簡易檢索 / 詳目顯示

研究生: 賴予恆
Lai, Yu-Heng
論文名稱: 真空油炸相較於傳統油炸對雞肉中丙烯醯胺生成之影響
Effects of vacuum frying and traditional frying to acrylamide production in chicken
指導教授: 陳秀玲
Chen, Hsiu-Ling
學位類別: 碩士
Master
系所名稱: 醫學院 - 食品安全衛生暨風險管理研究所
Department of Food Safety / Hygiene and Risk Management
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 137
中文關鍵詞: 丙烯醯胺真空技術油炸雞肉物理性質測定感官品評風險評估
外文關鍵詞: acrylamide, vacuum technology, fried chicken, physical property determination, sensory evaluation, risk assessment
相關次數: 點閱:59下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 炸雞是將雞肉經過分切、調味、裹粉等步驟後,高溫油炸而得,為台灣熱門美食,但在製作過程中,食品可能會因高溫等因素產生有毒化學物質,例如丙烯醯胺(Acrylamide),而丙烯醯胺現已被國際癌症研究機構(IARC)歸類為2A組(極可能致癌物),且經動物實驗發現,該化學物質具神經毒性。真空油炸是透過改變油炸槽中壓力,使油品與水分沸點降低,以降低完成油炸之溫度。本研究擬透過新興加工技術-真空油炸來緩解丙烯醯胺生成,並找到最佳油炸條件以符合產品適口性,希望可以真空油炸技術達到緩解傳統加工法生成丙烯醯胺之目的,並了解各項加工條件,例如醃製、裹粉類型、油炸溫度、時間和油品種類,對於丙烯醯胺生成之影響,最終盼能做到平衡適口性與減少加工污染物產生,找到最佳的加工條件。
    本研究之實驗組別分為傳統油炸組(N=24)和真空油炸組(N=24),透過調整不同加工條件如溫度、裹粉與油炸時間等,再以LC-MS/MS檢測炸雞中丙烯醯胺含量,同時透過物性測定,進行色差法、透光率和剪切力測試,以科學化之方式檢測炸雞及油炸油中各項數值,並以感官品評來評估大眾對於產品之接受度,後將炸雞中丙烯醯胺含量檢測結果進行風險評估,包含三種不同情境推估其造成風險與否。
    本研究結果分成化學分析、物性測定、感官品評,以及風險評估四個部分。結果顯示,真空組別丙烯醯胺含量(27.12 g/kg)顯著低於傳統組別(116.52 g/kg),加工條件上則僅有醃製濃度顯著高於沒有醃製組別(p<0.05)。物理性質測定中可以分成油炸油與炸雞二部分,在油炸油透光率及色差結果中發現,真空油炸組之油品更接近於未油炸之新鮮原油;在炸雞部分,傳統油炸a值較高代表其表面顏色較紅、真空油炸剪切力更高表其表面硬度更高。比對感官品評結果,發現市售產品整體評分最高,而傳統油炸與真空油炸組比較,傳統油炸組在質地上評分更高,真空油炸組則在顏色與外觀評分優於傳統組。風險評估顯示,從情境一參考攝食資料庫之結果發現,傳統油炸與真空油炸均不具有神經毒性風險(Margin of Exposure, MOE > 125),但具致癌風險(MOE<10000),風險數值上真空油炸的風險較低。情境二參考過去文獻結果,則兩種油炸方式均無風險。情境三透過模擬情境進行計算,發現在預設攝食量中兩種油炸方式均不具神經毒性風險(MOE > 125),而傳統油炸在攝食量為10 g/day以上具有風險,真空油炸則是50 g/day以上才具有風險。
    在相同的條件下,僅有油炸方式與醃製與否會顯著影響炸雞中丙烯醯胺的生成,油炸油物性測定結果為真空油炸組的更接近於原油,雞肉則以傳統油炸組表面更紅,真空油炸組剪切力較高。感官評中傳統油炸組在質地上評分較高,真空油炸組則以顏色與外觀評分較高,風險評估則顯示真空油炸組風險較小。

    Acrylamide is currently classified as a Group 2A probable carcinogen by the International Agency for Research on Cancer (IARC), and it shows neurotoxicity in animal experiments. Vacuum frying reduces the frying temperature by adjusting the pressure in the frying tank. The main purpose of this study use vacuum frying to reduce the generation of acrylamide and understanding the impact of processing conditions on acrylamide formation, followed by conducting a risk assessment.
    The study will divide into traditional frying groups and vacuum frying groups in different processing conditions. Acrylamide concentration in fried chicken will be detected by High performance liquid chromatography electrospray ionization mass tandem spectrometry (HPLC-MS/MS), and physical property assessments, including chromatic aberration, transmittance, shear force tests, and sensory evaluations will be conducted to understand the physical characteristics of fried chicken and public acceptance. The results showed that only pickling and frying methods showed significant differences, and 76% lower in vacuum frying than traditional frying group. The oil transmittance and chromatic aberration analysis in the vacuum frying groups more similar as fresh crude oil. Traditional frying has a higher "a" value, while vacuum frying produces higher shear force. Sensory evaluations prefer commercially available products, with traditional frying scoring higher in texture, while vacuum frying scores were higher in color and appearance. In scenario 1, the consumption data adopted from National Consumption Database in Taiwanese, the risk assessment results indicated that both processed methods pose a carcinogenic risk, but the lower risk was found for the vacuum frying groups. In scenario 2, the consumption data adopted from previous literature's dietary intake data, both frying methods are risk-free, and scenario 3 shows that traditional frying is risky when the food intake exceeds 10 g/day, while vacuum frying is risky when the food intake exceeds 50 g/day.
