簡易檢索 / 詳目顯示

研究生: 黃國展
Huang, Kuo-Chan
論文名稱: 利用濕蝕刻技術製作粗糙化AZO透明導電層以應用於太陽能電池前電極之研究
Study of textured Al-doped ZnO thin films by wet-etching methods and application on front electrode of solar cell
指導教授: 洪茂峰
Houng, Mau-Phon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 93
中文關鍵詞: 太陽能電池濕式蝕刻AZO薄膜表面粗化
外文關鍵詞: Solar cell, Wet etching, AZO thin film, Surface-textured
相關次數: 點閱:122下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在目前太陽能電池的製程中,大部分使用透明導電層例如:ITO、AZO等等導電材料來當作前電極,而背電極則是使用銀或鋁等具有高反射率的金屬材料;由於光源是由前電極導入太陽能電池中因此在可見光以及近紅外光波段必須具備有良好的穿透率,同時也具備有良好的導電性。除此之外透明導電層如果能使通過的光產生散射的效果則可增加太陽能電池的進光量以及對於光的局限能力。
    目前常見的前電極製程方式有兩種分別為PECVD以及Sputtering,針對兩者做比較:
    1. 利用PECVD成長的ITO 表面具有一定的粗糙度以及V型結構,因此可以產生光的散射效果,同時ITO也具有良好的導電性跟穿透率,其缺點在於機台成本較高。
    2. 利用Sputtering成長的AZO薄膜,其表面為平整的膜面,均勻性佳,也具有良好的導電性以及穿透率,而且機台成本較低,其缺點在於必須搭配其他後續表面處理才能達到光散射的效果。
    在本研究中我們使用RF sputtering 的方式來沉積AZO薄膜,靶材的部分則是使用陶瓷靶其含量比例為ZnO 98wt%,Al2O3 2wt%,AZO薄膜沉積之後再藉由濕蝕刻的後處理在AZO表面形成有粗糙度的U型結構,這邊我們分別選用了三種不同的酸液作為蝕刻溶液,分別為HCl、H3PO4以及HNO3混合液,另外改變不同蝕刻時間以及蝕刻濃度做為實驗變因,再去觀察AZO薄膜表面形貌的變化,同時也藉由各種量測找出最佳化的光學特性以及電特性;另外經由AFM的量測來判斷AZO薄膜表面的平均粗糙度,其RMS值可對應到UV-visible所量測到的光散射效果,我們發現當RMS值越高時可以達到較高的霧度(Haze)也代表說可以有較好的光散射效果。
    在此研究中我們成功的製程出一具有高穿透率、高霧度以及高導電性的AZO透明導電層,穿透率可以保持在75%、霧度提升50%~60%、電性保持在5.47x10-4 Ωcm ,因此藉由濕蝕刻處理後AZO表面可以有效的形成U型粗化結構而達到高霧度,藉此增加光的散射效果以及光在吸收層中的局限能力以達到增加太陽能電池的短路電流(Jsc)提升1.84mA/cm2以及轉換效率提高1.07%。

    This study addresses the optimization of Rf magnetron-sputtered aluminum doped zinc oxide (ZnO:Al) thin films as the front contacts in silicon thin film solar cells. So this front contact has to exhibit low series resistance and high transparency in the visible light region (400–800 nm) to near-infrared (NIR) region (up to 1100 nm). Furthermore, it has to scatter the incident light efficiently in order to an effective light trapped inside the silicon absorption layer.
    In this research, ZnO:Al thin films were deposited on glass substrate by Rf magnetron-sputtered from a ceramic (ZnO 98wt%,Al2O3 2wt%) target. The surface texture is produced by wet etching treatment, here we chose three different solutions (hydrochloric acid, phosphoric acid, and nitric acid based combination) to observe the variation of surface morphology. We also focus on an optimized balance between electrical and optical properties need maintain a surface morphology well suited for light scattering and trapping. We also used the atomic force microscopy (AFM) measurement to evidence the haze factor which is related to amount of light scattering. As increase in haze is observed while the surface roughness (root mean square, rms) is increased.
    In this study, we achieve successfully a high transmission, high haze, and low resistivity TCO front contact thin film by wet etching treatment. The resistivity is approached to 5.47x10-4 Ωcm, the transmittance is approached to 75% and the haze is approached to 50%~60% in visible region, the higher haze is indicate that the more light is scattering form the texture, and more light will incident into the silicon absorption layer, it also can trap more light in the silicon absorption layer, it will effectively to improve the short circuit current (Jsc) for thin film solar cells. In our research, the short circuit current and energy conversion efficiency can enhance 1.84mA/cm2 and 1.07%.

