簡易檢索 / 詳目顯示

研究生: 陳國祥
Chen, Kuo-Shiang
論文名稱: 毛細管電泳微晶片之彎道最佳化研究
Otimization of the Band Geometry for Capillary Electrophoresis Microchip
指導教授: 洪振益
Hung, Chen-I
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 82
中文關鍵詞: 最佳化毛細管電泳
外文關鍵詞: optimization, electrophoresis
相關次數: 點閱:56下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著微細加工技術的進步,生物晶片尺寸也隨之日趨縮小,雖然可大幅地提升儀器的攜帶性,但是晶片的空間也因此受到限制,不利於毛細管電泳的分析,毛細管勢必要藉由多次轉彎來獲得足夠長度,使不同的物質充份分離,不過轉彎的管道將導致樣本偏斜量(sampling skewness)增加造成偵測困難,因此要如何降低偏斜量將是本文所探討的重點。
    本文使用「類神經網路結合複合型法」對彎曲管道進行最佳化設計,以降低偏斜量。首先定義毛細管電泳的設計參數,訂出各設計參數的水準值,再利用田口式直角表進行參數配置,以獲得參數均勻配置的範例。之後,以計算流體力學(CFD)方法來模擬不同設計參數的電泳現象,並計算獲得偏斜量,再利用類神經網路的學習能力建構設計參數與偏斜量之間的關係,最後將類神經網路結合複合型法並進行最佳化搜尋,找出最佳設計參數,以提供設計者一個正確、快速的設計途徑。

    With improving the micro-machining technology, the size of the bio-MEMS is reduced gradually. The reduced-size chips make the apparatus more portable. On the other hand, because of the limited space, the capillary electrophoresis has to serpentine to get sufficient length. It needs enough length to make the different materials to be separated. But the serpentine channel results in the larger sampling skewness, which makes the detection to become more difficult. And how to reduce the sampling skewness is the main consideration in this study.
    The approach combining the artificial neural network with the complex method is used to optimize the serpentine channel for reducing the sampling skewness. First, the design parameters that construct the capillary electrophoresis are defined. Five levels are taken for each design parameters. The orthogonal array of Taguchi method is used to group up the design parameters. The sampling skewnesses of different cases are obtained from the CFD (computational fluid dynamics) simulations. The relationship between the design parameters and the sampling skewness is established by training an artificial neural network. Then the combination of the well-trained network with the complex method is used to search the optimum design parameters for the turning geometry. At last, it is hoped to provide the manufacturers the way to design the capillary electrophoresis.

    中文摘要…………………………………………………Ⅰ 英文摘要…………………………………………………Ⅱ 誌謝………………………………………………………Ⅲ 目錄………………………………………………………Ⅳ 表目錄……………………………………………………Ⅶ 圖目錄……………………………………………………Ⅷ 符號說明…………………………………………………Ⅹ 第一章 緒論……………………………………………1 1-1 研究動機與目的………………………………1 1-2 文獻回顧………………………………………1 1-3 設計流程………………………………………4 1-4 本文架構………………………………………5 第二章 理論分析………………………………………6 2-1 基本假設………………………………………6 2-2 統御方程式……………………………………7 2-3 電雙層理論……………………………………7 2-4 解電雙層內部分佈之Poisson-Boltzmann方程式……9 2-5 電泳遷移率……………………………………………11 2-5-1 Hückel方程式………………………………12 2-5-2 Smoluchowski方程式………………………13 2-5-2 Henry方程式…………………………………14 2-6 電滲流現象……………………………………………15 2-7 粒子遷移率……………………………………………16 第三章 數值模擬………………………………………………17 3-1 有限體積法……………………………………………17 3-1-1 統御方程式離散化…………………………17 3-1-2 有限差分方程………………………………20 3-2 邊界設定……………………………………………20 3-3 收斂標準……………………………………………22 第四章 類神經網路…………………………………………23 4-1 類神經網路簡介……………………………………23 4-2 生物神經元與人工神經元…………………………23 4-3 倒傳遞類神經網路…………………………………25 4-4 倒傳遞類神經網路架構……………………………26 4-5 倒傳遞類神經網路演算法…………………………27 4-6 倒傳遞類神經網路之參數設定……………………32 4-7 網路學習結果評估…………………………………34 4-8 類神經網路的優缺點………………………………35 4-9 訓練範例來源與組成………………………………36 4-10 倒傳遞類神經網路之應用…………………………37 第五章 最佳化方法…………………………………………39 5-1 目標函數與變數限制………………………………39 5-2 複合型法……………………………………………40 5-3 複合型法運算過程…………………………………44 5-4 複合型法與類神經網路結合………………………44 第六章 結果與討論…………………………………………46 6-1 類神經網路之訓練結果……………………………46 6-2 探討最佳化之結果…………………………………47 6-3 外型參數與外加電壓對分析效果之影響…………49 6-3-1 外型參數對分析效果之影響………………49 6-3-2 外加電壓對分析效果之影響………………50 6-4 結論與未來展望………………………………………51 參考文獻…………………………………………………………52