    Under the same conditions, the significant differences in acrylamide concentration between fried chicken were found for alternative frying method and pickling cause. Physical property determination showed that vacuum-frying oil is similar to crude oil, while traditional frying groups has a redder surface. The vacuum frying groups exhibits the higher shear force. Both frying methods showed the higher sensory evaluation scores in different way. Overall, the lower risk was found for the vacuum frying groups than the traditional frying groups.

    中文摘要 I Extended Abstract II 誌謝 VI 目錄 VII 表目錄 IX 圖目錄 XI 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究意義 2 1.4 研究目標 3 第二章 文獻回顧 4 2.1 油炸食品簡介 4 2.2 丙烯醯胺:食品加工製程中產生的食品加工污染物 7 2.2.1 丙烯醯胺之生成機制及影響因子 7 2.2.2 丙烯醯胺之物理及化學特性 10 2.2.3 丙烯醯胺之代謝與毒理資訊 11 2.2.4 國際間市售食品中丙烯醯胺含量背景調查 13 2.2.5 丙烯醯胺之健康風險分析研究 18 2.3 真空技術於食品加工過程中的運用 21 2.3.1 真空油炸系統 22 2.3.2 真空油炸產品特性 23 2.4 真空油炸緩解丙烯醯胺生成 27 2.5 風險評估 28 2.5.1 危害識別(Hazard Identification) 28 2.5.2劑量效應評估(Dose Response Assessment) 30 2.5.3暴露評估(Exposure Assessment)與風險特徵描述(Risk Characterization) 30 第三章 材料與方法 31 3.1 實驗架構 31 3.2 化學藥品與儀器 33 3.2.1 實驗藥品及器材 33 3.2.2 實驗儀器 34 3.3 樣本製作、分組 34 3.4 丙烯醯胺測定 41 3.4.1 內標準溶液之配製: 41 3.4.2 標準溶液之配製: 41 3.4.3 樣本前處理方式: 41 3.4.4 LC-MS/MS分析 42 3.4.5 含量測定及換算 43 3.4.6品保/品管(QA/QC) 43 3.5 物理性質測定 48 3.5.1 光透過率分析 48 3.5.2 色差分析(L、a、b) 49 3.5.3 剪切力分析 49 3.6 感官品評 49 3.7 統計分析 50 3.8 健康風險評估 50 第四章 結果與討論 52 4.1 丙烯醯胺含量 52 4.2物理性質測定結果 58 4.2.1 光透過率分析 63 4.2.2 色差分析(L、a、b) 64 4.2.3 剪切力分析 82 4.3 感官品評 86 4.4 健康風險評估之結果 89 4.4.1 情境一:以國家攝食資料為基礎進行計算 89 4.4.2 情境二:以過去文獻顯示之國家攝食資料為基礎進行計算 94 4.4.3 情境三:以假設之國人油炸雞肉攝食量做計算 96 4.5 不確定性分析 101 第五章 結論與建議 104 5.1 結論 104 5.2 建議 107 5.2.1 未來研究方向建議 107 5.2.2 對消費者之建議 108 5.2.3 對生產者之建議 109 參考文獻 110 附錄 122

    Adani, G., Filippini, T., Wise, L. A., Halldorsson, T. I., Blaha, L., & Vinceti, M. (2020). Dietary intake of acrylamide and risk of breast, endometrial, and ovarian cancers: a systematic review and dose–response meta-analysisacrylamide and breast, endometrial, and ovarian cancer risk. Cancer Epidemiology, Biomarkers & Prevention, 29(6), 1095-1106.
    Adler, I.-D., Baumgartner, A., Gonda, H., Friedman, M., & Skerhut, M. (2000). 1-Aminobenzotriazole inhibits acrylamide-induced dominant lethal effects in spermatids of male mice. Mutagenesis, 15(2), 133-136.
    Ahromrit, A., & Nema, P. K. (2010). Heat and mass transfer in deep-frying of pumpkin, sweet potato and taro. Journal of food science and technology, 47, 632-637.
    Al-Asmar, A., Naviglio, D., Giosafatto, C. V. L., & Mariniello, L. (2018). Hydrocolloid-based coatings are effective at reducing acrylamide and oil content of French fries. Coatings, 8(4), 147.
    Albertos, I., Martin-Diana, A., Jaime, I., Diez, A., & Rico, D. (2016). Protective role of vacuum vs. atmospheric frying on PUFA balance and lipid oxidation. Innovative Food Science & Emerging Technologies, 36, 336-342.
    Aluyor, E. O., & Ori-Jesu, M. (2008). The use of antioxidants in vegetable oils–A review. African Journal of Biotechnology, 7(25).
    Alvis, A., Vélez, C., Rada-Mendoza, M., Villamiel, M., & Villada, H. S. (2009). Heat transfer coefficient during deep-fat frying. Food Control, 20(4), 321-325.
    Andrés-Bello, A., García-Segovia, P., & Martínez-Monzó, J. (2011). Vacuum frying: An alternative to obtain high-quality dried products. Food Engineering Reviews, 3, 63-78.
    Aniołowska, M., & Kita, A. (2015). The effect of type of oil and degree of degradation on glycidyl esters content during the frying of French fries. Journal of the American Oil Chemists' Society, 92(11-12), 1621-1631.
    Augustin, M. A., Sanguansri, L., & Bode, O. (2006). Maillard reaction products as encapsulants for fish oil powders. Journal of food science, 71(2), E25-E32.
    Barrett, D. M., Somogyi, L., & Ramaswamy, H. S. (2004). Processing fruits: science and technology. CRC press.