    中文摘要................................IV 英文摘要................................VI 誌謝.........................................VIII 第一章緒論............................................1 1-1前言.................................................1 1-1-1目前使用能源的比較................................1 1-1-2化石燃料對環境的影響.............................3 1-1-3太陽能電池的潛力與優點...............................3 1-2太陽能電池種類的介紹與優缺點比較.......................4 1-3實驗動機及研究目的.....................................7 1-3-1實驗動機...........................................7 1-3-2研究目的.........................................10 1-4論文架構............................................10 第二章理論基礎..............................12 2-1 透明導電薄膜之基礎原理................................12 2-2 氧化鋅薄膜之簡介...................................19 2-2-1 概論.............................................19 2-2-2 AZO 薄膜之電學性質................................20 2-2-3 AZO 薄膜之光學性質...............................21 2-3 濺鍍(sputtering)原理.................................24 2-3-1 二極濺鍍(diode sputtering).......................25 2-3-2 偏壓濺鍍...........................................25 2-3-3 磁控濺鍍(magnetron sputtering)....................27 2-3-4 射頻濺鍍(RF sputtering)...........................27 2-4 薄膜沈積現象........................................29 2-5製程壓力與溫度對薄膜特性影響..........................30 2-6太陽能電池介紹.......................................32 2-6-1太陽光譜介紹(Solar Spectrum).........................32 2-6-2太陽能電池結構.....................................35 2-6-3太陽能電池之工作原理..............................36 2-6-4太陽能電池之特性分析.............................39 2-6-4-1開路電壓..........................................39 2-6-4-2短路電流..........................................40 2-6-4-3填充因子..........................................40 2-6-4-4轉換效率..........................................42 第三章實驗方法與量測方法......................43 3-1 實驗流程.............................................43 3-2 濺鍍系統介紹.........................................44 3-3 鍍膜參數及步驟.......................................45 3-3-1 試片清洗.........................................45 3-3-2 鍍膜參數...........................................46 3-4濕蝕刻調變參數...............................46 3-5薄膜量測分析.........................................46 3-5-1 膜厚分析儀器(α-Step)............................46 3-5-2 X光繞射儀(X-Ray Diffraction, XRD)..................47 3-5-3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope System,FE-SEM)..........48 3-5-4 原子力顯微鏡(Atomic force microscopy, AFM)分析.......48 3-5-5霍爾效應量測(Hall effect measurement).............51 3-5-6 四點探針量測(Four point probe measurement)........53 3-5-7紫外光-可見光光譜儀(Ultraviolet Visible Spectrometer, UV-VIS).....54 3-6 太陽能電池製作與特性分析............................56 3-6-1 太陽能電池製作及結構..............................56 3-6-2 太陽光源模擬器電流-電壓(I-V)量測.....................58 3-6-3 外部量子效率(External quantum efficiency)量測.......58 第四章 結果與討論........................59 4-1 基板溫度對AZO薄膜光電特性影響............................59 4-1-1 AZO薄膜結晶品質....................................59 4-1-2 AZO薄膜電性分析.....................................62 4-1-3 AZO薄膜光學特性......................................64 4-2蝕刻溶液對AZO薄膜影響..................................66 4-2-1蝕刻溶液對AZO薄膜表面形貌的影響.........................66 4-2-2 蝕刻溶液對AZO薄膜電特性的影響..........................68 4-2-3蝕刻溶液對AZO薄膜光特性的影響...........................70 4-3 蝕刻時間對AZO薄膜影響...................................72 4-3-1蝕刻時間對AZO薄膜表面形貌的影響.........................72 4-3-2蝕刻時間對AZO薄膜電特性的影響...........................74 4-3-3蝕刻時間對AZO薄膜光特性的影響...........................76 4-3-4蝕刻時間對太陽能電池效率的影響.......................77 4-4蝕刻濃度對AZO薄膜影響...............................80 4-4-1蝕刻濃度對AZO薄膜表面形貌的影響.........................81 4-4-2蝕刻濃度對AZO薄膜電特性的影響...........................83 4-4-3蝕刻濃度對AZO薄膜光特性的影響...........................85 4-4-4蝕刻濃度對太陽能電池效率的影響......................86 第五章 結論................................90 參考文獻...................................91