    [1] 傅龍明, ”微晶片電泳流場之分析與應用,” 國立成功大學工程科學研究所博士論文(2001).
    [2] H. V. Helmholtz, Wiedemanns Ann. 7, 337 (1877).
    [3] F. Kohlrausch, Wiedemanns Ann. 62, 209 (1897).
    [4] Tiselius, A., Trans. Faraday. Soc., 33, 524 (1937).
    [5] 連香媚, ”利用毛細管電泳分析DNA在臨床上的應用,” 國立成功大學化學研究所碩士論文(2000).
    [6] Virtanen R., Acta Polytech. Scand., 123, 1-67 (1974).
    [7] Jorgenson, J. W. and Lukacs, K. D., “Zone Electrophoresis in Open-Tubular Glass Capillaries,” Analytical Chemistry, 53, pp. 1298-1302(1981).
    [8] Terabe, S., Otsuka, K., Ichikawa K., Tsuchiya, A. and Ando, T., “Electrokinetic Separations with Micellar Solutions and Open-Tubular Capillaries,” Analytical Chemistry, 56, pp. 111-113(1984).
    [9] Hjerten, S., Liao. J. and Yao, K., J. Chromatographia, 387, 127(1987).
    [10] Rose, D. J. and Jorgenson, J. W., “Characterization and Automation of Sample Introduction Methods for Capillary Zone Electrophoresis,” Analytical Chemistry, 60, pp. 642-648(1988).
    [11] Harrison, D. J., Manz, A., Fan, Z., Ludi, H. and Widmer M. H., “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip,” Analytical Chemistry, 64, pp. 1926-1932(1992).
    [12] Seiler, K., Harrison, D. J. and Manz, A., “Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantitation, Separation Efficiency,” Analytical Chemistry, 65, pp. 1481-1488(1993).
    [13] Effenhauser, C. S. and Manz, A., “Glass Chip for High-Speed Capillary Electrophoresis Separations with Submicrometer Plate Heights,” Analytical Chemistry, 65, pp. 2637-2642 (1993).
    [14] Jacobson, S. C., Hergenroden, R., Koutny L. B., Warmack R. J. and Ramsey J. M., “Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices,” Analytical Chemistry, 66, pp. 1107-1113(1994).
    [15] Culbertson, C. T. and Jacobson, S. C., “Dispersion Sources for Compact Geometries on Microchips,” Analytical Chemistry, 70, pp. 3781-3789 (1998).
    [16] Paegel, B. M. and Mathies, R. A., “Turn Geometry for Minimizing Band Broadening in Microfabricated Capillary Electrophoresis Channels,” Analytical Chemistry, 72, pp. 3030-3037(2000).
    [17] Molho, J. M., Herr, A. E., Mosier, B. P., Santiago, J. G., Kenny, T. W., Bernnen, R. A. and Gordon, G. B., “Designing Corner Compensation for Electrophoresis in Compact Geometries,” Micro Total Analysis Systems, Enschede, The Netherlands(2000).
    [18] Grushka, E., McCormick, R. M. and Kirkland, J. J., “Effect of Temperature Gradients on the Efficiency of Capillary Zone Electrophoresis Separations,” Analytical Chemistry, 61, pp. 241-246 (1989).
    [19] Griffiths, S. K. and Nilson, R. H., “ Band Spreading in Two-DimensionalMicrochannel Turns for Electrokinetic Species Transport,” AnalyticalChemistry, 72, pp. 5473-5482(2000).
    [20] Griffiths, S. K. and Nilson, R. H., “Low-Dispersion Turns and Junctions for Microchannel Systems,” Analytical Chemistry, 73, pp.272-278 (2001).
    [21] Molho, J. M., Herr, A. E., Mosier, B. P., Santiago, J. G. and Kenny, T. W., ”Optimization of Turn Geometries for Microchip Electrophoresis,” Analytical Chemistry, 73, pp. 1350-1360(2001).
    [22] CFD-ACE(U) User Manual, Version 6.4, CFD research corporation (2000).
    [23] Duncan J. Shaw, Introduction to Colloid and Surface Chemistry, (1989)
    [24] Russel, W. B., Saville, D. A. and Schowalter, W. R., “Colloidal Dispersion,” New York, (1989).
    [25] CFD-ACE(U) User Manual, Version 5, CFD research corporation (1998).
    [26] 黃福居, ”全三維軸流風扇的葉片最佳化設計,” 國立成功大學機械研究所碩士論文(2001).
    [27] 葉怡成, ”類神經網路模式應用與實作,” 儒林圖書有限公司(1998).
    [28] 呂卓穎, ”神經網路之探討與應用,” 國立成功大學化學工程研究所論士論文(1997).
    [29] 劉惟信, ”機械最佳化設計,” 全華科技圖書公司(1996).
    [30] 李生丕, ”應用類神經網路於軸流風扇葉片設計,” 國立成功大學機械研究所碩士論文(1999).

    下載圖示 校內:立即公開
    校外:2002-07-17公開
    QR CODE