    Barutcu, I., Sahin, S., & Sumnu, G. (2009). Acrylamide formation in different batter formulations during microwave frying. LWT-Food Science and Technology, 42(1), 17-22.
    Baskar, G., & Aiswarya, R. (2018). Overview on mitigation of acrylamide in starchy fried and baked foods. Journal of the Science of Food and Agriculture, 98(12), 4385-4394.
    Becalski, A., Lau, B. P.-Y., Lewis, D., & Seaman, S. W. (2003). Acrylamide in foods: occurrence, sources, and modeling. Journal of agricultural and food chemistry, 51(3), 802-808.
    Belkova, B., Hradecky, J., Hurkova, K., Forstova, V., Vaclavik, L., & Hajslova, J. (2018). Impact of vacuum frying on quality of potato crisps and frying oil. Food chemistry, 241, 51-59.
    Berry, B., & Leddy, K. (1984). Effects of fat level and cooking method on sensory and textural properties of ground beef patties. Journal of food science, 49(3), 870-875.
    Besaratinia, A., & Pfeifer, G. P. (2004). Genotoxicity of acrylamide and glycidamide. Journal of the National Cancer Institute, 96(13), 1023-1029.
    Besaratinia, A., & Pfeifer, G. P. (2005). DNA adduction and mutagenic properties of acrylamide. Mutation research/genetic toxicology and environmental mutagenesis, 580(1-2), 31-40.
    Bin-Jumah, M., Abdel-Fattah, A.-F. M., Saied, E. M., El-Seedi, H. R., & Abdel-Daim, M. M. (2021). Acrylamide-induced peripheral neuropathy: manifestations, mechanisms, and potential treatment modalities. Environmental Science and Pollution Research, 28, 13031-13046.
    Boskou, D. (2010). 21 Frying Fats. Chemical, Biological, and Functional Aspects of Food Lipids, 429.
    Boskou, G., Salta, F. N., Chiou, A., Troullidou, E., & Andrikopoulos, N. K. (2006). Content of trans, trans‐2, 4‐decadienal in deep‐fried and pan‐fried potatoes. European Journal of Lipid Science and Technology, 108(2), 109-115.
    Brydson, J. A. (1999). 6 - Relation of Structure to Electrical and Optical Properties. In J. A. Brydson (Ed.), Plastics Materials (Seventh Edition) (pp. 110-123). Butterworth-Heinemann. https://doi.org/https://doi.org/10.1016/B978-075064132-6/50047-4
    Bull, R., Robinson, M., & Stober, J. (1984). Carcinogenic activity of acrylamide in the skin and lung of Swiss-ICR mice. Cancer Letters, 24(2), 209-212.
    Bull, R. J., Robinson, M., Laurie, R. D., Stoner, G. D., Greisiger, E., Meier, J. R., & Stober, J. (1984). Carcinogenic effects of acrylamide in Sencar and A/J mice. Cancer Research, 44(1), 107-111.
    Burnette, F. S. (1977). Peroxidase and its relationship to food flavor and quality: a review. Journal of food science, 42(1), 1-6.
    Butterworth, B. E., Eldridge, S. R., Sprankle, C. S., Working, P. K., Bentley, K. S., & Hurtt, M. E. (1992). Tissue‐specific genotoxic effects of acrylamide and acrylonitrile. Environmental and molecular mutagenesis, 20(3), 148-155.
    Cao, Y., Wu, G., Zhang, F., Xu, L., Jin, Q., Huang, J., & Wang, X. (2020). A comparative study of physicochemical and flavor characteristics of chicken nuggets during air frying and deep frying. Journal of the American Oil Chemists' Society, 97(8), 901-913.
    Capuano, E., & Fogliano, V. (2011, 2011/05/01/). Acrylamide and 5-hydroxymethylfurfural (HMF): A review on metabolism, toxicity, occurrence in food and mitigation strategies. LWT - Food Science and Technology, 44(4), 793-810. https://doi.org/https://doi.org/10.1016/j.lwt.2010.11.002
    Chain, E. P. o. C. i. t. F. (2015). Scientific opinion on acrylamide in food. EFSA Journal, 13(6), 4104.
    Chang, L., Lin, S., Zou, B., Zheng, X., Zhang, S., & Tang, Y. (2021). Effect of frying conditions on self-heating fried Spanish mackerel quality attributes and flavor characteristics. Foods, 10(1), 98.
    Chatzilazarou, A., Gortzi, O., Lalas, S., Zoidis, E., & Tsaknis, J. (2006). Physicochemical changes of olive oil and selected vegetable oils during frying. Journal of Food Lipids, 13(1), 27-35.
    Chen, F., Yuan, Y., Liu, J., Zhao, G., & Hu, X. (2008). Survey of acrylamide levels in Chinese foods. Food additives and contaminants, 1(2), 85-92.
    Chen, Y.-H., Xia, E.-Q., Xu, X.-R., Ling, W.-H., Li, S., Wu, S., Deng, G.-F., Zou, Z.-F., Zhou, J., & Li, H.-B. (2012). Evaluation of acrylamide in food from China by a LC/MS/MS method. International Journal of Environmental Research and Public Health, 9(11), 4150-4158.
    Cheng, W.-C., Kao, Y.-M., Shih, D.-C., Chou, S.-S., & Yeh, A.-I. (2009). Validation of an improved LC/MS/MS method for acrylamide analysis in foods. Journal of food and drug analysis, 17(3), 1.
    Cheng, W. C., Chou, S. S., & Yeh, A. I. (2012). Acrylamide content distribution and possible alternative ingredients for snack foods. Journal of food protection, 75(12), 2158-2162.