    [1] 郭禮青,”國內太陽能光電發展可期”工業材料雜誌,203,137(2003年11月)。
    [2] 黃信雄,”因應「氣候變化綱要公約」的我國太陽能應用策略”,太陽能學刊, 第2卷,第1期,39-45(1997年4月)。
    [3] O. Kluth, B. Rech, L. Houbena, S. Wieder, G. Schope, C. Beneking, H. Wagner, A. Loffl, H.W. Schock, Thin Solid Films, 351, (1999), 247.
    [4] M.A. Martinez, J. Herrero, M.T. Gutierrez, Sol. Energy Mater. Sol. Cells, 45, (1997), 75.
    [5] H. Kim, A. Pique, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore and D.B. Chrisey, Thin Solid Films, 377, (2000), 798.
    [6] Z.A. Ansari, R.N. Karekar, R.C. Aiyer, Thin Solid Films, 305, (1997), 330.
    [7] X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee, Appl. Phys. Lett. 83, (2003), 1875.
    [8] L. Raniero, I. Ferreira, A. Pimentel, A. Goncalves, P. Canhola, E. Fortunato, R. Martins, Thin Solid Films, 511-512, (2006), 295.
    [9] P. Cao, D.X. Zhao, J.Y. Zhang, D.Z. Shen, Y.M. Lin, B. Yao, B.H. Li, Y. Bai, X.W. Fan, Appl. Surface Sci., 254, (2008), 2900.
    [10] B. Yao, L.X. Guan, G.Z. Xing, Z.Z. Zhang, B.H. Li, Z.P. Wei, X.H. Wang, C.X. Cong, Y.P. Xie, Y.M. Lu, D.Z. Shen, J. Lumin. 122 (2007) 191.
    [11] J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, J. Huang, Mater. Lett. ,57, (2003), 3311.
    [12] X.B. Zhang, Z.L. Pei, J. Gong, C. Sun, J. Appl. Phys., 101, (2007) ,014910.
    [13] A. Martel, F.C. Briones, P.B. Pe’rez, A. Iribarren, R.C. Rodriguez, A.Z. Navarro, J.L. Pena, Surf. Coat. Technol., 148, (2001), 103.
    [14] F. Ruske, V. Sittinger, W. Werner, B. Szyszka, K.U. van Osten, K. Dietrich, R. Rix, Surf. Coat. Technol., 200, (2005), 236.
    [15] K. L. Chopra, S. Magor and D. K. Pandya, Thin Solid Films, 102, 1(1983)
    [16] 許國銓,“科技玻璃-高性能透明導電玻璃”,材料與社會,84, 110-119 (1993)
    [17] D.S. Ginley and C. Bright, MRS Bull.,Aug.,15, (2000)
    [18] B.G. Lewis and D.C. Paine, MRS Bull.,Aug.,22, (2000)
    [19] H. Kawazoe, H. Yanagi, K. Ueda, and H. Hosono, MRS Bull., Aug.,28,(2000)
    [20] T. Minami, MRS Bull., Aug., 38 ,(2000)
    [21] A.J. Freeman, K.R. Poeppelmeier, T.O. Mason, R.P.H. Chang, and T. J.Marks, MRS Bull.,Aug., 45, (2000).
    [22] R. G. Gordon, MRS Bull., Aug., 52, (2000)
    [23] T. J. Coutts, D. L. Young, and X. Li, MRS Bull., Aug.,58, (2000)
    [24] T.O. Mason, R.P.H. Chang, T.J. Mark, and K.R. Poeppelmeier,“Improved Transparent Conducting Oxides for Photovoltaics”, Final Research Report, Northwestern University, Evanston, Illinois, (1may 1999-31Dec. 2002)
    [25] 楊明輝,工業材料,179,134 (1999)
    [26] 賴明雄、溫志中,工業材料,179,145 (1999)
    [27] Ben G. Streetman and Sanjay Banerjee, “Solid state electronicdevices”, Prentice Hall (2000)
    [28] 陳建華,“P-型透明導電膜應用於有機發光二極體”,國立成功大學化學工程研究所碩士論文(2003)
    [29] B. Lin, Z. Fu, Y. Jia, Appl. Phys. Lett. ,79, (2001) ,943.
    [30] I. Kim, K. Lee, T.S. Lee, J. Jeong, B. Cheong, Y. Baik, W.M. Kim, J. Appl. Phys.,100,(2006),063701.
    [31] K. L. Chopra, S. Magor and D. K. Pandya, Thin Solid Films, 102, 1(1983)
    [32] H. L. Hartnagel, A. L. Dawar, A. K. Jain, C. Jagadish,“Semiconducting Transparent Thin Films”, Institute of Physics Publishing (1995)
    [33] 李玉華,“透明導電膜及其應用”,科儀新知,12, 94 (1990)
    [34] R. G. Gordon, MRS Bull., Aug., 52, (2000)
    [35] 楊明輝,工業材料,179,134 (1999)
    [36] E. Burstein, Phys. Rev. 93, (1954), 632.
    [37]D.F. Paraguay, L.W. Estrada, N.D.R. Acosta, E. Andrade, M.M. Yoshida, Thin Solid Films ,350 ,(1999), 192.
    [38] M.A. Nicolet “Diffusion Barriers in Thin Films”, Thin Solid Films,152, (1978) 415
    [39] J.R. Roth, “Industrial plasma engineering-Volume1:Principles Instituteof Physics ”,Publishing in London (1995).
    [40] 莊達人,”VLSI製造技術”,高立圖書股份有限公司,1995年
    [41] J. Hüpkes, B. Recha, O. Kluth, T. Repmann, B. Zwaygardt, J. Müller,R. Drese, M. Wuttig, ”Surface textured MF-sputtered ZnO films for icrocrystalline silicon-based thin-film solar cells”, Solar Energy Materials & Solar Cells, 90, (2006) ,3054–3060
    [42] Global Warning Art, http://www.globalwarmingart.com/.
    [43] 蔡進譯,“超高效率太陽電池從愛因斯坦的光電效應談起”
    [44] B.D. Cullity, “Elements of X-ray Diffraction”, Addison Wesley, Reading, Mass., 1978.
    [45] M.A. Martinez, J. Herrero, M.T. Gutierrez, Sol. Energy Mater. Sol. Cells 45,(1997),75.
    [46] H. Han, N.D. Theodore, T.L. Alford, J. Appl. Phys. 103, (2008), 013708.

    下載圖示 校內:2012-07-22公開
    校外:2012-07-22公開
    QR CODE