.35.

    19. N. Sridhar, L.H. Flasche and J. Kolts, “Effect of Welding Parameters on Localized Corrosion of a Duplex Stainless Steel”, Materials Performance, Dec. 1984, p.52.

    20. H. Eriksson and S. Bernhardsson, “The Applicability of Duplex Stainless Steels in Sour Environments”, Corrosion, Vol.47, 1991, p.719.

    21. D.C. Agarwel, “Duplex Alloy 255 in Marine Application”, Materials Performance, Oct. 1988, p.63.

    22. M.A. Streicher, “New Stainless Steels for the Process and Power Industries”, Metal Progress, Oct. 1985, p.29.

    23. B. Larsson, H. Gripenberg and R. Mellström, “Special Stainless Steels for Topside Equipment on offshore Platforms”, in ‘Stainless Steels 84’, Göteborg, 1984, p.452.

    24. Y. H. Yau and M. A. Streicher, “Galvanic Corrosion of Duplex FeCr-10%Ni Alloys in Reducing Acids”, Corrosion, Vol.43, 1987, p.366.

    25. E. Symniotis, “Galvanic Effects on the Active Dissolution of Duplex Stainless Steel”, Corrosion, Vol. 46, No. 1, p.2, 1990.

    26. 蔡坤銘, “異相不銹鋼之偶合電化學性質的研究”, 國立成功大學材料科學及工程學系碩士論文, 1991.

    27. A. Dias, M.S. Andrade, “Atomic Force and Magnetic Force Microscopies Applied to Duplex Stainless Steels”, Applied Surface Science, 161, 2000, p109-114.

    28. M. Femenia, C. Canalias, J. Pan, C. Laygraf, “Scanning Kelvin Probe Force Microscopy and Magnetic Force Microscopy for Caracterization of Duplex Stainless Steels”, Journal of the Electrochemical Society, 150 (6), 2003, B247-B281.

    29. T. Suter, H. Böhni, “A New Microelectrochemical Methode to Study Pit Initiation on Stainless Steels”, Electrochimica Acta, Vol. 42, Nos 20-22, pp. 3275-3280, 1997.

    30. T. Suter, H. Böhni, “Microelectrodes for Corrosion Studies in Microsystems”, Electrochimica Acta, Vol. 47, pp.191-199, 2001.

    31. R.A. Perren, T.A. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Böhni, M.O. Speidel, “Corrosion Resistance of Duplex Stainless Steels in Chloride Ion Containing Environments: Investigations by Means of a New Microelectrochemical Method I. Precipitation-free States”, Corrosion Science, Vol.43, 2001, pp.707-726.

    32. R.A. Perren, T.A. Suter, P.J. Uggowitzer, L. Weber, R. Magdowski, H. Böh
    -ni, M.O. Speidel, “Corrosion Resistance of Duplex Stainless Steels
    in Chloride Ion Containing Environments: Investigations by Means of a
    New Microelectrochemical Method II. Influence of Precipitates”, Corro-
    sion Science, Vol. 43, 2001, pp.727-745.

    下載圖示 校內:立即公開
    校外:2005-07-22公開
    QR CODE