    Chiang, C.-f., Hsu, K.-c., Hung, C.-c., Yang, D.-J., & Chen, C.-C. (2018). Core food model of the Taiwan food supply for total diet study. Food Additives & Contaminants: Part A, 35(11), 2088-2098.
    Chu, Y.-H., & Luo, S. (1994). Effects of sugar, salt and water on soybean oil quality during deep-frying. Journal of the American Oil Chemists’ Society, 71, 897-900.
    Cruz, G., Cruz-Tirado, J., Delgado, K., Guzman, Y., Castro, F., Rojas, M. L., & Linares, G. (2018). Impact of pre-drying and frying time on physical properties and sensorial acceptability of fried potato chips. Journal of food science and technology, 55, 138-144.
    Da Silva, P. F., & Moreira, R. G. (2008). Vacuum frying of high-quality fruit and vegetable-based snacks. LWT-Food Science and Technology, 41(10), 1758-1767.
    Das, R., Pawar, D. P., & Modi, V. K. (2013). Quality characteristics of battered and fried chicken: comparison of pressure frying and conventional frying. Journal of food science and technology, 50, 284-292.
    de Oliveira, F. C., Coimbra, J. S. d. R., de Oliveira, E. B., Zuñiga, A. D. G., & Rojas, E. E. G. (2016). Food protein-polysaccharide conjugates obtained via the Maillard reaction: A review. Critical reviews in food science and nutrition, 56(7), 1108-1125.
    De Paula, C. D., Pastrana-Puche, Y. I., Viloria-Benítez, K. M., Rubio-Arrieta, J. A., Simanca-Sotelo, M., Álvarez-Badel, B., & Avilez-Montes, Y. (2021). Physicochemical and sensory evaluation of sweet potato (Ipomoea batatas L.) restructured products produced in the Sinu Valley, Colombia. Heliyon, 7(8), e07691.
    Demirok, E., & Kolsarıcı, N. (2014). Effect of green tea extract and microwave pre-cooking on the formation of acrylamide in fried chicken drumsticks and chicken wings. Food research international, 63, 290-298.
    Devseren, E., Dilara, O., Mehmet, K., Karataş, H., & Kaymak-Ertekin, F. (2020). Effect of Vacuum Cooking Process Conditions on Color, Textural, Microstructural and Sensory Properties of Beef. Akademik Gıda, 18(4), 347-356.
    Dincer, I. (1996). Modelling for heat and mass transfer parameters in deep-frying of products: Modell zur Ermittlung von Wärme-und Stoffübergangsparametern beim Tauchgaren von Lebensmitteln. Heat and mass transfer, 32(1-2), 109-113.
    Dobarganes, M. C., Velasco, J., & Dieffenbacher, A. (2000). Determination of polar compounds, polymerized and oxidized triacylglycerols, and diacylglycerols in oils and fats: results of collaborative studies and the standardized method (Technical report). Pure and Applied Chemistry, 72(8), 1563-1575.
    Dogan, S. F., Sahin, S., & Sumnu, G. (2005). Effects of soy and rice flour addition on batter rheology and quality of deep-fat fried chicken nuggets. Journal of Food Engineering, 71(1), 127-132.
    Dueik, V., & Bouchon, P. (2011a). Development of healthy low-fat snacks: understanding the mechanisms of quality changes during atmospheric and vacuum frying. Food Reviews International, 27(4), 408-432.
    Dueik, V., & Bouchon, P. (2011b). Vacuum frying as a route to produce novel snacks with desired quality attributes according to new health trends. Journal of food science, 76(2), E188-E195.
    EPA., U. (2010). Acrylamide. https://iris.epa.gov/ChemicalLanding/&substance_nmbr=286

    Erkekoglu, P., & Baydar, T. (2014). Acrylamide neurotoxicity. Nutritional neuroscience, 17(2), 49-57.
    Esfarjani, F., Khoshtinat, K., Zargaraan, A., Mohammadi‐Nasrabadi, F., Salmani, Y., Saghafi, Z., Hosseini, H., & Bahmaei, M. (2019). Evaluating the rancidity and quality of discarded oils in fast food restaurants. Food science & nutrition, 7(7), 2302-2311.
    European Food Safety Authority. (2016). Chemicals in food 2016 — Overview of selected data collection. http://www.efsa.europa.eu/sites/default/files/corporate_publications/files/161215chemicalsinfoodreport.pdf

    Exon, J. (2006). A review of the toxicology of acrylamide. Journal of Toxicology and Environmental Health, Part B, 9(5), 397-412.
    Faloye, O., Sobukola, O., Shittu, T., & Bakare, H. (2021). Influence of frying parameters and optimization of deep fat frying conditions on the physicochemical and textural properties of chicken nuggets from FUNAAB-alpha broilers. SN Applied Sciences, 3, 1-17.
    Fang, Z., Wu, D., Yü, D., Ye, X., Liu, D., & Chen, J. (2011). Phenolic compounds in Chinese purple yam and changes during vacuum frying. Food chemistry, 128(4), 943-948.
    Fischer, A. R., De Jong, A. E., Van Asselt, E. D., De Jonge, R., Frewer, L. J., & Nauta, M. J. (2007). Food safety in the domestic environment: an interdisciplinary investigation of microbial hazards during food preparation. Risk Analysis: An International Journal, 27(4), 1065-1082.
    Foot, R., Haase, N. U., Grob, K., & Gonde, P. (2007). Acrylamide in fried and roasted potato products: a review on progress in mitigation. Food additives and contaminants, 24(sup1), 37-46.
    Friedman, M. A., Dulak, L. H., & Stedham, M. A. (1995). A lifetime oncogenicity study in rats with acrylamide. Fundamental and Applied Toxicology, 27(1), 95-105.
    Göbel, A., & Kliemant, A. (2007). The German minimization concept for acrylamide. Food additives and contaminants, 24(sup1), 82-90.
    Gökmen, V., & Şenyuva, H. Z. (2006). Study of colour and acrylamide formation in coffee, wheat flour and potato chips during heating. Food chemistry, 99(2), 238-243.
    Garayo, J., & Moreira, R. (2002). Vacuum frying of potato chips. Journal of Food Engineering, 55(2), 181-191.
    Generoso, W., Sega, G., Lockhart, A., Hughes, L., Cain, K., Cacheiro, N., & Shelby, M. (1996). Dominant lethal mutations, heritable translocations, and unscheduled DNA synthesis induced in male mouse germ cells by glycidamide, a metabolite of acrylamide. Mutation Research/Genetic Toxicology, 371(3-4), 175-183.
    Ghasemian, S., Rezaei, K., Abedini, R., Poorazarang, H., & Ghaziani, F. (2014). Investigation of different parameters on acrylamide production in the fried beef burger using Taguchi experimental design. Journal of food science and technology, 51, 440-448.
    Ghoshal, G. (2018). Chapter 2 - Emerging Food Processing Technologies. In A. M. Grumezescu & A. M. Holban (Eds.), Food Processing for Increased Quality and Consumption (pp. 29-65). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-811447-6.00002-3
    Goh, K. M., Wong, Y. H., Tan, C. P., & Nyam, K. L. (2021). A summary of 2-, 3-MCPD esters and glycidyl ester occurrence during frying and baking processes. Current Research in Food Science, 4, 460-469.
    González-Cavieres, L., Perez-Won, M., Tabilo-Munizaga, G., Jara-Quijada, E., Díaz-Álvarez, R., & Lemus-Mondaca, R. (2021). Advances in vacuum microwave drying (VMD) systems for food products. Trends in food science & technology, 116, 626-638.
    Granda, C., Moreira, R. G., & Tichy, S. E. (2004, 2004/10/01). Reduction of Acrylamide Formation in Potato Chips by Low-temperature Vacuum Frying. Journal of Food Science, 69(8), E405-E411. https://doi.org/10.1111/j.1365-2621.2004.tb09903.x
    Higgins, K. T. (2011). Tech Update: Cooking & Frying. https://www.foodengineeringmag.com/articles/88255-tech-update-cooking-frying

    Hogervorst, J. G., Schouten, L. J., Konings, E. J., Goldbohm, R. A., & van den Brandt, P. A. (2008). Dietary acrylamide intake and the risk of renal cell, bladder, and prostate cancer. The American journal of clinical nutrition, 87(5), 1428-1438.
    Hsu, C.-N., Hou, C.-Y., Lu, P.-C., Chang-Chien, G.-P., Lin, S., & Tain, Y.-L. (2020). Association between acrylamide metabolites and cardiovascular risk in children with early stages of chronic kidney disease. International Journal of Molecular Sciences, 21(16), 5855.
    Hu, M., Zhu, M., Xin, L., Zhang, G., Wu, S., Hu, X., & Gong, D. (2021). Change of benzo (a) pyrene during frying and its groove binding to calf thymus DNA. Food chemistry, 350, 129276.
    Ikebe, K., Nokubi, T., Morii, K., Kashiwagi, J., & Furuya, M. (2005). Association of bite force with ageing and occlusal support in older adults. Journal of dentistry, 33(2), 131-137.
    Jakobsen, L. S., Granby, K., Knudsen, V. K., Nauta, M., Pires, S. M., & Poulsen, M. (2016). Burden of disease of dietary exposure to acrylamide in Denmark. Food and Chemical Toxicology, 90, 151-159.
    Johnson, M. (2021). The 9-point Hedonic Scale. https://www.sensorysociety.org/knowledge/sspwiki/Pages/The%209-point%20Hedonic%20Scale.aspx

    Kalogianni, E. P., Karastogiannidou, C., & Karapantsios, T. D. (2010). Effect of potato presence on the degradation of extra virgin olive oil during frying. International journal of food science & technology, 45(4), 765-775.
    Kawahara, J., Imaizumi, Y., Kuroda, K., Aoki, Y., & Suzuki, N. (2018). Estimation of long-term dietary exposure to acrylamide of the Japanese people. Food Additives & Contaminants: Part A, 35(9), 1689-1702.
    Khan, I. A., Wang, C., & Cai, K. (2022). Hazardous substances from food processing: Formation and control, biotoxicity and mitigation. Frontiers in Nutrition, 9, 1118936.
    Klaunig, J. E. (2008). Acrylamide carcinogenicity. Journal of agricultural and food chemistry, 56(15), 5984-5988.
    Koszucka, A., & Nowak, A. (2019). Thermal processing food-related toxicants: A review. Critical reviews in food science and nutrition, 59(22), 3579-3596.
    Koszucka, A., Nowak, A., Nowak, I., & Motyl, I. (2020). Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Critical reviews in food science and nutrition, 60(10), 1677-1692.
    Lawless, H. T., Rapacki, F., Horne, J., Hayes, A., & Wang, G. (2004). The taste of calcium chloride in mixtures with NaCl, sucrose and citric acid. Food Quality and Preference, 15(1), 83-89.
    Ledbetter, M., Bartlett, L., Fiore, A., Montague, G., Sturrock, K., & McNamara, G. (2020). Acrylamide in industrial potato crisp manufacturing: a potential tool for its reduction. LWT, 123, 109111.
    Lee, S.-M., Lee, K.-T., Lee, S.-H., & Song, J.-K. (2013). Origin of human colour preference for food. Journal of Food Engineering, 119(3), 508-515.
    Liang, J., Xu, C., Liu, Q., Weng, Z., Zhang, X., Xu, J., & Gu, A. (2022). Total cholesterol: a potential mediator of the association between exposure to acrylamide and hypertension risk in adolescent females. Environmental Science and Pollution Research, 29(25), 38425-38434.
    Lingnert, H., Grivas, S., Jägerstad, M., Skog, K., Törnqvist, M., & Åman, P. (2002). Acrylamide in food: mechanisms of formation and influencing factors during heating of foods. Scandinavian journal of nutrition, 46(4), 159-172.
    List, G. (2004). Decreasing trans and saturated fatty acid content in food oils.
    Liu, Y., Wang, P., Chen, F., Yuan, Y., Zhu, Y., Yan, H., & Hu, X. (2015). Role of plant polyphenols in acrylamide formation and elimination. Food chemistry, 186, 46-53.
    Manzon, L., Vozza, I., & Poli, O. (2021). Bite force in elderly with full natural dentition and different rehabilitation prosthesis. International Journal of Environmental Research and Public Health, 18(4), 1424.
    Mariscal, M., & Bouchon, P. (2008). Comparison between atmospheric and vacuum frying of apple slices. Food chemistry, 107(4), 1561-1569.
    Martins, S. I., Jongen, W. M., & Van Boekel, M. A. (2000). A review of Maillard reaction in food and implications to kinetic modelling. Trends in food science & technology, 11(9-10), 364-373.
    Matoso, V., Bargi-Souza, P., Ivanski, F., Romano, M. A., & Romano, R. M. (2019, 2019/06/15/). Acrylamide: A review about its toxic effects in the light of Developmental Origin of Health and Disease (DOHaD) concept. Food Chemistry, 283, 422-430. https://doi.org/https://doi.org/10.1016/j.foodchem.2019.01.054
    Mestdagh, F., De Wilde, T., Fraselle, S., Govaert, Y., Ooghe, W., Degroodt, J.-M., Verhé, R., Van Peteghem, C., & De Meulenaer, B. (2008). Optimization of the blanching process to reduce acrylamide in fried potatoes. LWT-Food Science and Technology, 41(9), 1648-1654.
    Mestdagh, F. J., De Meulenaer, B., Van Poucke, C., Detavernier, C. l., Cromphout, C., & Van Peteghem, C. (2005). Influence of oil type on the amounts of acrylamide generated in a model system and in French fries. Journal of agricultural and food chemistry, 53(15), 6170-6174.
    Miller, M., Carter, D., & Sipes, I. (1982). Pharmacokinetics of acrylamide in Fisher-334 rats. Toxicology and Applied Pharmacology, 63(1), 36-44.
    Miller, M. S., & Spencer, P. S. (1985). The mechanisms of acrylamide axonopathy. Annual Review of Pharmacology and Toxicology, 25(1), 643-666.
    Miura, H., Watanabe, S., Isogai, E., & Miura, K. (2001). Comparison of maximum bite force and dentate status between healthy and frail elderly persons. Journal of Oral Rehabilitation, 28(6), 592-595.
    Mollakhalili-Meybodi, N., Khorshidian, N., Nematollahi, A., & Arab, M. (2021). Acrylamide in bread: a review on formation, health risk assessment, and determination by analytical techniques. Environmental Science and Pollution Research, 28, 15627-15645.
    Moreira, R. G. (2012). 13 Vacuum Frying of Fruits Applications in Fruit Processing. Advances in fruit processing technologies, 331.
    Moreira, R. G. (2014). Vacuum frying versus conventional frying–An overview. European Journal of Lipid Science and Technology, 116(6), 723-734.
    Mottram, D. S., Wedzicha, B. L., & Dodson, A. T. (2002). Acrylamide is formed in the Maillard reaction. Nature, 419(6906), 448-449.
    Nguyen, H. T., Peters, R. J., & Van Boekel, M. A. (2016). Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: Part I: Effects of sugar type. Food chemistry, 192, 575-585.
    Ni, H., & Datta, A. (1999). Moisture, oil and energy transport during deep-fat frying of food materials. Food and Bioproducts Processing, 77(3), 194-204.
    Nowak, D., & Jakubczyk, E. (2020). The freeze-drying of foods—The characteristic of the process course and the effect of its parameters on the physical properties of food materials. Foods, 9(10), 1488.
    Nunes, Y., & Moreira, R. G. (2009, 2009/09/01). Effect of Osmotic Dehydration and Vacuum-Frying Parameters to Produce High-Quality Mango Chips. Journal of Food Science, 74(7), E355-E362. https://doi.org/10.1111/j.1750-3841.2009.01257.x
    Nunes, Y., & Moreira, R. G. (2009). Effect of osmotic dehydration and vacuum‐frying parameters to produce high‐quality mango chips. Journal of food science, 74(7), E355-E362.
    Palazoǧlu, T. K., & Gökmen, V. (2008). Reduction of acrylamide level in French fries by employing a temperature program during frying. Journal of agricultural and food chemistry, 56(15), 6162-6166.
    Pedreschi, F., Kaack, K., & Granby, K. (2006). Acrylamide content and color development in fried potato strips. Food research international, 39(1), 40-46.
    Pedreschi, F., & Moyano, P. (2005). Effect of pre-drying on texture and oil uptake of potato chips. LWT-Food Science and Technology, 38(6), 599-604.
    Perera, D. N., Hewavitharana, G. G., & Navaratne, S. (2021). Comprehensive study on the acrylamide content of high thermally processed foods. Biomed research international, 2021, 1-13.
    Perez‐Tinoco, M. R., Perez, A., Salgado‐Cervantes, M., Reynes, M., & Vaillant, F. (2008). Effect of vacuum frying on main physicochemical and nutritional quality parameters of pineapple chips. Journal of the Science of Food and Agriculture, 88(6), 945-953.
    Pernice, R., Hauder, J., Koehler, P., Vitaglione, P., Fogliano, V., & Somoza, V. (2009). Effect of sulforaphane on glutathione‐adduct formation and on glutathione_S_transferase‐dependent detoxification of acrylamide in Caco‐2 cells. Molecular nutrition & food research, 53(12), 1540-1550.
    Pundir, C. S., Yadav, N., & Chhillar, A. K. (2019, 2019/03/01/). Occurrence, synthesis, toxicity and detection methods for acrylamide determination in processed foods with special reference to biosensors: A review. Trends in Food Science & Technology, 85, 211-225. https://doi.org/https://doi.org/10.1016/j.tifs.2019.01.003
    Purcaro, G., Navas, J. A., Guardiola, F., Conte, L. S., & Moret, S. (2006). Polycyclic aromatic hydrocarbons in frying oils and snacks. Journal of food protection, 69(1), 199-204.
    Radziejewska-Kubzdela, E., Biegańska-Marecik, R., & Kidoń, M. (2014). Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products—a review. International Journal of Molecular Sciences, 15(9), 16577-16610.
    Rahimi, D., Kashaninejad, M., Ziaiifar, A. M., & Mahoonak, A. S. (2018). Effect of infrared final cooking on some physico-chemical and engineering properties of partially fried chicken nugget. Innovative Food Science & Emerging Technologies, 47, 1-8.
    Rajeh, N. A., & Al-Dhaheri, N. M. (2017). Antioxidant effect of vitamin E and 5-aminosalicylic acid on acrylamide induced kidney injury in rats. Saudi medical journal, 38(2), 132-137. https://doi.org/10.15537/smj.2017.2.16049
    Reynolds, T. (2002). Acrylamide and cancer: tunnel leak in Sweden prompted studies. Journal of the National Cancer Institute, 94(12), 876-878.
    Rice, J. M. (2005). The carcinogenicity of acrylamide. Mutation research/genetic toxicology and environmental mutagenesis, 580(1-2), 3-20.
    Rifai, L., & Saleh, F. A. (2020). A review on acrylamide in food: occurrence, toxicity, and mitigation strategies. International Journal of Toxicology, 39(2), 93-102.
    Roach, J. A., Andrzejewski, D., Gay, M. L., Nortrup, D., & Musser, S. M. (2003). Rugged LC-MS/MS survey analysis for acrylamide in foods. Journal of agricultural and food chemistry, 51(26), 7547-7554.
    Romani, S., Bacchiocca, M., Rocculi, P., & Dalla Rosa, M. (2009). Influence of frying conditions on acrylamide content and other quality characteristics of French fries. Journal of Food Composition and Analysis, 22(6), 582-588.
    Sörgel, F., Weissenbacher, R., Kinzig-Schippers, M., Hofmann, A., Illauer, M., Skott, A., & Landersdorfer, C. (2003). Acrylamide: increased concentrations in homemade food and first evidence of its variable absorption from food, variable metabolism and placental and breast milk transfer in humans. Chemotherapy, 48(6), 267-274.
    Sebastian, A., Ghazani, S. M., & Marangoni, A. G. (2014). Quality and safety of frying oils used in restaurants. Food research international, 64, 420-423.
    Shakeri, F., Shakeri, S., Ghasemi, S., Troise, A. D., & Fiore, A. (2019). Effects of formulation and baking process on acrylamide formation in Kolompeh, a traditional cookie in Iran. Journal of chemistry, 2019.
    Shamla, L., & Nisha, P. (2014). Acrylamide in deep-fried snacks of India. Food Additives & Contaminants: Part B, 7(3), 220-225.
    Shyu, S.-L., & Hwang, L. S. (2001). Effects of processing conditions on the quality of vacuum fried apple chips. Food research international, 34(2-3), 133-142.
    Sickles, D. W., Stone, J. D., & Friedman, M. A. (2002). Fast axonal transport: a site of acrylamide neurotoxicity? Neurotoxicology, 23(2), 223-251.
    Song, X.-j., Zhang, M., & Mujumdar, A. S. (2007). Optimization of vacuum microwave predrying and vacuum frying conditions to produce fried potato chips. Drying technology, 25(12), 2027-2034.
    Spencer, P. S., & Schaumburg, H. H. (1974). A review of acrylamide neurotoxicity part I. Properties, uses and human exposure. Canadian Journal of Neurological Sciences, 1(2), 143-150.
    Stadler, R. H., Blank, I., Varga, N., Robert, F., Hau, J., Guy, P. A., Robert, M.-C., & Riediker, S. (2002). Acrylamide from Maillard reaction products. Nature, 419(6906), 449-450.
    Sumner, S. C., MacNeela, J. P., & Fennell, T. R. (1992). Characterization and quantitation of urinary metabolites of [1, 2, 3-13C] acrylamide in rats and mice using carbon-13 nuclear magnetic resonance spectroscopy. Chemical Research in Toxicology, 5(1), 81-89.
    Sun, J., Li, M., Zou, F., Bai, S., Jiang, X., Tian, L., Ou, S., Jiao, R., & Bai, W. (2018, 2018/09/01/). Protection of cyanidin-3-O-glucoside against acrylamide- and glycidamide-induced reproductive toxicity in leydig cells. Food and Chemical Toxicology, 119, 268-274. https://doi.org/https://doi.org/10.1016/j.fct.2018.03.027
    Sun, Y., Lin, L., & Zhang, P. (2021). Color development kinetics of Maillard reactions. Industrial & Engineering Chemistry Research, 60(9), 3495-3501.
    Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of agricultural and food chemistry, 50(17), 4998-5006.
    Teruel, M. R., García-Segovia, P., Martínez-Monzó, J., Linares, M. B., & Garrido, M. D. (2014). Use of vacuum-frying in chicken nugget processing. Innovative Food Science & Emerging Technologies, 26, 482-489.
    ViewSnoic. (2020). 什麼是 Delta E?它又為何對色彩準確度很重要?. https://www.viewsonic.com/library/zh-hant/%E8%97%9D%E8%A1%93/%E4%BB%80%E9%BA%BC%E6%98%AF-delta-e%EF%BC%9F%E5%AE%83%E5%8F%88%E7%82%BA%E4%BD%95%E5%B0%8D%E8%89%B2%E5%BD%A9%E6%BA%96%E7%A2%BA%E5%BA%A6%E5%BE%88%E9%87%8D%E8%A6%81%EF%BC%9F/

    Von Tungeln, L. S., Doerge, D. R., Gamboa da Costa, G., Matilde Marques, M., Witt, W. M., Koturbash, I., Pogribny, I. P., & Beland, F. A. (2012). Tumorigenicity of acrylamide and its metabolite glycidamide in the neonatal mouse bioassay. International journal of cancer, 131(9), 2008-2015.
    Wang, B., Bai, X., Du, X., Pan, N., Shi, S., & Xia, X. (2022). Comparison of Effects from Ultrasound Thawing, Vacuum Thawing and Microwave Thawing on the Quality Properties and Oxidation of Porcine Longissimus Lumborum. Foods, 11(9), 1368.
    Warner, K. (2002). Chemistry of frying oils. Food lipids, 224-241.
    Warner, K., Orr, P., & Glynn, M. (1997). Effect of fatty acid composition of oils on flavor and stability of fried foods. Journal of the American Oil Chemists' Society, 74(4), 347-356.
    Wong, W. W. K., Chung, S. W. C., Lam, C.-h., Ho, Y. Y., & Xiao, Y. (2014, 2014/05/04). Dietary exposure of Hong Kong adults to acrylamide: results of the first Hong Kong Total Diet Study. Food Additives & Contaminants: Part A, 31(5), 799-805. https://doi.org/10.1080/19440049.2014.898189
    Xu, F., Oruna-Concha, M.-J., & Elmore, J. S. (2016). The use of asparaginase to reduce acrylamide levels in cooked food. Food chemistry, 210, 163-171.
    Yamsaengsung, R., Yaeed, S., & Ophithakorn, T. (2017). Vacuum frying of fish tofu and effect on oil quality usage life. Journal of Food Process Engineering, 40(6), e12587.
    Yan, F., Wang, L., Zhao, L., Wang, C., Lu, Q., & Liu, R. (2023). Acrylamide in food: Occurrence, metabolism, molecular toxicity mechanism and detoxification by phytochemicals. Food and Chemical Toxicology, 113696.
    Yang, J.-H., Park, H.-Y., Kim, Y.-S., Choi, I.-W., Kim, S.-S., & Choi, H.-D. (2012). Quality characteristics of vacuum-fried snacks prepared from various sweet potato cultivars. Food Science and Biotechnology, 21, 525-530.
    Yaylayan, V. A., & Stadler, R. H. (2005). Acrylamide formation in food: a mechanistic perspective. Journal of AOAC International, 88(1), 262-267.
    Yin, G., Liao, S., Gong, D., & Qiu, H. (2021). Association of acrylamide and glycidamide haemoglobin adduct levels with diabetes mellitus in the general population. Environmental Pollution, 277, 116816.
    Yu, Y., Wang, G., Yin, X., Ge, C., & Liao, G. (2021). Effects of different cooking methods on free fatty acid profile, water-soluble compounds and flavor compounds in Chinese Piao chicken meat. Food research international, 149, 110696.
    Zhang, Q., Saleh, A. S., Chen, J., & Shen, Q. (2012). Chemical alterations taken place during deep-fat frying based on certain reaction products: A review. Chemistry and physics of lipids, 165(6), 662-681.
    Zhang, Y., Xu, W., Wu, X., Zhang, X., & Zhang, Y. (2007). Addition of antioxidant from bamboo leaves as an effective way to reduce the formation of acrylamide in fried chicken wings. Food additives and contaminants, 24(3), 242-251.
    Zhang, Y., & Zhang, Y. (2007). Formation and reduction of acrylamide in Maillard reaction: a review based on the current state of knowledge. Critical reviews in food science and nutrition, 47(5), 521-542.
    Zhou, P. P., Zhao, Y. F., Liu, H. L., Ma, Y. J., Li, X. W., Yang, X., & Wu, Y. N. (2013, Jun). Dietary exposure of the Chinese population to acrylamide. Biomed Environ Sci, 26(6), 421-429. https://doi.org/10.3967/0895-3988.2013.06.002
    Žilić, S., Aktağ, I. G., Dodig, D., Filipović, M., & Gökmen, V. (2020). Acrylamide formation in biscuits made of different wholegrain flours depending on their free asparagine content and baking conditions. Food research international, 132, 109109.
    Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., Gruber, D. C., Morsch, T. R., Strothers, M. A., & Rizzi, G. P. (2003). Acrylamide formation mechanism in heated foods. Journal of agricultural and food chemistry, 51(16), 4782-4787.
    康宏毅, 陳時欣, 戚祖沅, 鄭維智, & 葉安義. (2013). 市售油條, 馬鈴薯與番薯製品中丙烯醯胺含量調查. Ann. Rept. Food Drug Res, 4, 120-128.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE